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A B S T R A C T   

Since previous few decays the consideration of non-Newtonian liquids motion due to its immense 
usages in medicine, biology, industrial procedures, chemistry of catalysts and in environment. 
Various studies examine the significance of bio-materials flow in physiological procedures to 
explore the cure of diagnosed symptoms of disease appearing during movement in a human 
physiological system. To illustrate the characteristics of physiological liquids various non- 
Newtonian models have been proposed, but yet no such single liquid model is exploited which 
describes all the properties of nonlinear behaving liquids. Among these several non-Newtonian 
models, Jeffery liquid model should be reduced to its base fluid case (i.e. viscous liquid) by 
choosing λ₁ = λ₂ = 0. Various physiological materials which represents both linear and nonlinear 
characteristics respectively blood is one of these. Jeffery fluid and peristaltic motion have some 
common properties such as radii, relaxation time and retardation time. Moreover heat and mass 
transfer is also an important phenomenon which is suitable for various physiological processes 
such as hemodialysis and oxygenation etc. Thus due to such motivating facts this research is 
conducted to investigate the peristaltic motion of electrically conducting Jeffery liquid. The 
peristaltic propagating channel walls are asymmetric and inclined. Joule heating and magnetic 
field effects are considered by applying magnetic field in transverse direction to the flow. Further 
conservation laws modelled the flow situation via considering quadric mix convection, thermos 
diffusion and diffusion-thermos, heat generation and absorption, chemical reaction with activa-
tion energy features. Moreover, creeping flow and long wavelength assumptions are used to 
simplify the mathematical modelling. The reduced system of equation is solved numerically 
through built-in technique in Mathematica software. This built-in technique is working through 
ND Solve command and shooting and RK-Felburg numerical schemes are behind this technique. 
These numerical results are used to discuss the flow quantities i.e., velocity, temperature and 
concentration against the sundry dimensionless quantities. Examining the results it comes to 
know that both thermal and concentration nonlinear mix convection have oppositely affecting the 
axial velocity. Both heat and mass transfer are escalating function of thermo-diffusion/diffusion- 
thermo aspects.  
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Nomenclature 

Symbols Interpretation 
(X,Y) Coordinate axes in a fix frame 
(x,y) Coordinate axes in a moving frame 
h1,h2 Wall shaped in a wave frame 
J Joule current 
a1,b1 Amplitude of upper and lower waves 
t Time 
d1,d2 Uniform channel width 
g Gravity vector 
ρ Density 
κ Thermal conductivity 
Cp Specific heat 
DB Brownian motion coefficient 
Cs Susceptibility of concentration 
Ea Energy activation 
P Pressure force 
S Extra stress tensor 
A Rivilin-Ericksen first tensor 
σ Electric conductivity 
Ec Eckert parameter 
Br Brinkman parameter 
Du Dufour effects 
Sr Soret number 
M Hartman number 
γ∗ Slip concentration parameter 
E Energy activation energy parameter 
α0 Inclination of channel 
T1,C2 Temperature and concentration on walls 
λ1,λ2 Ration of relaxation to retardation time. 

Symbols Interpretation 
(U,V) Velocity component in a fix frame 
(u,v) Velocity component in a moving frame 
H1,H2 Wall shaped in a fix frame 
B Magnetic Field 
B0 Constant transverse magnetic field 
λ Wave length 
φ1 Phase difference 
β1,β2 Coefficient of thermal and concentration expansion 
κ1 Porous medium permeability 
μ Dynamic viscosity 
T,C Liquids temperature and concentration 
KT Thermo diffusion ratio 
k2

r Rate of Chemical reaction 
n Fitted rate constant 
τ Cauchy stress tensor 
I Identity tensor 
d
dt Material derivative. 
m Hall number 
δ Wave parameter 
Pr Prandtl parameter 
Re Reynolds parameter 
Da Darcy parameter 
Sc Schmidt parameter 
a∗ Velocity slip parameter 
Gc,Gr Mass and thermal Gashrof number 
ψ Stream function 
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1. Introduction 

