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Abstract: Although cognitive behavioral therapy (CBT) is effective for patients with obsessive-
compulsive disorder (OCD), 40% of OCD patients show a poor response to CBT. This study aimed
to identify the cortical structural factors that predict CBT outcomes in OCD patients. A total of
56 patients with OCD received baseline structural MRI (sMRI) scanning and 14 individual CBT
sessions. The linear support vector regression (SVR) models were used to identify the predictive
performance of sMRI indices, including gray matter volume, cortical thickness, sulcal depth, and gyri-
fication value. The patients’ OC symptoms decreased significantly after CBT intervention (p < 0.001).
We found the model with the comprehensive variables exhibited better performance than the models
with single structural indices (MAE = 0.14, MSE = 0.03, R2 = 0.36), showing a significant correlation
between the true value and the predicted value (r = 0.63, p < 0.001). The results indicated that a
model integrating four cortical structural features can accurately predict the effectiveness of CBT for
OCD. Future models incorporating other brain indicators, including brain functional indicators, EEG
indicators, neurotransmitters, etc., which might be more accurate for predicting the effectiveness of
CBT for OCD, are needed.

Keywords: obsessive-compulsive disorder; cognitive behavioral therapy; cortical structural feature;
prediction; machine learning; support vector regression

1. Introduction

About 1–3% of the population suffer from obsessive–compulsive disorder (OCD) once
in their lifetime [1,2]. OCD patients suffer from persistent intrusive thoughts (obsessions)
and/or repetitive behaviors (compulsions), which cause social disorders that are expensive
to treat [3]. Through altering patients’ dysfunctional thinking and behavior, cognitive
behavioral therapy (CBT) may improve the OC symptoms and negative emotions. CBT has
become one of the first-line treatments for OCD, with its response rate reaching 60–70% [4,5].
Compared with pharmacotherapy, CBT can reduce relapse rates and is associated with
fewer adverse side effects. Despite these benefits, the unclear OCD pathology and lack
of treatment response predictors limit the application of CBT for OCD treatment. At
least 40% OCD patients respond poorly to CBT. It is difficult to judge which patients will
respond better to CBT, based only on the experience of clinicians. Magnetic resonance
imaging (MRI), EEG, and positron emission tomography are non-invasive technologies that
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conveniently acquire detailed brain data. Moreover, by combining these with advanced
computing methods, the brain imaging data can be utilized to uncover the pathology
underlying mental disorders, as well as reveal the treatment targets and brain biological
markers that can predict the treatment outcome [6].

Using the structural MRI (sMRI) technique, numerous studies have confirmed struc-
tural abnormalities in many brain regions of OCD patients, including reduced gray matter
volumes in the prefrontal, cingulate, thalamic, and temporal limbic regions [2]. Insight into
neurobiological mechanism can uncover biological indicators for predicting the treatment
outcome of CBT for OCD. Some studies have shown that CBT might volumetrically affect
the key brain regions, including the orbitofrontal cortex (OFC) [7,8], striatum [7,9], and
thalamus [7], that are involved in the neuroanatomy of OCD. Furthermore, a study com-
paring the gray matter volume (GMV) between two groups of OCD patients responding
differently to CBT showed that non-remission OCD patients have a significantly smaller
GMV in the left dorsolateral prefrontal cortex (DLPFC) than the remission group [10],
implying that specific brain structural changes are associated with better CBT outcome in
OCD patients.

Although the above studies have demonstrated that GMV changes were associated
with the efficacy of CBT, no study has explored whether the baseline GMV predicts CBT’s
efficacy for OCD using a rigorous prediction model. The machine learning method com-
prises a large set of statistical learning algorithms, and its application in neuroimaging
data provides a powerful tool for brain studies. This advanced statistical method has been
widely used to identify predictors of various treatment methods [11]. Identifying biological
characteristics of patients with OCD that can predict treatment outcomes can enhance
patient selection to reduce wasteful treatment.

