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Blood and brain transcriptome analysis 
reveals APOE genotype-mediated and immune-
related pathways involved in Alzheimer disease
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Abstract  
Background:  While Alzheimer disease (AD) is generally considered as a brain disorder, blood biomarkers may be 
useful for the diagnosis and prediction of AD brain pathology. The APOE ε4 allele has shown cerebrovascular effects 
including acceleration of blood-brain barrier (BBB) breakdown.

Methods:  We evaluated the differential expression of previously established AD genes in brains from 344 pathologi-
cally confirmed AD cases and 232 controls and in blood from 112 pathologically confirmed AD cases and 67 controls 
from the Religious Orders Study and Memory and Aging Project. Differential gene expression between AD cases and 
controls was analyzed in the blood and brain jointly using a multivariate approach in the total sample and within 
APOE genotype groups. Gene set enrichment analysis was performed within APOE genotype groups using the results 
from the combined blood and brain analyses to identify biologically important pathways. Gene co-expression net-
works in brain and blood samples were investigated using weighted correlation network analysis. Top-ranked genes 
from networks and pathways were further evaluated with vascular injury traits.

Results:  We observed differentially expressed genes with P < 0.05 in both brain and blood for established AD 
genes INPP5D (upregulated) and HLA-DQA1 (downregulated). PIGHP1 and FRAS1 were differentially expressed at the 
transcriptome-wide level (P < 3.3 × 10−6) within ε2/ε3 and ε3/ε4 groups, respectively. Gene set enrichment analysis 
revealed 21 significant pathways (false discovery rate P < 0.05) in at least one APOE genotype group. Ten pathways 
were significantly enriched in the ε3/ε4 group, and six of these were unique to these subjects. Four pathways (allo-
graft rejection, interferon gamma response, peroxisome, and TNFA signaling via NFKB) were enriched for AD upregu-
lated genes in the ε3/ε4 group and AD downregulated genes in subjects lacking ε4. We identified a co-expressed 
gene network in the brain that reproduced in blood and showed higher average expression in ε4 carriers. Twenty-
three genes from pathway and network analyses were significantly associated with at least one vascular injury trait.

Conclusion:  These results suggest that the APOE genotype contributes to unique expression network profiles in 
both blood and brain. Several genes in these networks are associated with measures of vascular injury and potentially 
contribute to ε4’s effect on the BBB.
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Background
Alzheimer disease (AD) is a neurodegenerative dis-
order characterized by amyloid plaques and neurofi-
brillary tau tangles in the brain [1]. Because these 
hallmark proteins are sometimes detectable in blood 
before clinical symptoms appear, there are on-going 
efforts to identify blood-based signatures from multi-
omics and biomarker data that can facilitate detection 
of AD preclinically [2, 3]. For example, plasma phos-
phorylated tau levels are highly correlated with neuro-
degenerative disorders and AD pathology [4, 5].

Cerebrovascular AD-related pathology that may 
affect the blood-brain barrier (BBB), such as cerebral 
amyloid angiopathy (CAA), has been shown to exac-
erbate neurodegeneration and neuroinflammation 
[6]. Dysfunction of the BBB, a semi-permeable border 
separating the extracellular fluid and brain tissue from 
circulating blood, has been implicated in the accumu-
lation of amyloid-β (Aβ) and hyperphosphorylation 
of tau protein [7, 8]. Apolipoprotein E (APOE) geno-
type is the strongest genetic risk factor for late-onset 
AD and the ε4 allele has been recently associated with 
BBB dysfunction leading to cognitive decline [9, 10]. 
Heterozygosity of the APOE ε4 allele confers a 3–4-
fold increase of AD risk and ε4 homozygotes have a 
10–12-fold increased likelihood of a clinical diagno-
sis of AD among persons of European ancestry [9, 11]. 
By contrast, among clinically and neuropathologically 
confirmed AD cases and controls of European ances-
try, a single copy of the APOE ε2 allele is associated 
with 0.61-fold decreased risk and ε2 homozygotes have 
an 0.87-fold reduced risk for AD compared to indi-
viduals with the ε3/ε3 genotype [12]. Cerebrovascular 
AD-related pathologies have also shown APOE geno-
type-dependent patterns. Both ε2 and ε4 are signifi-
cantly associated with the risk of CAA [13].

Previous whole transcriptome-wide studies from 
autopsied brains demonstrate that the classical com-
plement cascade and tau phosphorylation are linked 
to AD in an APOE genotype-specific manner [14, 15]. 
However, expression profiles associated with AD have 
not been intensively investigated in the blood and 
brain from the same individuals, especially separated 
by the APOE genotype. Here, we analyzed gene expres-
sion measured in the blood and brain tissue obtained 
from participants of the Religious Orders Study and 
Rush Memory and Aging Project (ROSMAP) [16] 
stratified by the APOE genotype in order to discern 
AD-related differential gene expression, biological 
pathways, and gene networks shared in the blood and 
brain.