Fluid motion through peristaltic activity has extensively present in various industrial, environment, geophysics and physiological 
processes. For instance, peristaltic activity includes swallowing of food particles via oesophagus, chyme delivery (an acidic fluid) 
through gastrointestinal tract, body waste transportation from urinary organ to bladder, passage of blood in tiny blood vessels, blood 
transportation from heart to other body organs, toxic, sanative and corrosive materials transportation, from the root of trees to its every 
branch and leaves water is transported through peristaltic movement and in various other’s. Noticing all these aforementioned uses of 
peristalsis various researchersrs are presented the peristaltic activity through experimentally and theoretically. Latham [1] was the 
very first researcher who examined the fluid movement by peristaltic principle numerically. Shapiro et al. [2] verified the results of 
Latham [1] theoretically by considering lubrication assumption. Peristaltic activity is explored by various researchers (see Refs. 
[3–13]) for linear and non-linear fluid models by considering no slip and partial slip effects after the pioneering attempts of Latham [1] 
and Shapiro et al. [2]. 

Fluid flows affected by mixed convection aspects are due to the mix of forced and free convections combination. These kinds of 
flows have vital presence in numerous fields of industry & engineering. Such as, geological, astrophysics, in electronic devices cooling, 
lubricated technologies, furnaces, fireplace control, metallurgical industry and etc. All these application and importance of convective 
nanofluid flows in various industrial and engineering processes via peristalsis boosts the interest of researchers towards the field. Thus 
Srinivas et al. [14], Mustafa et al. [15], Srinivas and Muthuraj [16] and Abbasi et al. [17], examined the mix convective peristaltic flow 
with various assumptions through different channels (i.e., symmetric/asymmetric/non-uniform). Also, the mixed convective flow 
aspects in nanomaterials becomes more prominent in various engineering processes such as cooling and heating thermal equipment’s, 
solar energy in thermal processes, boilers, in maintaining nuclear reactors temperature, refrigerator’s, electronic and automobile 
vehicles and in several others. These uses of mixed convective in peristalsis of nano liquids motivates the researchers to examine the 
mix convective nanofluids to understand its dynamics (see few researchers [18–22]). Furthermore in past few years many researchers 
have studied about the nanofluid flow under the assumptions of nonlinear mixed convection, diffusion of oxygen and hydro liquid, 
Eyring-Powell in asymmetric channel (see few researchers [23–31]). 

Material flows through various physiological organs likely, in gall bladder having stone, in kidney, in lungs etc are the example of 
porous space. Thus, few latest studies [32–37] regarding peristalsis with Darcy and modified Darcy resistance effects verify the ex-
istence of porous media in above mentioned and several other applications. Magnetohydrodynamic is extensively used in drug delivery 
during cancer treatment, tumours detection and its treatment, convection in blood pump machines, to reduce wound through sur-
geries, in MRI (i.e., magnetic resonance image) to interrogate the medicine delivery and decease detection processes. Many recent 
scientists, physicians and researchers attracted to examine the MHD in peristaltic flow for Newtonian and non-Newtonian electrically 
conductive materials (see refers. [38–44]). 

The previous existing literature it comes to noted that earlier there is no study on Jeffrey fluid under the assumptions of peristaltic 
flow, nonlinear mix convection, Joule heating and slip aspects. The arrangement of this research is as follows in section 1 introduction 
and historical background of the topic is explained, in section 2 problem is formulated in the form of mathematical equations, in 
section 3 solution procedure is discussed, in section 4 impact of parameters on flow quantities is described and in section 4 main 
outcomes of this study are listed. 

1.1. Problem formulation 

An in compressible and electrically conducting Jeffrey liquid through an asymmetric propagating inclined channel configuration is 
taken. The main considerations here are non-linear force and natural convection, heat generation absorption and second order mo-
mentum slip. Graphical representation shown in Fig. 1. 

Mathematical form of propagating waves is given below in Eq. (1 &2): 

H1 = − d2 − b1 cos
[

2π
λ
(X − ct + φ1)

]

,Lower wave (1)  

H2 = d1 + a1 cos
[

2π
λ
(X − ct)

]

,Upper wave (2) 

Mathematical shapes of walls are mentioned in equations which govern the given flow system are [9–42]: 

∇.V= 0, (3)  

ξ Chemical reaction parameter 
θ,ψ Dimensionless temperature and concentration respectively 
β∗ Thermal slip parameter  
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ρ dV
dt

= ∇.τ + (J × B) − μ
k1(1 + λ1)