Previous OCD studies utilizing sMRI mainly focused on GMV alteration. Recently, the
surfaced-based analysis has been shown to increase the accuracy of brain registration [12].
Studies have shown that the differentiation of the brain surface into gyrification and sulci
is related to a variety of neurodevelopmental disorders. For example, local gyrification
has been linked to certain important cognitive functions, including working memory, men-
tal flexibility tasks, as well as attention and semantic verbal fluency tasks in a healthy
population [13,14]. Researchers explored the gyrification in OCD patients and found
inconsistent alterations in cortical folding in OCD. The majority of studies reported hyp-
ogyrification [15,16], or gender-specific hypogyrification [17] exists in OCD patients, and
one study reported hypergyrification [18]. Although the number of studies on differ-
ent cortical structural indices is limited, the existing findings indicate that including the
multi-dimensional cortex enhances the understanding of the pathological mechanism and
therapeutic targets of OCD.

Based on the cognitive functions of GMV, cortical thickness, sulcal depth and gyrifi-
cation, this study aimed to explore the effect of these cortical structural characteristics on
predicting CBT efficacy for OCD. The predictive performance of sMRI indices, including
GMV, cortical thickness, sulcal depth, and gyrification, and the comprehensive variables
containing these four indicators was analyzed using the linear support vector regression
(SVR) model. We hypothesized that the integrated structural index is more than a single
index in predicting the treatment outcome of CBT in OCD patients. To test this hypothesis,
we recruited 60 patients with OCD who would receive baseline sMRI scanning. Each
individual underwent 14 CBT sessions. Five treatment outcome prediction models were
constructed using an SVR model. Change in OC symptoms was the dependent variable,
whereas and the selected cortical structural features were the independent variables.

2. Materials and Methods
2.1. Participants

A total of 60 outpatient OCD individuals were recruited. They receive CBT interven-
tion, clinical evaluation, and MRI scanning at the Beijing Anding Hospital, Capital Medical
University, between January 2013 and October 2016. OCD diagnosis was based on the
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Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) guidelines.
To be eligible, one had to have fulfilled the following: (1) being right-handed; (2) aged
between 18 and 50 years; (3) with a Yale-Brown Obsessive–Compulsive Scale (Y−BOCS)
score of 16 or more; (4) with a score of less than 18 in the 17-item Hamilton Depression
Rating Scale (HAMD−17); and (5) having never received a psychiatric medication or psy-
chological therapy or stopped medication for at least 4 weeks before enrollment. To avoid
the possible effects of comorbid disorders, participants with neurological illness, major
physical illness, or other psychiatric disorders were excluded. In addition, this study also
excluded participants who were pregnant or had any MRI contraindications.

This study was approved by the Research Ethics Committee of Beijing Anding Hospi-
tal, Capital Medical University (approval code (2013) Keyan (7)). All study participants
consented to participate in this study in writing.

2.2. CBT Treatment

All of the OCD patients underwent 14 sessions of the CBT program, which mainly
included exposure and response prevention (ERP) and cognitive therapy. The CBT was
performed as previously described (Yang et al., 2015) [5] by four well-trained CBT therapists.
During the treatment process, every CBT therapist accepted one-hour supervision per week
from a senior therapist to ensure the treatment quality. The CBT consisted of 14 sessions
over 12 weeks, with each session lasting 60 min. The 14 sessions of the whole treatment are
briefly described in Table 1.

Table 1. The overview of the 14 CBT sessions.

Session Main Technique Week

The 1st–2nd session Therapeutic alliance establishment, information collection and
assessment, psychoeducation, and normalization. The 1st week

The 3rd–6th session
Case conceptualization, identification of cognitive distortion, plan and

implementation of behavioral experiments, and challenging and correction
of the distorted cognitions, including on-site and homework exercises.

The 2nd–4th week

The 7th–12th session
Introduction of exposure, creation of an anxiety hierarchy and

planning of exposure, and the conduct of ERP practice,
including therapist-assisted and self-administered practice.