Methods
Sources of blood transcriptomic and phenotypic data
RNA-sequencing (RNA-seq) data generated from blood 
donated by 614 ROSMAP participants and pheno-
typic data collected from those subjects were obtained 
from the Synapse portal [17]. RNA batches were pre-
pared using a SMART-seq2 protocol (batches 1-2) or a 
SMART-seq2-like protocol (batch 3). Batch 1 contain-
ing 47 samples (2 × 101bp) and batch 2 containing 201 
samples (2 × 76bp) were pooled and sequenced by HiSeq 
2500 (Illumina). Batch 3 containing 366 samples (2 × 50 
bp) was pooled and sequenced on Nova Seq 6000 (Illu-
mina) (Supplementary Table  1). A post-mortem diag-
nosis of AD was established for 112 participants using 
NIA-Reagan criteria including Braak staging for assess-
ing the severity of neurofibrillary tangles and the Con-
sortium to Establish a Registry for Alzheimer Disease 
(CERAD) semi-quantitative measure for neuritic plaques 
(CERAD score). Another 67 participants who were clini-
cally normal showed no pathological evidence of AD and 
were included in this study as controls (Table 1) [16, 18]. 
Age, sex, sequencing batch, and library batch informa-
tion was available for all subjects.

Sources of brain transcriptomic and phenotypic data
Publicly available prefrontal cortex brain RNA-seq and 
neuropathological data for 639 ROSMAP participants 
were obtained from the Synapse portal [17] (Supplemen-
tary Table  1). Sequencing libraries were prepared using 
the strand-specific dUTP method with poly-A selection, 
and all samples were sequenced using an Illumina HiSeq 
instrument. Of these 639 samples, data from 576 samples 
with both RNA integrity number (RIN) and post-mortem 
interval (PMI) were included in subsequent differential 
expression analyses (Table 1). Samples with RIN < 5 were 
excluded from further study. Previously reported RNA-
seq data were also available which were derived from 
the frontal cortex tissue region of 208 frontal autopsied 
brains (64 AD and 129 controls) donated to the Framing-
ham Heart Study and Boston University Alzheimer’s 
Disease Center (FHS/ADRC) [19]. A diagnosis of AD in 
these brains was established using NIA-Regan criteria 
including Braak staging and CERAD score [19].

Quality control, mapping, and quantification of gene 
expression data and sample
The 614 FASTQ files derived from blood RNA-seq data 
were processed in batches. Quality control (QC) of 
the sequence data was performed using FastQC which 
checked for overabundance of adaptors and overrepre-
sented sequences [20]. Reads passing initial QC were 
aligned to the human reference genome (GRCh38.95) 
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using STAR (version 2.6.1c), which implements 2-pass 
mapping to increase the chances of mapping splice reads 
from novel junctions [21, 22]. To account for differ-
ences in read lengths between batches, we created three 
genomic alignment index files with read lengths of 50bp, 
76bp, and 101bp, respectively, for mapping the study 
samples to the reference genome.

The 639 binary alignment map (BAM) files contain-
ing brain RNA-seq data required additional processing 
before alignment and thus were converted to FASTQ 
files using the FastqTosam function in Picard tools [23]. 
Samples were checked for adaptor overabundance and 
overrepresented sequences using FastQC [20]. Paired-
end reads were aligned to the human reference genome 
as described above. In order to map brain samples to the 
reference genome, genomic index files (read length = 
101bp) were created.

The resulting BAM files for each brain and blood 
sample contained mapped paired-end reads and a cor-
responding alignment report file. Gene and isoform lev-
els were quantified using RSEM (version 1.3.1) [24] and 
Bowtie2 (version 2.3.4.1) [25] and then annotated using 
Homo sapiens GRCh38.95.gtf annotation files. Files gen-
erated by this process for each sample contained several 
variables for each gene including gene id, gene length, 
effective gene length, expected count, counts per million 
(CPM), and fragments per kilobase of exon model per 
million reads mapped (FPKM) reads.

Gene expression analysis in the blood and brain
Differential expression analysis
Genes with less than two reads on average among 80% 
or more of the samples were excluded from analyses. 
Blood and brain samples were corrected for between-
sample variability using a trimmed mean of M-value 

normalization method [26]. Differential gene expres-
sion analysis between AD and control subjects in the 
blood and brain was performed separately using the 
VOOM and LIMMA software [27, 28]. For differen-
tial gene expression analysis in the brain, the normal-
ized expression of each gene was compared between 
AD cases and controls using linear regression models 
adjusting for sex, age at death, RNA integrity num-
ber (RIN), post-mortem interval (PMI), and sequenc-
ing batch as covariates. Gene expression analysis of 
the blood samples included only the 179 individuals 
who were neuropathologically examined and models 
included covariates for sex, age at exam, and library 
batch. A total of 140 individuals had genomic data 
derived from the blood and brain and included in anal-
yses for both tissues. Analyses were performed in the 
total sample and subgroups defined by the APOE geno-
type (ε2/ε3, ε3/ε3, and ε3/ε4). Subjects with genotypes 
ε2/ε2, ε2/ε4, and ε4/ε4 were excluded from analyses due 
to small samples sizes (Supplementary Table 1, Table 1). 
Analyses of gene expression in blood were further strat-
ified by RNA batch due to differences in read length 
and sample substructure (Supplementary Fig. 1a), while 
we did not observe batch differences in the brain (Sup-
plementary Fig. 1b). For the ε3/ε4 subgroup, data from 
batch 2 in blood were only analyzed because the batch 
1 sample size was too small (Table  1). Analyses were 
not stratified by batch in the brain because there was 
no obvious batch effect and sample sizes in each of the 
nine batches were too small, especially within the ε2/ε3 
and ε3/ε4 subgroups (Supplementary Table  2). Results 
from analyses of each batch and APOE genotype group 
were combined by meta-analysis weighting for the 
number of AD cases and accounting for effect direction 
using the METAL program [29].