(

V + λ2
dV
dt

)

+

,

ρg
[
β1(T − T0) + γ1(T − T0)

2]
+ ρg

[
β2(C − C0) + γ2(C − C0)

2]

(4)  

ρCP
dT
dt

= k ∇2T + S.A +
DBKT

Cs
∇2C +

J.J
σ + Q0(T − T0) , (5)  

dC
dt

g=DB ∇2C+
DBKT

Cs
∇2T − K2

r (C − C0)

(
T
T0

)n

exp
(

−
Ea

KT

)

(6) 

Above equations (3)–(6) in component form we have: 

∂V
∂Y

+
∂U
∂X

= 0, (7)  

ρ
[

∂U
∂t

+ V
∂U
∂Y

+ U
∂U
∂X

]

= −
∂P
∂X

+
∂SYX

∂Y
+

∂SXX

∂X
−

μ
k1(1 + λ1)

(

U + λ2
dU
dt

)

−

σB2
0

1 + m2 (U − mV)

+ρg
( [

β1(T − T0) + γ1(T − T0)
2]

+
[
β2(C − C0) + γ2(C − C0)

2]) sin α0,

(8)  

ρ
[

∂V
∂t

+ V
∂V
∂Y

+ U
∂V
∂X

]

= −
∂P
∂Y

+
∂SYY

∂Y
+

∂SXY

∂X
−

μ
k1(1 + λ1)

(

V + λ2
dV
dt

)

−

σB2
0

1 + m2 (V + mU)

+ρg
( [

β1(T − T0) + γ1(T − T0)
2]

+
[
β2(C − C0) + γ2(C − C0)

2]) cos α0,

(9)  

ρCp

[
∂
∂t
+ V

∂
∂Y

+ U
∂

∂X

]

T = k
(

∂2

∂Y2 +
∂2

∂X2

)

T + 2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
∂U
∂Y

+
∂V
∂X

)

SXY

+
∂U
∂Y

SXX +
∂V
∂Y

SYY

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

KT DB

Cs

(
∂2

∂Y2 +
∂2

∂X2

)

C +
σB2

0

1 + m2

(
U2 + V2)+ Q0(T − T0),

(10)  

Fig. 1. Geometry of physical problem.  
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[
∂
∂t
+ V

∂
∂Y

+ U
∂

∂X

]

C = DB

(
∂2

∂Y2 +
∂2

∂X2

)

C +
DBKT

Cs

(
∂2

∂Y2 +
∂2

∂X2

)

T −

k2
r (C − C0)

(
T
T0

)n

exp
(

−
Ea

KT

)

.

(11) 

The stress components SXX, SXY and SYY are expressed: 

SXX =
2μ

1 + λ1

(

1+ λ2

(
∂
∂t
+U

∂
∂X

+V
∂

∂Y

))
∂U
∂X

, (12)  

SYY =
2μ

1 + λ1

(

1+ λ2

(
∂
∂t
+U

∂
∂X

+V
∂

∂Y

))
∂V
∂Y

, (13)  

SXY =
μ

1 + λ1

(

1+ λ2

(
∂
∂t
+V

∂
∂Y

+U
∂

∂X

)) (
∂U
∂Y

+
∂V
∂X

)

. (14) 

Boundary conditions of equations 7–11 are: [9, 44]: 

U − α∗SXY − α∗
2
∂SXY

∂Y
= 0, T − β∗∂T

∂Y
= T0,C − γ∗

∂C
∂Y

= C0 at Y = H1, (15)  

U + α∗SXY + α∗
2
∂SXY

∂Y
= 0, T + β∗∂T

∂Y
= T0,C + γ∗

∂C
∂Y

= C0 at Y = H2, (16) 

Transforming system from fix (7–16) to wave frame by using (17) 

y=Y, x = X − ct, v = V, u = U − c. (17)  

∂v
∂y

+
∂u
∂x

= 0, (18)  

ρ
[

v
∂u
∂y

+ u
∂u
∂x

]

= −
∂P
∂x

+
∂Sxx

∂x
+

∂Syx

∂y
−

μ
k1(1 + λ1)

(

u + c + λ2

(

v
∂u
∂y

+ u
∂u
∂x

))

−

σB2
0

1 + m2 (u + c − mv)