The 5th–10th week

The 13th–14th session Treatment review to consolidate treatment effects and prevent relapse. The 11th–12th week

Participants were not allowed to receive any psychoactive medications during the course of the study.

2.3. Diagnosis and Symptom Evaluation

Four experienced senior psychiatrists not involved in the CBT program performed
the diagnosis and symptom evaluation. Prior to the study, the four evaluators participated
in joint training sessions for diagnosis and scale assessment. The evaluators screened all
participants and performed OCD diagnosis using the Structured Clinical Interview for
DSM-IV Axis I Disorders tool. The severity of obsessive–compulsive symptoms, depression,
and anxiety were assessed using the Y−BOCS, 17-item Hamilton Depression Rating Scale
(HAMD−17), and the Hamilton Anxiety Scale (HAMA). The assessments were performed
separately before and after 14 treatment sessions.

The main efficacy indicator of this study was the improvement of obsessive–compulsive
symptoms. Thus, the treatment effect was based on the percentage decrease
((score pretreatment − score posttreatment)/score pretreatment × 100%) in the Y−BOCS total score.

The change of HAMA and HAMD before and after CBT were secondary CBT
efficacy indicators.

2.4. MRI Data Acquisition

All the participants were assessed using a SIEMENS 3.0 T Trio scanner (TIM Systems)
using a 32-channel head coil, at the State Key Laboratory of Cognitive Neuroscience and
Learning, Beijing Normal University, China, before the start of treatment. Participants
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laid supine and were instructed to be still, relax, keep their eyes closed, avoid falling
asleep and not think of anything in particular during scanning. Head motion and scanner
noise were minimized using foam pads and earplugs, respectively. T1-weighted images
were acquired using a sagittal 3D magnetization prepared rapid gradient echo (MP-RAGE)
sequence with the following features: TR/TE = 2530/3.39 ms; FOV = 256 × 256 mm2;
in-plane resolution = 256 × 256; time to inversion (TI) = 1100 ms; flip angle = 7◦; slice
thickness = 1.33 mm, voxel size = 1 mm × 1 mm × 1.33 mm. In addition, there were
144 interleaved sagittal slices covering the whole brain.

2.5. MRI Data Preprocessing

Preoperative MRI data was preprocessed using the standardized pipeline of the
CAT12.8 toolbox (r1872, http://dbm.neuro.uni-jena.de/cat12/ accessed on 20 August 2021)
for SPM12 (v7487, https://www.fil.ion.ucl.ac.uk/spm/software/spm12 accessed on
14 November 2018) in the MATLAB programming language (R2018b). First, structural
image data were segmented into gray and white matter as well as cerebrospinal fluid,
according to a prior tissue probability map (TPM) provided by the CAT12 toolbox. These
three compartments were adopted to calculate the total intracranial volume in native space.
Afterwards, all the native-space tissue segmentations were registered to a standard Mon-
treal Neurological Institute (MNI) template. To mitigate volume changes that can be caused
by spatial normalization, images were modulated to preserve the total amount of gray
matter. Finally, the segmented gray matter and white matter maps were smoothed using a
Gaussian kernel with 8 mm full width at half maximum (FWHM).

2.6. Statistical Analysis
2.6.1. Clinical Data Analysis

Grouped data, including age, gender, education level, and illness duration, were described
using descriptive analysis. The pre-to-post comparisons of clinical symptoms (Y−BOCS,
HAMD and HAMA scores) in OCD patients were performed using paired−sample t-tests.
Data were analyzed using the SPSS software, version 24.0. The statistical significance level was
set as 0.05 (two-tailed).

