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ABSTRACT: Ion mobility-mass spectrometry (IM-MS) allows the separation
of ionized molecules based on their charge-to-surface area (IM) and mass-to-
charge ratio (MS), respectively. The IM drift time data that is obtained is used
to calculate the ion-neutral collision cross section (CCS) of the ionized
molecule with the neutral drift gas, which is directly related to the ion
conformation and hence molecular size and shape. Studying the conformational
landscape of these ionized molecules computationally provides interpretation to
delineate the potential structures that these CCS values could represent, or
conversely, structural motifs not consistent with the IM data. A challenge in the
IM-MS community is the ability to rapidly compute conformations to interpret
natural product data, a class of molecules exhibiting a broad range of biological
activity. The diversity of biological activity is, in part, related to the unique
structural characteristics often observed for natural products. Contemporary
approaches to structurally interpret IM-MS data for peptides and proteins typically utilize molecular dynamics (MD) simulations
to sample conformational space. However, MD calculations are computationally expensive, they require a force field that
accurately describes the molecule of interest, and there is no simple metric that indicates when sufficient conformational sampling
has been achieved. Distance geometry is a computationally inexpensive approach that creates conformations based on sampling
different pairwise distances between the atoms within the molecule and therefore does not require a force field. Progressively
larger distance bounds can be used in distance geometry calculations, providing in principle a strategy to assess when all plausible
conformations have been sampled. Our results suggest that distance geometry is a computationally efficient and potentially
superior strategy for conformational analysis of natural products to interpret gas-phase CCS data.

■ INTRODUCTION

Ion mobility-mass spectrometry (IM-MS) is an analytical
technique used to separate gas-phase ions based on their
structural properties such as size and shape as well as their
mass, in the IM and MS dimensions, respectively. The
structural properties affect the ion’s collision cross section
(CCS), or rotationally averaged surface area.1−3 Ongoing
efforts in our laboratories utilize IM-MS to aid in natural
product discovery from bacterial colonies.4,5 IM-MS is often
able to structurally separate the low-abundance secondary
metabolites from the complex biological background, a key
challenge in natural product discovery by MS.
In an effort to help elucidate the structural information

derived from CCS data, computational methods are often used
to interpret IM-MS experiments.6−9 A computational algorithm
is used to generate conformations of the molecule, defining its
conformational space. Then, a theoretical CCS is calculated for
each of the conformations. Conformations that fall within the
experimental CCS range can then be further interrogated to

provide a more detailed understanding of the molecular
conformation(s) that are consistent with experiment. Table 1
lists methods commonly used for generating conformations in
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Table 1. Representative IM-MS Structural Studies of
Different Model Systems

computational methods model system

coarse-grained modeling protein complexesa

virusb

molecular dynamics
(simulated annealing, replica
exchange, etc.)

peptidesc

carbohydratesd

natural productse

aRefs 10−14. bRef 15. cRefs 17 and 18. dRefs 19 and 20. eRefs 4 and
21.
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support of IM-MS experimental data. For large systems such as
protein complexes10−14 and virus assemblies15 coarse-grained
methods are used to obtain the cross-sectional area. For smaller
systems (peptides,16−18 carbohydrates,19,20 smaller mole-
cules,4,21 etc.), some form of molecular dynamics (MD) is
the current method of choice.
Long MD simulations with an appropriate force field for the

molecule(s) of interest are typically required to obtain a
thorough and useful conformational analysis. While the IM-MS
experimental data can be generated rapidly [on the order of
milliseconds (IM) and microseconds (MS)], MD simulations
for conformational analysis are quite time-consuming (days to
weeks depending on the modeled structures). Furthermore,
natural products are a very structurally diverse group of
molecules, and this can make appropriate force field selection
difficult. Although force fields exist that can describe many
natural product molecules realistically, it is not clear that any
current force field is appropriate for all members of this diverse
class of molecules. If an inappropriate force field is used in the
MD simulation, the resulting molecular conformations might
be chemically unreasonable. One possible solution is to
generate new potential function parameters for each molecule
of interest, but this can be a time-consuming process if large
numbers of molecules need to be studied. An alternative
solution is to use computational techniques that do not rely on
a force field for conformational sampling.
Distance geometry generates molecular conformations by

sampling different possible interatomic distances between all
pairs of atoms in the molecule.22,23 Upper and lower distance
limits, or bounds, are defined for each pair of atoms in the
molecule, and then a distance within these bounds is selected
randomly for each pair. Lower bounds are typically adjusted to
avoid atomic overlaps (i.e., the lower bound may be set as the
sum of the van der Waals radii of the atom pair), while upper
bounds can be set at an arbitrarily large value to increase the
number of possible conformations that are generated. Note
that, as the upper bound is increased, a larger number of
chemically unreasonable conformations will be generated. To
limit the number of chemically unreasonable conformations
generated, bounds for covalently bonded atom pairs are
normally restricted to values quite close to the corresponding
equilibrium bond lengths. Pair distances for atoms involved in
bond angles at sp2- and sp3-hybridized atoms can also be
restricted to produce chemically reasonable angle values, and
additional restraints are routinely imposed to preserve stereo-
chemistry at chiral centers. The set of selected atom-pair