Table 1  Number of ROSMAP participants with RNA-seq data by APOE genotype and batch

Blood batch 3 was excluded because it contained controls only

*APOE ɛ3/ɛ4 subjects from blood batch 1 were excluded from all analyses due to the small sample size

**ɛ2/ɛ2, ɛ2/ɛ4, and ɛ4/ɛ4 subjects were not analyzed separately due to the small sample size

NA, APOE genotype not available

APOE genotype Blood batch 1 Blood batch 2 Combined blood Brain Blood-brain overlap

AD CTRL AD CTRL AD CTRL AD CTRL AD CTRL

ɛ2/ɛ2** 0 0 0 1 0 1 0 5 0 1

ɛ2/ɛ3 5 3 9 9 14 12 32 39 12 8

ɛ3/ɛ3 16 11 44 31 60 42 197 158 49 33

ɛ2/ɛ4** 1 1 5 0 6 1 9 4 4 1

ɛ3/ɛ4* 8 1 21 10 21 10 101 25 22 8

ɛ4/ɛ4** 1 0 1 0 0 0 5 1 2 0

NA 0 0 1 0 1 0 0 0 0 0

Total 31 16 81 51 112 67 344 232 89 51
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To evaluate differential gene expression patterns in the 
joint blood and brain datasets, we combined univari-
ate results from the blood and brain using the R package 
CUMP which incorporates O’Brien’s method [30]. In this 
method, a combined Z-score was calculated using t-value 
estimates derived from the LIMMA linear regression 
analyses and/or from Z-score estimates from the meta-
analysis of the blood batches. All analyses were weighted 
by the number of samples within APOE genotype groups 
or in the total sample.

Single‑cell gene expression analysis
A normalized single-cell RNA-sequencing expres-
sion matrix from ~2400 cells collected from the blood 
of healthy individuals ages 25 to 40 and proportions 
of dendritic cells and monocytes for each sample were 
obtained from the Single Cell Portal [31]. Additional 
details of these subjects and single-cell RNA sequencing 
are reported elsewhere [32]. FASTQ single nuclei RNA-
sequencing data from the prefrontal cortex of 48 brains 
from ROSMAP participants (24 AD cases, 24 controls) 
were obtained from the Synapse portal [17] and pro-
cessed as previously described [19]. Among the 48 indi-
viduals in this dataset, 26 are included in the ROSMAP 
bulk brain RNA-seq dataset and four of these 48 indi-
viduals overlap with the ROSMAP bulk blood RNA-seq 
dataset. The average expression for each cell type in the 
blood and brain RNA-seq datasets was calculated for 
each gene.

Gene set enrichment analysis
Differentially expressed genes in the total sample or 
within APOE genotype groups were ranked by a com-
bined Z-score from the blood and brain using the 
O’Brien method. Gene set enrichment analysis was per-
formed using this ranked list and hallmark gene set path-
way information obtained from the Molecular Signatures 
Database (MSigDB) as previously described [33, 34]. 
The hallmark gene set is focused on biological processes 
obtained by aggregated MsigDB signatures. Pathway 
enrichment scores were determined based on the degree 
to which a set of genes was overrepresented by the largest 
positive and smallest negative Z-scores. Genes that con-
tributed the most to the enrichment score of each path-
way were designated as leading-edge genes.

Co‑expressed gene network analysis in the blood 
and brain
Co-expressed genes in networks were identified using 
14,456 coding genes in the brain and 11,379 coding genes 
in the blood in the ROSMAP RNA-seq dataset using the 
weighted gene correlation network analysis (WGCNA) 
algorithm [35]. Analyses of data from blood included 

only 141 batch 2 samples with and without post-mortem 
examination to avoid batch effects, and analyses of data 
from the brain comprised 636 samples excluding lack 
of RIN or batch information (Supplementary Table  3). 
We used gene expression levels calculated as log-trans-
formed fragments per kilobase of transcript per million 
(FPKM). Soft-power parameters of 12.0 and 12.5 were 
selected for analyses of brain and blood data, respec-
tively, as previously described [19]. Expression data were 
clustered hierarchically by implementing a dissimila-
tory topological overlap matrix (TOM). Initial modules 
with a minimal network size of 100 genes were identi-
fied and labeled using dynamic tree cutting. Eigengenes 
were derived from the first principle component for 
each module and served as representative values of gene 
expression in a given module [36]. Networks with high 
eigengene similarity and a height of 0 were merged using 
the mergeCloseModules function in WGCNA. Fuzzy 
module membership was assigned using the signedKME 
function.

Network modules identified in the brain were exam-
ined for preservation in blood using the modulePreser-
vation function in WGCNA. Brain networks with a 
Zsummary score > 5 were considered preserved in blood 
networks [37]. Relevance of the networks to AD pathol-
ogy was established based on enrichment of AD-related 
genes that was determined using the userListEnrichment 
function in WGCNA. For the purpose of this analysis, we 
defined AD-related genes which included those within 
20kb of single nucleotide polymorphisms (SNPs) show-
ing at least modest evidence (P < 0.001) for association 
with AD risk [38] or AD-related neuropathological meas-
ures of Tau and Aβ proteins [39]. We used EnrichR to 
identify KEGG pathways enriched for AD-related genes 
in the preserved networks [40]. Next, genes in networks 
contributing to significant pathways were further evalu-
ated using Ingenuity Pathway Analysis software (QIA-
GEN Inc.) to identify biological subnetworks.