2.6.2. Extraction of Structural Features and Analysis of the Prediction Models

After MRI data preprocessing, a total of 377 structural features were extracted based
on the atlas. Among of them, 170 GMV were extracted from the automated anatomical
labelling 3 (AAL3) atlas [19]; 69 cortical thickness, sulcal depth, and gyrification values were
obtained from the Desikan–Killiany atlas (DK40), [20] (Figure 1). For each structural feature,
a linear regression method was conducted to regress out the effect of age, gender, and
education. Further, to extract the features, a Pearson correlation was computed between the
Y−BOCS reduction rate and all the structural features including GMV, cortical thickness,
sulcal depth, and gyrification values. The features were ranked from maximum to minimum
according the correlation values; then, the top ten features were selected to construct the
prediction model. Thus, 10 comprehensive variables were selected from all the structural
features, and 10 variables were selected from the GMV, cortical thickness, sulcal depth, and
gyrification values, respectively.

Five prediction models were constructed using a linear SVR model with the leave-one-
out cross validation (LOOCV) method based on the selected features, using GMV, cortical
thickness, sulcal depth, gyrification value, and comprehensive variables. The reduction rate
of Y-BOCS score at 12 weeks (reduction rate = (Y−BOCS score at baseline − Y−BOCS score
at 12-week)/Y−BOCS score at baseline) was the dependent variable, whereas the selected
features were the independent variables. To estimate the model performance, the mean
absolute error (MAE), mean squared error (MSE), coefficient of determination (R2) and
Pearson correlation (R) were calculated. Furthermore, permutation tests were performed
1000 times to verify the generalizability of the model. The whole process of the model
building was performed in Python using the scikit-learn toolkit [11].

http://dbm.neuro.uni-jena.de/cat12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12
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Figure 1. The extracted four cortical structure indices from the original MRI images based on different
templates. (A) The template of AAL3; (B) the template of DK 40; (C) the raw MRI image of a subject;
(D) the gray matter map of the subject with AAL3; (E) the cortical thickness of the subject with
DK 40; (F) the gyrus of the subject with DK 40; (G) the sulcal depth of the subject with DK 40.
(A,B) were shown by the Brainstorm; (C) was shown by MRIcron; and (D–G) were shown by the
CAT12. Abbreviations: AAL3, automated anatomical labelling 3; DK 40, Desikan–Killiany atlas.

Further, to explore the correlation between the reduction rate of Y−BOCS and the
features with best performance of the prediction model, the Pearson correlation method
was conducted.

3. Results
3.1. Demographic and Clinical Characteristics of OCD Patients

A total of 60 patients with OCD were recruited in this study. Of these, four patients
withdrew from the study due to time inconvenience and transport challenges (less than
six CBT sessions). In total, 56 patients underwent the 14 CBT sessions and received
two-timepoint symptom evaluation. The demographic and clinical characteristics of the
56 patients were shown in Table 1. The majority of the participants were male (66.07%).
Save for one patient, the study participants ranged from 20 to 45 years old. The patients’
obsessive–compulsive symptoms were moderate or higher, accompanied by mild anxiety
and depressive symptoms. We compared the change of scores on Y−BOCS, HAMD, and
HAMA after CBT. As shown in Table 2, there were significant differences in the Y−BOCS,
HAMD, and HAMA scores before and after CBT among the OCD patients (all p < 0.001).

Table 2. Demographic and clinical characteristics of OCD patients before and after CBT.

Characteristics Baseline
(n = 56)

12 Weeks
(n = 56)

p Value
(Paired−t Test)

Age 28.02 ± 6.7 –
Gender (male/female) 37/19 –
Education level (years) 15.5 ± 2.3 –

Illness duration 10.35 ± 7.5 –
Y−BOCS score

Total 23.43 ± 5.84 10.68± 6.86 <0.001
Obsession 12.8 ± 4.6 5.3 ± 3.9 <0.001

Compulsion 11.3 ± 4.1 5.4 ± 3.2 <0.001
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Table 2. Cont.