+ρg
( [

β1(T − T0) + γ∗1(T − T0)
2]

+
[
β2(C − C0) + γ∗2(C − C0)

2]) sin α0,

(19)  

ρ
[

v
∂v
∂y

+ u
∂v
∂x

]

= −
∂P
∂y

+
∂Sy y

∂y
+

∂Sxy

∂x
−

μ
k1(1 + λ)

[

v + λ2

(

v
∂u
∂y

+ u
∂v
∂x

)]

−

σB2
0

1 + m2 (v + mu + mc) + ρg
( [

β1(T − T0) + γ∗1(T − T0)
2 ]

+
[
β2(C − C0) + γ∗2(C − C0)

2 ] ) cos α0,

(20)  

ρCp

[

v
∂
∂y

+ u
∂
∂x

]

T = k
[

∂2

∂y2 +
∂2

∂x2

]

T + 2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u
∂y

Sxx +
∂v
∂y

Syy+

(
∂u
∂y

+
∂v
∂x

)

Sxy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

DBKT

Cs

(
∂2

∂y2 +
∂2

∂x2

)

C +
σB2

0

1 + m2

(
(c + u)2

+ v2)+ Q0(T − T0),

(21)  

[

v
∂
∂y

+ u
∂
∂x

]

C = DB

(
∂2

∂y2 +
∂2

∂x2

)

C +
DBKT

Cs

(
∂2

∂y2 +
∂2

∂x2

)

T −

k2
r (C − C0)

(
T
T0

)n

exp
(

−
Ea

KT

)

,

(22) 

The transformed boundary conditions yield: 

u+ c − α∗Sxy − α∗
2
∂Sxy

∂y
= 0,T − β∗∂T

∂y
= T0,C − γ∗

∂C
∂y

= C0 at y = h1, (23)  

u+ c + α∗Sxy + α∗
2
∂Sxy

∂y
= 0,T + β∗∂T

∂y
= T0,C + γ∗

∂C
∂y

= C0 at y = h2, (24) 

To make the system of Eqs. 18–24 dimensionless, the non-dimensional form of quantities is expressed below 
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x =
x
λ
, y =

y
d1
, v =

v
c
, u =

u
c
,φ =

C − C0

C0
, θ =

T − T0

T0
,

a =
a1

d1
, b =

b1

d1
, d =

d2

d1
, h =

H
d1
, δ =

d1

λ
,Pr =

μCp

k
,Ec =

c2

CpT0
,

Br = Ec Pr,Re =
cd1ρ

μ ,Du =
DBC0KT

CpCSμT0
, Sc =

μ
ρDB

, Sr =
ρDBKT T0

μC0CS
,

Da =
k1

d2
1
,M =

̅̅̅ρ
μ

√

B0d1,P =
d2

1p
cμλ

,Gc =
ρgβ2C0d2

1

μc
,Gr =

ρgβ2T0d2
1

μc
,

E =
Ea

kT0
, λ2 =

d1λ∗2
μc

, ξ =
d2

1k2
r

μ .

(25) 

Using Eq. (25), Eqs. 18–24 yields in dimensionless form as: 

∂v
∂y

+ δ
∂u
∂x

= 0, (26)  

Re
[

v
∂u
∂y

+ δu
∂u
∂x

]

= −
∂P
∂x

+ δ
Sxx

∂x
+

∂Syx

∂y
−

M2

1 + m2 (u + 1 + mv)+

{Grθ(1 + γ1θ) + Gcφ(1 + γ2φ)} sin α0 −
1

Da(1 + λ)

[

u + 1 +
λ2c
d1

(

δu
∂u
∂x

+ v
∂u
∂y

)]

,

(27)  

Reδ
[

v
∂v
∂y

+ δu
∂v
∂x

]

= −
∂P
∂y

+ δ
∂Syy

∂y
+ δ2∂Sxy

∂x
−

δM2

1 + m2 (v + mu + m)+

δ{Grθ(1 + γ1θ) + Gcφ(1 + γ2φ)} cos α0 +
δ

Da

[

v +
λ2c
d1

(

v
∂v
∂y

+ δu
∂v
∂x

)]

,

(28)  

RePr
[

v
∂
∂y

+ δu
∂
∂x

]

θ =

(
∂2

∂y2 + δ2 ∂2

∂x2

)