Measurements and association with vascular injury‑related 
proteins
Intercellular adhesion molecule 1 (ICAM-1), vascular cell 
adhesion molecule 1 (VCAM-1), and serum amyloid α 
(SAA) were detected and measured in fresh tissue lysate 
from the dorsolateral prefrontal cortex area using the 
Mesoscale Discovery V-PLEX Plus Vascular Injury Panel 
Kit (Mesoscale Discovery, K15198G, Rockville MD). 
Gray matter was separated from frozen brain tissue on 
dry ice and weighed. Ice-cold RIPA buffer (ThermoScien-
tific, #89901) was added to the gray matter at 5mL RIPA: 
1g brain wet weight, and homogenized with Qiagen 
Tissue Lyser LT at 50Hz for 5 min (Qiagen, Germany) 
(ThermoScientific, Waltham MA). The homogenate was 
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centrifuged at 17,000g at 4°C for 15 min, then the super-
natant was aliquoted and stored at −80°C until use. Buff-
ers and immunoassay plates were prepared according to 
the manufactory instructions and the brain homogenate 
was further diluted 5-fold. The immunoassay plates were 
read using the multi-detection SPECTOR 6000 Imager to 
quantitate protein levels (Mesoscale Discovery).

Additional analyses of 107 top-ranked genes emerg-
ing from pathways identified by differential gene expres-
sion and network analyses were performed using 
log-transformed FPKM values obtained previously from 
these FHS/ADRC donor brains [19]. Levels of ICAM-
1, VCAM-1, and SAA proteins were rank-transformed 
after adjusting for age and sex. We performed associa-
tion analyses using the expression levels of the selected 
genes with the levels of vascular injury-related proteins 
as quantitative outcomes in linear regression models fur-
ther adjusting for RIN.

Results
Differentially expressed genes in the blood and brain
Gene expression levels in 179 blood and 576 brain sam-
ples from the ROSMAP dataset were compared between 
AD cases and controls (Fig.  1). In the total sample, no 
genes in the combined data from the blood and brain 
were differentially expressed at the transcriptome-wide 
significance level (P < 3.3 × 10−6). Of 78 genes contain-
ing or nearest to SNPs associated with AD at a genome-
wide significance level in a recent large genome-wide 
association study (GWAS) [41], 64 passed QC and were 
expressed in both brain and blood. The expression of 
five of these 64 genes (HLA-DQA1, INPP5D, SPDYE3, 
TSPOAP1, and SIGLEC11) were nominally significant 
(P < 0.05) in the analysis of the combined blood and 
brain data (Table  2, Supplemental Table  4, Supplemen-
tary Fig.  2). Differential expression of HLA-DQA1 and 
INPP5D was nominally significant at P < 0.05 in both 
blood and brain with the same direction of effect. Dif-
ferentially expressed genes (DEGs) after multiple test-
ing correction at P < 6.4 × 10−4 were evident only in the 
brain for BCKDK (P = 5.1 × 10−4, Padj = 0.04), TSPOAP1 
(P = 2.6 × 10−4, Padj = 0.02), and SIGLEC11 (P = 1.6 × 
10−4, Padj = 0.01).

Two genes were differentially expressed between AD 
cases and controls at the transcriptome-wide level (P < 

3.3 × 10−6) within a particular APOE genotype group. 
PIGHP1 was significantly upregulated in AD cases in the 
combined brain and blood samples in the ε2/ε3 group (Z 
= 4.67, P = 3.1×10−6, Padj = 0.05), a pattern predomi-
nated by the evidence in the brain but also apparent in 
the blood (Table  3, Supplementary Figs.  2, 3a). Among 
ε3/ε4 subjects, the expression of FRAS1 was significantly 
downregulated in AD cases in blood only (Z = −4.66, P 
= 3.2 × 10−6, P adj = 0.05) (Supplementary Fig. 3b). No 
transcriptome-wide significant DEGs were identified in 
the brain from any APOE genotype groups. Among genes 
previously associated with AD among ε2/ε3 subjects 
[19], C4A, C4B, and HSPA2 were moderately (P < 10−3) 
upregulated in the brain but not blood from AD ROS-
MAP Study participants in the ε2/ε3 subgroup and total 
sample (Supplemental Table 5). Notably, C4B expression 
trended in the opposite direction (i.e., downregulated in 
AD cases) in blood from ε2/ε3 subjects (P = 0.08, Padj = 
1.0).

Examination of cell-level expression profiles of the 
DEGs in Tables 1 and 2 revealed that in blood cell types 
HLA-DQA1 and INPP5D were more highly expressed in 
dendritic cells and monocytes compared to other genes 
in this group (Supplementary Fig.  4a). INPP5D was the 
only gene in this group expressed in brain cell types and 
specifically in microglia (Supplementary Fig. 4b).

APOE genotype‑dependent pathways in combined blood 
and brain expression profiles
We identified 21 pathways that were significantly 
enriched for upregulated or downregulated genes in the 
combined blood and brain expression levels in at least 
one APOE genotype group (Fig. 2a and Supplementary 
Table  6). Enrichment scores from significant pathways 
identified in the ε3/ε4 group were generally downregu-
lated and had the opposite effect direction compared 
to those for the other APOE genotype groups (Fig. 2a, 
Table  4). Six pathways were significantly and uniquely 
enriched in the ε3/ε4 subgroup including apoptosis, 
estrogen response late, hypoxia, il6/jak/stat3 signaling, 
inflammatory response, and p53 pathway. Pathways for 
allograft rejection, interferon gamma response, per-
oxisome, and TNFA signaling via NFKB were enriched 
for upregulated AD genes in the ε3/ε4 group but for 
downregulated AD genes in the ε2/ε3 and ε3/ε3 groups. 