Characteristics Baseline
(n = 56)

12 Weeks
(n = 56)

p Value
(Paired−t Test)

HAMD−17 score 6.29 ± 4.06 2.32 ± 2.83 <0.001
HAMA score 8.09 ± 5.89 2.61 ± 3.33 <0.001

Note: Data are expressed as mean ± SD, SD: standard deviation. OCD: obsessive–compulsive disorder. Y−BOCS:
Yale–Brown Obsessive–Compulsive Scale. HAMD−17: the 17−item Hamilton Depression Rating Scale. HAMA:
Hamilton Anxiety Rating Scale.

3.2. The Prediction Models Analysis Based on the Structural Features in OCD Patients

As shown in the Table 3, each of top ten features in the GMV, cortical thickness,
sulcal depth, and gyrus value were extracted in this study, individually. In addition
to clarifying the individual prediction power of these four single structural indices, we
also paid attention to the comprehensive prediction effect of these four features, that is,
comprehensive variables. The results of five prediction model analyses showed the model
with the comprehensive variables exhibited a better performance than a single structural
indices (MAE = 0.14, MSE = 0.03, R2 = 0.36). As shown in Table 3 and Figure 2, the
comprehensive variables included GMV in the left cerebellar hemisphere 10 (lCER10) and
the bilateral ventral tegmental area (lVTA and rVTA), the cortical thickness in the right
entorhinal cortex (entorhinal), the gyrification value in the right isthmus cingulate, and the
sulcal depth of left superior frontal, left fusiform, left lateral occipital, left parahippocampal,
and left rostral middle frontal regions.

Table 3. Regression performance for different structural feature representations.

Selected Features Brain Regions MAE MSE R2

GMV

Right superior frontal gyrus−medial
Left Heschl’s gyrus

Left temporal pole: superior temporal gyrus
Left lobule X of the cerebellar hemisphere

Left lateral geniculate
Right anterior cingulate cortex−subgenual

Left ventral tegmental area
Right ventral tegmental area

Right lobule III of vermis
Right raphe nucleus–median

0.18 0.05 −0.02

Cortical thickness

Left caudal middle frontal
Right entorhinal

Left fusiform
Right fusiform

Left isthmus cingulate
Left lingual

Right lingual
Left parahippocampal

Left transverse temporal
Right transverse temporal

0.17 0.04 0.12

Gyrification value

Right fusiform
Right isthmus cingulate

Right lateral occipital
Left lateral orbitofrontal

Right paracentral
Right pericalcarine

Right posterior cingulate
Left superior frontal
Left temporal pole

Left transverse temporal

0.18 0.05 −0.03
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Table 3. Cont.

Selected Features Brain Regions MAE MSE R2

Sulcal depth

Left cuneus
Left entorhinal
Left fusiform

Left lateral occipital
Left lingual

Left parahippocampal
Right parsopercularis

Left pericalcarine
Left rostral middle frontal

0.18 0.05 −0.02

Comprehensive variables 0.14 0.03 0.36

GMV
Left CER10
Left VTA

Right VTA
Cortical thickness Right entorhinal
Gyrification value Right isthmus cingulate

Sulcal depth

Left superior frontal
Left fusiform

Left lateral occipital
Left parahippocampal

Left rostral middle frontal

Note: MAE: Mean absolute error; MSE: Mean squared error; R2: Coefficient of determination; GMV: Gray matter
volume; CER: Cerebellum; VTA: Ventral tegmental area.

Figure 2. Cont.
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Figure 2. The distribution of the selected brain regions used in constructing the five prediction
models. (A) the distribution of the gray matter volume; (B) the distribution of the cortical thickness;
(C) the distribution of the gyrification; (D) the distribution of the sulcal depth; (E) the distribution of
the comprehensive variables, including the left cerebellum 10, left VTA, and right VTA in the gray
matter volume; right entorhinal is under the cortical thickness; right isthmus cingulate under the
gyrification; Left superior frontal, fusiform, lateral occipital, parahippocampal, and rostral middle
frontal regions are under the sulcal depth. Abbreviations: VTA, ventral tegmental area.