θ + 2Br

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
∂u
∂y

+ δ
∂v
∂x

)

Sxx+

∂u
∂y

Sxx +
∂v
∂y

Syy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

Du Pr
[

∂2φ
∂y2 + δ2∂2φ

∂x2

]

+
M2Br

1 + m2

(
v2 + (u + 1)2)

+ Qθ,

(29)  

Re
[

v
∂
∂y

+ δu
∂
∂x

]

φ =

(
∂2

∂y2 + δ2 ∂2

∂x2

)

φ + SrSc
[

∂2θ
∂y2 + δ2∂2θ

∂x2

]

+

Scξφ(θ + 1)nexp
[
− E

1 + θ

]

,

(30)  

u −
1

1 + λ1

(

α ∂u
∂y

+α2
∂2u
∂y2

)

= − 1, θ − β
∂θ
∂y

= 0,φ − γ
∂φ
∂y

= 0, y= h1, (31)  

u+
1

1 + λ1

(

α ∂u
∂y

+α2
∂2u
∂y2

)

= − 1, θ+ β
∂θ
∂y

= 0,φ+ γ
∂φ
∂y

= 0, y= h2, (32) 

The new dimensionless numbers in Eqs.26–30 are 

γ1 = γ∗1T0, γ2 = γ∗2C0,α2 =,Q =
Q0d2

1

k
,α2 =

μα∗
2

d2
1
. (33) 

Fluid velocities are introduced in form of stream function as 

u=
∂ψ
∂y

, v = − δ
∂ψ
∂x

. (34) 

By using the stream function Eq. (34) equations 26–32 becomes: 

− δ
∂2ψ
∂x∂y

+ δ
∂2ψ
∂x∂y

= 0, (35)  
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Re
[

− δ
∂3ψ

∂x∂y2 + δ
∂3ψ

∂x∂y2

]

= −
∂P
∂x

+ δ
Sxx

∂x
+

∂Syx

∂y
−

M2

1 + m2

[
∂ψ
∂y

+ 1 − δm
∂ψ
∂x

]

+

{Grθ(1 + γ1θ) + Gcφ(1 + γ2φ)} sin α0−

1
Da(1 + λ)

[
∂ψ
∂y

+ 1 +
λ2c
d1

(

δ
∂3ψ

∂x∂y2 + δ
∂3ψ

∂x∂y2

)]

,

(36)  

Re
[

− δ2 ∂3ψ
∂x2∂y

+ δ2 ∂3ψ
∂x2∂y

]

= −
∂P
∂y

+ δ
∂Syy

∂y
+ δ2∂Sxy

∂x
−

δM2

1 + m2

[

− δ
∂ψ
∂x

+ m
∂ψ
∂y

+ m
]

+ δ{Grθ(1 + γ1θ) + Gcφ(1 + γ2φ)} cos α0+

δ
Da

[

− δ
∂ψ
∂x

+
λ2c
d1

([

δ2 ∂3ψ
∂x2∂y

− δ2 ∂3ψ
∂x2∂y

])]

,

(37)  

RePr
[

− δ
∂ψ∂θ
∂x∂y

+ δ
∂ψ∂θ
∂y∂x

]

=
∂2θ
∂y2 + δ2∂2θ

∂x2 + Br

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ψ
∂y2Sxx − δ

∂ψ
∂x∂y

Syy+

(
∂2ψ
∂y2 − δ2∂2ψ

∂x2

)

Sxx

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

Du Pr
[

∂2φ
∂y2 + δ2∂2φ

∂x2

]

+
M2Br

1 + m2

(

− δ2∂2ψ
∂x2 +

∂2ψ
∂y2 + 1

)

+ Qθ,

(38)  

Re
[

− δ
∂ψ∂φ
∂x∂y

+ δ
∂ψ∂φ
∂y∂x

]

=
∂2φ
∂y2 + δ2∂2φ

∂x2 + SrSc
[

∂2φ
∂y2 + δ2∂2φ

∂x2

]

+Scξφ(θ + 1)nexp
[
− E

1 + θ

]

,

(39)  

ψ = −
F
2
,
∂ψ
∂y

− αSxy − α2
∂Sxy

∂y
= − 1, θ − β

∂θ
∂y

= 0,φ − γ
∂φ
∂y

= 0, y = h1, (40)  