(See figure on next page.)
Fig. 1  Analysis design and workflow. RNA-sequencing data were obtained from the blood and post-mortem frozen brain of neuropathologically 
verified AD cases and controls. Data were analyzed in two ways. First, gene co-expression analysis identified networks in the brain that reproduced 
in the blood. A second analysis identified genes differentially expressed between AD cases in controls in the total sample as well as within APOE 
genotype groups in both blood and brain. The expression of genes in the co-expression networks that were previously associated with AD by 
GWAS was tested for associated with AD-related traits measured in the brain. Next, genes in significant co-expression networks and differentially 
expressed genes in the blood and brain were incorporated as seeds in pathway analysis. Finally, the expression of genes from the most significant 
pathways was tested for association with levels of several vascular damage proteins. Figure created with BioRe​nder.​com

http://biorender.com
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Fig. 1  (See legend on previous page.)
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There was little overlap of the leading-edge genes for 
these four pathways across APOE genotype groups with 
at most one overlapping gene per pathway (Table  4). 
Leading-edge genes in the same pathway shared by dif-
ferent APOE genotypes included HLA-DRA in allograft 
rejection, CD74 in interferon gamma response, and 
KYNU in TNFA signaling via NFKB. Among 92 lead-
ing-edge genes from the four pathways that had enrich-
ment scores in opposite directions among subjects with 
and without ε4 (Table 4), the expression of 21 genes in 
FHS/ADRC brains was significantly associated (P < 4.67 
× 10−4) with at least one of the three vascular injury-
related proteins (Fig.  2b, Table  5). The expression of 
11 of these 21 genes (52%) was significantly associ-
ated with the SAA level, and the expression of 13 genes 
(62%) was significantly associated with the VCAM-1 
level. The expression of only two genes, TRIP10 and 

FOSL1, which are both involved in signaling via NFKB, 
was significantly associated with ICAM-1 levels.

Co‑expression networks common to the brain and blood
Four co-expression networks identified in the brain were 
preserved in the blood (Supplementary Table  7). The 
eigengene value (i.e., first principle component of gene 
expression across the network) in the light green network 
was significantly higher among ε4 carriers than non-car-
riers (P = 4.7 × 10−3) (Fig. 3a). The light green network 
is significantly enriched for genes previously associated 
with AD risk [38] and plaque score [39] (Supplemen-
tary Table 7). The AD-related genes in this network were 
significantly enriched in nine KEGG pathways and four 
hallmark pathways (Fig. 3b, Supplementary Tables 8, 9). 
Seventeen genes contributing to the significant KEGG 
pathways form a biological subnetwork (Fig. 3c). One of 
these genes, NFKBIA, is a leading-edge gene from the 

Table 2  Differentially expressed known AD genes in the combined blood and brain datasets in the total sample

The combined column reflects the meta-analysis results or single batch results in the case of one batch including low gene filtering

Gene Dataset APOE ɛ2/ɛ3 APOE ɛ3/ɛ3 APOE ɛ3/ɛ4 Total

N Z-score P-value N Z-score P-value N Z-score P-value N Z-score P-value

INPP5D Blood 26 −0.62 0.53 102 1.67 0.10 31 2.12 0.03 179 2.16 0.03

Brain 71 1.80 0.07 355 0.92 0.36 126 0.66 0.51 576 2.30 0.02

Combined 97 1.51 0.13 457 1.29 0.20 157 1.31 0.19 755 2.42 0.02

HLA-DQA1 Blood 26 −1.49 0.14 102 −1.80 0.07 31 0.96 0.34 179 −2.26 0.03

Brain 71 0.30 0.76 355 −3.13 1.7 × 10−3 126 −1.01 0.31 576 −2.23 0.03

Combined 97 −0.16 0.87 457 −2.84 4.6 × 10−3 157 −0.66 0.51 755 −2.42 0.02

SPDYE3 Blood 26 −0.08 0.94 102 −0.76 0.45 31 −0.96 0.34 179 −1.47 0.14

Brain 71 −0.79 0.43 355 −0.97 0.33 126 −2.16 0.03 576 −2.73 6.4 × 10−3

Combined 97 −0.77 0.44 457 −0.96 0.33 157 −2.37 0.02 755 −2.26 0.02

TSPOAP1 Blood 26 −1.38 0.17 102 0.30 0.77 31 −0.16 0.87 179 −0.55 0.58

Brain 71 −1.04 0.30 355 −2.17 0.03 126 −1.85 0.06 576 −3.65 2.6 × 10−4

Combined 97 −1.39 0.16 457 −1.35 0.18 157 −1.82 0.07 755 −2.24 0.03

SIGLEC11 Blood 26 1.43 0.15 102 0.47 0.64 31 0.24 0.81 179 0.33 0.74

Brain 71 1.05 0.29 355 2.46 0.01 126 2.58 9.9 × 10−3 576 3.77 1.6 × 10−4

Combined 97 1.42 0.16 457 1.86 0.06 157 2.54 0.01 755 2.17 0.03

Table 3  Novel differentially expressed genes in the blood or brain within APOE genotype groups

NA not available due to low expression. Bolded P-values pass transcriptome-wide multiple testing threshold (3.3 × 10−6)