Furthermore, based on the results of prediction models, we analyzed the correlation
between the true value and predictive value of each feature to verify the performance of the
models. As shown in Figure 3, the comprehensive variables had a significant correlation
between the true value and predictive value (r = 0.63, p < 0.001).

Figure 3. Cont.
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Figure 3. The correlations between true values and predicted values in the regressions of different
features. (A) the correlations between true values and predicted values in the regressions with
gray matter volume values; (B) the correlations between true values and predicted values in the
regressions with thickness values; (C) the correlations between true values and predicted values in the
regressions with gyrification values; (D) the correlations between true values and predicted values
in the regressions with sulcal depth values; (E) the correlations between true values and predicted
values in the regressions with comprehensive values.

3.3. The Post Hoc Analysis of the Prediction Model with the Comprehensive Variables

In order to further clarify the association between each component in the comprehen-
sive variables and OC symptom change, we applied a correlation analysis to analyze the
correlation between 10 features and the reduction rate of the Y−BOCS score. As shown
in Figure 4, seven components had a significant correlation with the reduction rate of the
Y−BOCS score. Due to the gender differences in the participants, we also compared the
comprehensive variables between male patients and female patients. The two sample
t-test showed that there were significant differences in the gray matter volume of the left
cerebellum 10 (p = 0.006) and the sulcal depth of the left parahippocampal (p = 0.029)
between the two groups.

Figure 4. Cont.
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Figure 4. The correlation between the reduction rate of Y−BOCS score and comprehensive variables.
(A–C) the correlation between the reduction rate of Y−BOCS score and gray matter volumes in left
cerebellum 10, left VTA, and right VTA; (D) the correlation between the reduction rate of Y−BOCS
score and thickness in right entorhinal; (E) the correlation between the reduction rate of Y−BOCS
score and gyrus value in right isthmus cingulate; (F–J) the correlation between the reduction rate of
Y−BOCS score and depth value in left superior frontal, fusiform, lateral occipital, parahippocampal,
and rostral middle frontal regions.

4. Discussion

This study sought to explore the predictive effect of cortical structural features for the
efficacy of 12 weeks of CBT on OCD using the SVR model. To the best of our knowledge,
this is the first study to compare the predictive performances between a single structural
feature and a combination of several features. The results confirmed our hypothesis that
a model integrating four structural features is more accurate than single feature models.
The structural features included sulcal depth (five regions), GMV (three regions), cortical
thickness (one region), and the gyrus value (one region). Current preliminary findings
suggest that neuroimaging-based computer-aided methods can effectively predict OCD
patients who would benefit from CBT.
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4.1. The Efficacy of CBT for OCD Patients

To explore the specific action of CBT for OCD patients, the current study excluded OCD
patients with comorbidities. All patients received a single CBT program without taking
any drugs or other types of treatment. The paired-t test found significant improvements
in OC symptoms, and depressive and anxiety symptoms among OCD patients after CBT.
In all, 46 patients (82.14%) had a ≥35% reduction in their Y−BOCS total score and were
considered responsive to CBT. The results are consistent with other previous studies,
indicating that CBT is an effective treatment for OCD [4,5].

Although the group-level analysis showed CBT significantly alleviated OCD after
12 weeks, 10 patients were unresponsive to the treatment (Y−BOCS total score reduction
rate <35%). Thus, it is imperative to identify biological factors that can predict CBT
outcomes in OCD patients. This can promote the development of individualized treatment
plans for those patients, which improves the treatment outcome and saves on the wastage
of resources.

4.2. The Performance of Five Prediction Models on CBT in OCD Patients

In this study, the GMV, cortical thickness, gyrification value, and sulcal depth were
considered as sMRI features in our algorithm. We constructed five prediction models using
SVR based on four selected features and the comprehensive variables, respectively. Our
results demonstrated that cortical structural features may predict which patients are likely
to respond to CBT. It is particularly noteworthy that comprehensive features showed a
higher predictive weight in all features, which proved our hypothesis. The formation
of cortical morphology such as the sulci and gyrus, are involved in the development of
brain function. It is reported that thickness, sulci and gyration are affected by different
genetics and have different tracks in the process of brain development [21]. This difference
highlights the importance of exploring the different cortical structural features separately.