ψ =
F
2
,
∂ψ
∂y

+ αSxy + α2
∂Sxy

∂y
= − 1, θ + β

∂θ
∂y

= 0,φ + γ
∂φ
∂y

= 0, y = h2. (41) 

By using small Reynold number and wave number Re→0, δ→0, Eq (35) vanished identically and Eqs.36–41 becomes: 

∂p
∂x

=
∂3ψ
∂y3

(
1

1 + λ1

)

−
M2

1 + m2

[
∂ψ
∂y

+ 1
]

+ {Grθ(1 + γ1θ) + Gcφ(1 + γ2φ)} sin α0−

1
Da(1 + λ1)

[
∂ψ
∂y

+ 1
]

,

(42)  

∂p
∂y

= 0, (43)  

0=
∂2θ
∂y2 + 2BrSxy

[
∂2ψ
∂y2

]

+Du Pr
∂2φ
∂y2 +

M2Br
1 + m2

[

1 +
∂ψ
∂y

]2

+ Qθ, (44)  

0=
∂2φ
∂y2 + SrSc

[
∂2θ
∂y2

]

+ Scξφ(θ + 1)nexp
[
− E

1 + θ

]

. (45)  

ψ = −
F
2
,
∂ψ
∂y

−
1

1 + λ1

(

α ∂2ψ
∂y2 − α2

∂3ψ
∂y3

)

= − 1, θ − β
∂θ
∂y

= 0,φ − γ
∂φ
∂y

= 0, y= h1, (46)  

ψ =
F
2
,
∂ψ
∂y

+
1

1 + λ1

(

α ∂2ψ
∂y2 + α2

∂3ψ
∂y3

)

= − 1, θ+ β
∂θ
∂y

= 0,φ+ γ
∂φ
∂y

= 0, y= h2. (47) 

Using compatibility assumption, we get from Eqs. (42) and (43): 

S. Farooq et al.                                                                                                                                                                                                         



Heliyon 9 (2023) e21451

8

∂2

∂y2

(
1

1 + λ1

∂2ψ
∂y2

)

−
M2

(1 + m2)

∂2ψ
∂y2 + {Grθ(1 + γ1θ) + Gcφ(1 + γ2φ)} sin α0−

1
Da(1 + λ1)

∂
∂y

[

1 +
∂ψ
∂y

]

= 0,
(48)  

1.1.1. Solution methodology 
As the system of Eqs. (44), (45) and (48) are coupled and nonlinear, thus to evaluate their exact/analytic solution seems complex. 

So the numerical way is used to evaluate the solution of this system of equation subject to the boundary conditions (46 & 47). Here the 
built-in numerical technique is used called NDSolve in Mathematica software. Such numerical built-in numerical technique is working 
under the algorithms of shooting and RK-Felburgh numerical methods. 

1.1.2. Result and discussion 
This section is devoted to study the results of velocity u, temperature θ and concentration φ against pertinent quantities. Figs 2–17 

with fixed values of 
(
a= 0.3, x= 0,m= 1,Gr= 1,Gc= 1,α1= π

4,Pr= 1,Ω= 1, b= 0.5,φ1 =
π
4
)

are organized to study the physical 
versions of flow quantities against all the influential sundry quantities respectively. 

1.1.3. Axial velocity profile 
Figs (2-7) demonstrates the effects of large magnetic parameter M, relaxation to retardation quantity λ1, velocity slip parameters α 

and α2 of first and second order respectively, non-linear thermal and concentration mix convective γ1 and γ2 parameters on velocity u. 
As the momentum equation is of parabolic kind due to such characteristic’s velocity curves are also behave like parabola. Fig (2)
depicts the reduction in velocity u at centre and in the vicinity of boundary it increases for increasing M. Decrease in velocity is because 
of a resistive force known as Lorentz force also magnetic field changes the direction of velocity. Larger magnetic field impact 
strengthens the Lorentz force effects. Relaxation to retardation quantity λ1 effects on axial velocity are captured in Fig (3). This plot 
describes the situation when Jeffery fluid moves from relaxation to retardation. It is well known fact that the larger relaxation time 
fluids have higher temperature and concentration and smaller relaxation time fluids possess lower temperature and concentration. It is 
a physical phenomenon of stress and strain because of the consistent behavior of viscoelastic fluid on thermodynamic principles here 
the fluid velocity u becomes decreasing at the channel centre while it escalates towards the walls. Figs (4┤ and 5) relocates that both 

Fig. 2. Velocity u for M.  