Gene Dataset APOE ɛ2/ɛ3 APOE ɛ3/ɛ3 APOE ɛ3/ɛ4 Total

N Z-score P-value N Z-score P-value N Z-score P-value N Z-score P-value

FRAS1 Blood NA NA NA 75 −0.24 0.81 31 −4.66 3.2 × 10−6 132 −2.26 0.02

Brain NA NA NA 355 −0.97 0.33 126 0.28 0.78 576 −0.49 0.62

Combined NA NA NA 430 −0.75 0.45 157 −1.23 0.22 708 −1.27 0.20

PIGHP1 Blood 26 1.67 0.09 102 0.43 0.67 31 1.30 0.19 179 1.14 0.25

Brain 71 4.42 9.8 × 10−6 355 0.53 0.59 126 0.47 0.64 576 1.98 0.05

Combined 97 4.67 3.1 × 10−6 457 0.53 0.59 157 0.87 0.39 755 1.68 0.09
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Fig. 2  Significant pathways in the blood and brain by the APOE genotype. a Significant pathways (adjusted P < 0.05) within APOE genotype groups 
that are enriched for differentially expressed genes in the blood and brain combined are plotted according to the normalized enrichment score. 
Enrichment score indicates whether the genes in the pathway are upregulated (positive) or downregulated (negative) in AD. b Heatmap shows 
strength and direction of association of levels of proteins involved in vascular damage with the expression of leading-edge genes from significant 
pathways where enrichment scores are in opposite directions between APOE ε4 carriers (+) and non-carriers (-). Genes whose expression was 
significantly (P < 4.67 × 10−4) associated with the level of at least one protein (indicated by an asterisk) are shown

Table 4  Significant co-expressed gene pathways in the combined blood and brain datasets

NES normalized enrichment score. Only pathways with adjusted P-value < 0.05 were included

Hallmark pathway APOE genotype NES Adjusted P-value Leading-edge genes

Allograft rejection ɛ3/ɛ3 −1.89 0.02 C2, HLA-DQA1, FAS, HLA-A, UBE2N, HLA-DOB, LTB, F2R, HLA-DRA, TAP2, 
B2M, CD1D, CD74, MAP3K7

 ɛ3/ɛ4 2.16 7.4 × 10−3 IRF4, CCL22, IRF7, CD74, HLA-DRA, ELF4, IL16, IFNGR2, IL27RA, IL1B

Interferon gamma response ɛ3/ɛ3 −2.56 1.3 × 10−5 HLA-DQA1, FAS, CFB, BPGM, C1S, HLA-A, LAP3, MVP, PSME2, PSMA2, 
UBE2L6, SERPING1, DHX58, IFITM2, CD38, B2M, CD74

 ɛ3/ɛ4 1.80 0.04 CD274, CD69, BTG1, ISG20, PML, IRF4, NFKBIA, IRF7, CD74, IL10RA, IRF9

Peroxisome ɛ3/ɛ3 −1.81 0.03 IDH2, EHHADH, MVP, ALDH1A1, SCP2, SOD1, ABCD2, MSH2

ɛ3/ɛ4 1.90 0.03 RDH11, ELOVL5, SLC25A19, CTPS1, SLC23A2, SEMA3C

Tnfa signaling via nfkb ɛ2/ɛ3 −2.03 0.01 DUSP4, NR4A1, NR4A3, MARCKS, NFAT5, PHLDA1, DUSP2, KYNU, G0S2, 
ETS2, PTGS2, GCH1, MSC, SOD2, EGR2

ɛ3/ɛ4 2.27 2.5 × 10−3 TRIP10, CD69, BTG1, DENND5A, PFKFB3, FOS, NFKBIA, LDLR, IER2, JUN, 
IL1A, PANX1, PNRC1, DUSP1, IFNGR2, OLR1, MAFF, IL1B, TNIP2, CCL20, 
BIRC2, IER3, GADD45B, KYNU, LITAF, CCRL2, SPHK1, FOSL1
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signaling via NFKB pathway and was involved in five out 
of nine significant KEGG pathways and two out of four 
hallmark pathways in the light green network (Table  4, 
Supplementary Table 8). HLA-DRA is involved in six of 
the nine significant KEGG pathways and the allograft 
rejection hallmark pathway in the light green network 
and is a leading-edge gene in the allograft rejection path-
way identified in the ε3/ε3 and ε3/ε4 groups. INPP5D, 
which is differentially expressed in both blood and brain 
(Table  2, Supplementary Fig.  2), is involved in two sig-
nificant KEGG pathways (Fc gamma R-mediated phago-
cytosis and B cell receptor signaling) in the light green 
network. C4B, which is upregulated in the brain from AD 
cases compared to controls in the ε2/ε3 group (Supple-
mentary Table 5), was included in the light green network 
pathways involved in Staphylococcus aureus infection and 
systemic lupus erythematosus.

Two of the 17 subnetwork genes in the significant path-
ways enriched for AD genes in the light green network 
(Supplementary Table  10) were significantly associated 
with the level of at least one of the three vascular injury 
proteins after multiple testing correction (Fig.  3d). Spe-
cifically, VASP expression was significantly associated 

with levels of ICAM-1 (P = 3.7 × 10−4, Padj = 0.04) and 
SAA (P = 1.0 × 10−4, Padj = 0.01) and C4B expression 
was significantly associated with levels of ICAM-1 (P = 
1.3 × 10−5, Padj = 1.4 × 10−3), SAA (P = 1.6 × 10−4, Padj 
= 0.02), and VCAM-1 (P = 7.0 × 10−6

, Padj = 7.6 × 10−4).