CBT can alter an individual’s dysfunctional thinking, emotion, and behavior through
cognitive and behavioral techniques, so as to improve obsessive–compulsive symptoms. In
addition to the psychological mechanism, studies have confirmed that CBT has a neurobio-
logical mechanism in the treatment of OCD [5,22,23]. Therefore, it is feasible to look for
brain imaging indicators to predict the efficacy of CBT in the treatment of OCD. Considering
the complexity of brain structure and function, the inclusion of comprehensive indicators
is helpful to improve the predictive power. Although no study has compared the predic-
tive effect between single and integrated cortical structure for CBT, several neuroimaging
studies have indicated that integration of brain features have a better identification power
of the neuropsychiatric disease, such as the integration of sMRI and fMRI [24], and the
integration of GM and white matter [25]. Consistent with these studies, our finding proved
that comprehensive cortical structural features had a better predictive performance than a
single feature for CBT in the treatment of OCD.

4.3. Key Cortical Structural Feature and Regions for Predicting the Efficacy of CBT in OCD

As noted, this study found the comprehensive cortical structural features had a better
predictive performance than a single feature. In the comprehensive variable prediction
model, the sulcus depth in five regions and the gyrification in one region were correlated
with the improvement in OC symptoms. This result suggests that the gyrification has a
higher predictive weight on CBT efficacy in OCD patients. Gyrification, the process leading
to the characteristic differentiation of the brain’s surface into sulci and gyri, is associated
with cortical maturation and closely linked to neurodevelopment [26]. Studies indicated
that gyrification is related to the integrity of the cortex and subcortical circuitry of the
developing brain.

We found the sulcus depth of five brain regions, including the left superior frontal,
left rostral median frontal, left lateral occipital, left parahippocampal and left fusiform,
regions, which are critical in the neuro-mechanism of OCD, were related to the CBT
outcome. Recent neuroimaging studies suggest that both orbitofronto–striatum circuits and
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prefronto–limbic–posterior circuits constitute a complicated pathophysiological state of
OCD [2,27]. It was worth noting that the findings show obvious left laterality. The complex
functional organization of the human brain is characterized by left–right asymmetry [28].
Altered functional and structural laterality have also been investigated in OCD, especially in
the visuospatial domain [29,30], as well as altered emotional processing [31]. Furthermore,
a study exploring the effect of transcranial magnetic stimulation in treatment-resistant OCD
revealed that the abnormal hemispheric laterality was normalized after the treatment [32].
In the future, studies should explore whether CBT induces different changes in the left and
right hemispheres.

The GMV in the left cerebellar hemisphere and bilateral ventral tegmental area (VTA)
was found to have a significant role in the predicting effect for CBT. Most sMRI studies
on OCD proved the important role of GMV alterations in the neuro-mechanism of OCD.
Recent studies indicated that the cerebellum has become an important pathological region
except the classical cortico–striato–thalamo–cortical circuitry in OCD [27]. Our previous
study found that CBT can alter the regional homogeneity of the left cerebellum in OCD,
and the percentage change of regional homogeneity was positively correlated with the
percentage reductions in Y-BOCS compulsion scores [5]. Current findings suggest that
cerebellum may be an important biomarker for OCD, and has the potential effect to predict
CBT efficacy.