Fig. 3. Velocity u for λ.  
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Fig. 4. Velocity u for α.  

Fig. 5. Velocity u for α2.  

Fig. 6. Velocity u for γ1.  

Fig. 7. Velocity u for γ2.  
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the slip parameters α and α2 assists the velocity near boundaries and dominates it at channel centre. Fig (6┤ and 7) illustrate that larger 
non-linear thermal γ1 and concentration γ2 mix convection parameters have opposite impacts on velocity u. It is because of the non- 
linearity and buoyance forces (applied on a fluid then collision in a particles are decreases and energy among them decreases therefore 
velocity is increases) and (concentration is increases as the diffusion is decreases conversely diffusion among the particles is increases 
and concentration is decreases) which affects the velocity at both centre and walls. 

1.1.4. Temperature profile 
This subsection featuring the effects of heat generation/absorption Q, thermal slip quantity β, Dufour effects Du, dissipation Br and 

Soret Sr effects on temperature θ through Figs 8–12. Through Fig (8) it comes to know that for heat generation (i.e for positive Q)

produced by thermal radiation is increased, it breaks the bond that holds fluid particles, thus fluid dissipates the fluid particles energy 

Fig. 8. Temperature θ for Q.  

Fig. 9. Temperature θ for β.  

Fig. 10. Temperature θ for Du.  
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due to this temperature increases whereas for heat absorption (i.e for negative Q) temperature is started decreasing. Fig (9) illustrates 
that due to thermal slip β effects fluid particles at channel walls transfer their energy through convection which strengthen the fluid 
temperature towards the channel centre as the value of thermal parameter increases, the thermal boundary layer thickness decreases 
even when a small amount of heat is transferred to the fluid from the channel. Dufour Du effects on temperature are incorporated 

Fig. 11. Temperature θ for Br.  

Fig. 12. Temperature θ for Sr.  

Fig. 13. Concentration φ for Sr.  
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through Fig (10). Dufour effect of flux is due to the composition gradient and thermos effect because of collision of particle increases 
and energy among them decreases so temperature is increases. Increasing Dufour enhance the temperature profile because Dufour Du 
and temperature have directly proportional relation with each other. As it is obvious that larger dissipation Br effects depends upon on 
viscosity as viscosity is increased the resistance between material particles also increases which assists the fluid particles to lost their 
energy in huge amount. This is the physical fact behind the enhancement in temperature for huge Br (see Fig (11)). Soret Sr effects on 
temperature are captured in Fig (12). As the viscosity is inversely proportional to Sr number, thus for higher Sr viscosity of material 
deduces which escalates the fluid motion, in response temperature also escalates due to faster motion of fluid particle. 

Fig. 14. Concentration φ for Sc.  

Fig. 15. Concentration φ for Du.  

Fig. 16. Concentration φ for E.  
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1.1.5. Concentration profile 
Figs (13 − 17) depicts the concentration φ behaviour against Schmidt Sc parameter, Soret Sr number, Dufour Du parameter, acti-

vation energy E and chemical reaction parameter ξ. Figs (13 − 15) illustrates the Sc, Sr and Du impacts on fluid concentration φ. It is 
evident through mathematic expression of Sc, Sr and Du that these numbers have inverse relation with fluid viscosity. Thus, when 
effects of these quantities increase viscosity of Jeffery fluid is decreased, Fig (16) clearly depicts the energy activation parameter E 
impacts on concentration. This Fig determines that increasing energy activation E parameter means the collision among the particles is 
increases and energy is decreases therefore decrease the material concentration. Dominating impacts of chemical reaction parameter 
on concentration are enclosed in Fig (17). 

2. Conclusions 

The outcomes of this study are.  

• Opposite response of velocity is depicted against non-linear thermal and concentration mix convection parameters.  
• Velocity shows reverse behaviour for second order momentum slip.  
• Temperature enhances for heat generation and decays for heat absorption effects.  
• Chemical reaction and activation energy deduces the fluid concentration. 
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