Discussion
The primary purpose of this study was to identify genes 
previously associated with AD and in biological path-
ways enriched for AD genes whose expression dif-
fers between AD cases and controls in both blood and 
brain, especially in an APOE genotype-specific manner. 
We observed that two established AD genes, INPP5D 
and HLA-DQA1, were differentially expressed in both 
blood and brain. Among the 21 top-ranked pathways in 
the combined blood and brain expression profiles, 10 
pathways were specific to persons having the APOE ɛ3/
ɛ4 genotype. Additionally, we identified a co-expression 
network enriched for AD genes in the brain that was 
preserved in the blood and showed significantly higher 
average expression in ε4 carriers than non-carriers. 
Lastly, several genes from the top-ranked pathways and 
co-expression networks were significantly associated 

Table 5  Association of expression of leading-edge genes from co-expressed gene networks with vascular damage protein levels

I-CAM intercellular adhesion molecule 1, SAA serum amyloid A, V-CAM1 vascular cell adhesion molecule 1, AR allograft rejection, IGR interferon gamma response, P 
peroxisome, TSN Tnfa signaling via nfkb

Results in bold surpass the multiple testing threshold (P < 4.67 × 10−4)

Gene APOE genotype Pathway(s) I-CAM1 SAA V-CAM1

β P-value β P-value β P-value

C1S ɛ3/ɛ3 IGR 0.11 0.13 0.24 2.5 × 10−3 0.30 2.0 × 10−4

C2 ɛ3/ɛ3 AR 0.05 0.53 0.17 0.04 0.30 2.2 × 10−4

CD1D ɛ3/ɛ3 AR 0.28 3.4 × 10−3 0.21 0.05 0.46 1.7 × 10−5

CD38 ɛ3/ɛ4 IGR 0.09 0.25 0.07 0.41 0.39 6.1 × 10−6

CFB ɛ3/ɛ3 IGR 0.16 0.05 0.46 2.2 × 10−7 0.26 5.4 × 10−3

DHX58 ɛ3/ɛ3 IGR 0.11 0.34 0.20 0.13 0.51 7.1 × 10−5

ELF4 ɛ3/ɛ4 AR 0.32 8.7 × 10−4 0.46 1.9 × 10−5 0.26 0.02

FOSL1 ɛ3/ɛ4 TSN 0.20 3.1 × 10−4 0.18 3.1 × 10−3 0.08 0.21

HLA-A ɛ3/ɛ3 AR; IGR 0.27 0.03 0.38 3.9 × 10−3 0.53 7.0 × 10−5

IDH2 ɛ3/ɛ3 P 0.09 0.43 0.24 0.05 0.61 3.6 × 10−7

IER3 ɛ3/ɛ4 TSN 0.14 0.06 0.37 3.5 × 10−6 0.07 0.43

IFITM2 ɛ3/ɛ3 IGR 0.19 0.01 0.48 2.9 × 10−9 0.18 0.03

IRF7 ɛ3/ɛ4 AR; IGR 0.24 9.5 × 10−4 0.41 2.8 × 10−7 0.20 0.02

ISG20 ɛ3/ɛ4 IGR 0.21 3.6 × 10−3 0.34 1.9 × 10−5 0.29 4.4 × 10−4

LITAF ɛ3/ɛ4 TSN 0.27 4.1 × 10−3 0.39 2.1 × 10−4 0.43 3.9 × 10−5

MVP ɛ3/ɛ3 IGR; P 0.21 0.01 0.42 7.0 × 10−6 0.45 2.4 × 10−6

PFKFB3 ɛ3/ɛ4 TSN 0.30 5.6 × 10−4 0.30 2.6 × 10−3 0.35 4.0 × 10−4

PML ɛ3/ɛ4 IGR 0.28 0.02 0.47 3.8 × 10− 0.50 2.0 × 10−4

SERPING1 ɛ3/ɛ3 IGR 0.17 0.13 0.35 4.4 × 10−3 0.50 4.7 × 10−5

TNIP2 ɛ3/ɛ4 TSN 0.36 1.9 × 10−3 0.59 4.7 × 10−6 0.19 0.15

TRIP10 ɛ3/ɛ4 TSN 0.32 2.1 × 10−4 0.35 3.4 × 10−4 0.06 0.58
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with levels of vascular injury proteins. These findings 
suggest that AD genes that are differentially expressed 
in both blood and brain and associated with vascu-
lar markers, and their effects are dependent on APOE 
genotypes.