The VTA, which contains dopaminergic neurons and GABAergic neurons, is a critical
part in the cortico–striatal–ventral tegmental network related to repeated behavior [33].
It projects a chemically diverse signal to regions such as the prefrontal cortex, amygdala,
and ventral striatum [34]. These anatomical characteristics enable the VTA to subserve a
diverse assortment of cognitive functions in the downstream brain regions. The VTA is
a major source of dopamine input to ventral striata, and processes reinforcement signals,
which inform behavioral selection. The pathway from the VTA to the striatum is classically
associated with producing and sustaining effortful behaviors, mediating locomotor arousal,
and energizing behavioral responses [35]. The disruptions in this pathway would theo-
retically impact information processing necessary for selecting and sustaining behavioral
sequences, and could promote compulsive behavioral patterns. Exposure and response
prevention (ERP) is an important behavioral technique used in CBT, in which patients are
guided to confront and tolerate conditions that provoke obsessions and compulsions and
resist acting on them [4]. In the CBT program of this study, ERP accounted for nearly half
of the treatment time (five out of 14 sessions). Based on the anatomical characteristics of
VTN, we speculate that VTN and its related network might play an important role in the
behavioral alteration during CBT involving ERP.

In this study, the comprehensive prediction model showed that the right entorhinal
cortex thickness was related to OCD alleviation. Recently, one study investigating the
cortical thickness in OCD patients, based on 780 brain scans from six centers, revealed
that abnormal cortical thickness exists in broad areas. This finding partially supports
the frontostriatal model of OCD, but also suggests that the limbic, temporal and parietal
regions play a role in the disorder’s pathophysiology [36]. The entorhinal cortex (EC),
located in the medial temporal lobe, is the central structure of memory formation and
navigation. Traditionally, it has been regarded as a hub for information transmission and
processing from the neocortex to the hippocampus [37]. One study, exploring the cortical
morphological networks using cortical thickness, sulcal depth and surface area, found that
the entorhinal cortex acts as a morphological ‘hub’ in the network [38]. Thus, it is worth
further exploring the role of the entorhinal cortex in the CBT process.

4.4. Limitations

To our knowledge, this is the first study exploring the utility of pretreatment cortical
features in predicting CBT outcomes in OCD patients using the SVR model. Although com-
prehensive cortical features display a strong predictive power for CBT, several limitations
were identified. First, to ensure the predictive ability for CBT is OCD−specific, patients
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with comorbid conditions were excluded. However, at least 50% of OCD patients in the
clinical setting have at least one underlying psychological illness [2]. As such, the predictive
accuracy of our model may vary according to other patient comorbidities. Therefore, these
results cannot be directly applied to common OCD patients. Second, the research was a
non-controlled and open-label study. The placebo response of the participants was not
resolved. Although the evaluator did not participate in the study, both the therapist and
the patient knew the designated treatment. Accordingly, the clinical response may have
been exaggerated due to expected bias. Thus, our findings need further validation using
sham-controlled studies. Third, we used AAL3 and DK40 templates to extract cortical
structural features, respectively, which might lead to biased results. Lastly, due to the
relatively small sample size, the current results should be interpreted with caution. Future
studies need to improve the research design, expand the sample size, combining more
factors, and use more rigorous analysis methods to further verify the predictive effect of
cortical structural features on the efficacy of CBT. For example, researchers can try the
“multi-site canonical correlation analysis with reference + joint-independent component
analysis” (MCCAR + jICA), which can precisely identify co-varying multimodal imaging
patterns closely related to the reference, such as cognitive scores [39].

5. Conclusions

In summary, this study demonstrated that cortical structural feature parameters were
associated with the efficacy of CBT against OCD. In particular, the results confirmed our
hypothesis that integrating four cortical structural features is superior to using a single
feature in CBT outcome prediction among OCD patients. These structural features exist
in the complex loop connecting the cortex and subcortical region, indicating that CBT
involves extensive brain neural networks. In the future, we will use a larger sample size
and combine different brain biological markers, including functional MRI indicators, EEG,
neurotransmitters, etc., to identify more powerful efficacy indicators for CBT. Nonetheless,
our findings provide a new perspective on designing individualized treatment strategies
for OCD patients.
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