The BBB is a semi-permeable endothelial cell mem-
brane regulating transport between cerebral blood 
vessels and the central nervous system [42]. The dysregu-
lation of the BBB has been implicated in early cognitive 
decline and exacerbation of neuroinflammation and neu-
rodegeneration [43]. A recent study showed that APOE 

Fig. 3  APOE genotype-specific co-expression networks in the blood and brain. a Boxplot for the light green network showing the distribution of 
eigengene values, which summarize gene expression across a network, among APOE ε4 carriers (+) and non-carriers (-). P-value was calculated 
using the Student t-test. b Barplot showing significant pathways enriched for established AD genes in the light green network. c Biological 
subnetwork including established AD genes involved in significant pathways in the light green network. d Heatmap showing the strength of 
association of seed-gene expression in the brain from the biological subnetwork in c with levels of proteins involved in vascular damage. Asterisks 
indicate significant associations (P < 4.67 × 10−4)
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ε4 carriers exhibit BBB dysfunction and cognitive decline 
independent of AD pathology [10]. Our analyses identi-
fied six pathways uniquely enriched for DEGs among ε3/
ε4 carriers in combined blood and brain expression data. 
Expression of INPP5D and HLA-DQA-1 was significantly 
greater in both blood and brain from individuals with AD 
compared to controls. Increased expression of INPP5D 
in blood has been previously linked with an increased 
risk of hemorrhagic transformation [44], which is associ-
ated also with BBB permeability [45]. INPP5D is highly 
expressed in microglia and encodes the protein SHIP1 
which has been implicated in many neuroinflammatory 
processes [46]. Additionally, HLA-DQA1 and INPP5D are 
expressed in dendritic cells and monocytes and involved 
in immune processes, and the migration of monocytes 
across an inflamed BBB can cause differentiation into 
dendritic cells [47]. FRAS1 was significantly downregu-
lated in AD compared to controls in blood from ε3/ε4 
AD individuals and a recent study showed that FRAS1 
knockdown mice were impaired in memory and learning 
behaviors [48].

We identified four pathways (allograft rejection, inter-
feron gamma response, peroxisome, and TNFA signal-
ing via NFKB) containing gene sets that, with respect to 
AD, were significantly upregulated in the blood and brain 
from ε4 carriers and other gene sets from the same path-
ways that were downregulated in individuals without ε4. 
The inflammatory cytokine interferon gamma has been 
shown to impact directly brain endothelium to cause BBB 
breakdown [49] and can inhibit ApoE production in mac-
rophages [50]. Peroxisomes synthesize fatty acids which 
have been implicated in the development of AD [51]. The 
TNFA via NFKB signaling pathway has been implicated 
in BBB dysfunction [52], and the TNFA and NFKB path-
ways have been independently associated with increased 
neuroinflammation related to APOE ε4 [53, 54].

Multiple genes from networks we observed to be pre-
served in the brain and blood transcriptome data and 
enriched in pathways from combined blood and brain 
expression profiles showed significant association with 
the vascular injury proteins ICAM-1, SAA, and VCAM-1. 
The SAA level increases in the presence of BBB dysfunc-
tion [55]. ICAM-1 is a cytokine involved in the regulation 
of the BBB [56], and increased ICAM-1 level has been 
associated with BBB damage and neuroinflammation 
[57]. Under inflammatory conditions, the VCAM-1 level 
is upregulated and the BBB can release soluble VCAM-1 
which in turn can compromise BBB function [58]. Our 
study showed that FOSL1 and TRIP10 were among the 
genes enriched in the TNFA via the NFKB pathway, and 
their expression was associated with ICAM-1. TRIP10 
was previously included in an AD network derived from 
multi-omic integration [59] and FOSL-1 was identified 

in conjunction with PIAS1, a protein associated with AD 
and inflammatory response [60]. We identified VASP and 
C4B in an APOE genotype-specific co-expressed gene 
network in the brain that was reproduced in the blood, 
and the expression of these genes was significantly asso-
ciated with levels of multiple vascular damage proteins. 
VASP encodes vasodilator-stimulated phosphoprotein 
which regulates BBB function [61]. Additionally, VASP 
has been recently implicated in a microglial network in 
AD [62]. The pattern of C4B expression in the brain is 
dependent on the APOE genotype [19], and dysregula-
tion of the complement system can cause or exacerbate 
BBB dysfunction [63]. C4B-binding-protein levels in cer-
ebral spinal fluid have been shown to correlate with BBB 
integrity [64]. These genes require further investigation 
in their role with AD specifically related to BBB function 
and APOE.

Limitations
Our study has several limitations. First, the sample sizes 
of the APOE genotype groups in the blood dataset were 
relatively small which limited statistical power. Addition-
ally, the ROSMAP blood dataset exhibited significant 
batch effects. However, we were able to account for these 
batch effects by running each batch separately and meta-
analyzing our results. Second, the software WGCNA 
creates networks based on strong computational cor-
relations but does not account for underlying biologi-
cal implications. We evaluated biological connections 
using the IPA software by rebuilding subnetworks of the 
leading-edge genes. Third, publicly available single-cell 
data were available only for dendritic cells and mono-
cytes in the blood, and therefore, we could not analyze a 
wider array of blood cell types. Fourth, we were unable to 
account for RIN in the ROSMAP blood dataset because 
this information was unavailable. Fifth, because expres-
sion profiles may differ between tissues, lack of overlap 
between brain and blood does not necessarily exclude the 
relevance of some of our discordant findings across tis-
sues to AD and BBB dysfunction. Finally, although there 
was little overlap of leading-edge genes in GSEA path-
ways across APOE genotype groups, several particular 
pathways containing a different complement of genes 
were significant among individuals with different APOE 
genotypes. Experimental studies are needed to confirm 
the mechanisms involving these genes.

Conclusions
Our study provides evidence of the importance of eval-
uating brain and blood transcriptome data together 
with genetic information derived from the same sub-
jects to identify meaningful correlations of blood bio-
markers with AD-related proteins in the brain. Future 
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studies are required to investigate further, how the 
genes and biological pathways identified in this study 
in the context of the APOE genotype influence the 
BBB and contribute to and/or exacerbate AD-related 
pathology.
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