distances is then converted to the corresponding set of
Cartesian coordinates that define the unique molecular
conformation. By selecting different random distances for
each pair of atoms in subsequent iterations, a collection of
unique molecular conformations is generated. Since IM-MS
experiments are conducted with ionized molecules, a cation is
then added to each generated conformer, based on the
minimum of the calculated molecular electrostatic potential
grid. The cation-associated conformations generated with this
computational protocol typically require brief geometry
optimization to relieve any residual, small geometrical
distortions (e.g., slightly distorted bond lengths, bond angles,
etc.) and to optimize the cation position. These geometry
optimization calculations can be performed with either a
quantum mechanical (QM) method or molecular mechanics
energy minimization with an appropriate force field.

■ METHODS

The steps for the suggested distance geometry protocol as well
as the MD-based method are shown in Scheme 1 with a more
detailed discussion below.

Molecular Dynamics Method. An MD-based sampling
protocol has been implemented where the system undergoes a
single heating and cooling cycle during the calculation. One of
the following two methods was used depending on which force
field (GAFF24 or MMFF94x25) better described the molecule
of interest.
For an MD simulation performed with the GAFF force field,

a geometry optimization at the Hartree−Fock level with a 6-
31G* basis set was performed with Gaussian0926 for each test
molecule. Partial charges for each molecule were derived from
an ab initio electrostatic potential calculation using a 6-31G*
basis set and fitted using the RESP27 program in AMBER.28

XLEaP was then used to generate the molecule−sodium
complex. Chirality constraints were applied in the form of
improper torsion angles and a distance restraint was placed on
the sodium ion to keep it near the molecule during the
simulation. Next, 1000 steps of steepest descent/conjugate
gradient energy minimization was performed with the sander
module followed by a 10 ps MD simulation to heat the
molecule to 1000 K. Then, a long MD simulation was run at
1000 K for 9000 ps where structural snapshots were saved
every 3 ps during the simulation. Each snapshot was then
cooled to 300 K during a 15 ps MD simulation followed by a
short energy minimization. The MOBCAL implementation of

Scheme 1. Schematic Workflow for Conformational Analyses Using the Distance Geometry Protocol and the MD-Based
Protocol
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the projection approximation, exact hard sphere scattering, or
calibrated trajectory methods (depending on the size of the
molecule) were used to calculate the CCS of each sodium-
coordinated complex.29−31 Specifically, for molecules contain-
ing less than 100 atoms, the projection approximation was used.
For molecules containing more than 100 atoms, the exact hard
sphere scattering method was used with one exception. For
erythromycin, which has several oxygen atoms and a concave
region between the two sugar rings, a correlated trajectory
method was used to achieve better alignment with the
experimental data.
An MD-based sampling method was also performed in the

Molecular Operating Environment (MOE)32 program with the
MMFF94x force field. The sodium-coordinated complexes
generated for the AMBER MD simulations were used as
starting structures. Chiral centers were fixed and a distance
restraint was used to retain the sodium cation near the
molecule during the simulation. Each sodium-coordinated
complex was first energy minimized, and then heated to
800−1000 K over a 10 ps MD simulation. Next, a long MD
simulation was run at that elevated temperature (800−1000 K)
for 9000 ps where structural snapshots were saved every 3 ps
during the simulation. These snapshots were then cooled to
300 K during a 15 ps MD simulation followed by a short energy
minimization. As described above, MOBCAL was used to
calculate the CCS of each sodium-coordinated complex.
Distance Geometry. All distance geometry calculations

were performed with the DGEOM95 program.33 Initial input
structures for the DG calculations were obtained from
structural databases or generated with a model building
program (e.g., MOE), followed by geometry optimization in
Gaussian09. DGEOM95 assigns connectivity and bond types
based on input coordinates if connectivity information is not
provided explicitly in the starting structure file. This
information is used to assign distance restraints to actual
bond lengths for covalently attached atoms and to detect non-
and partially rotatable bonds within the molecule. Torsions, or
1−4 distance restraints, are utilized for atoms in certain
structural relationships. Atoms attached to double bonds and
atoms within aromatic rings are set coplanar, while amide and
ester torsion angles are set to 0° ± 15°. For all other torsion
angles, lower bounds are set to +60° or −60° (gauche
orientations) for acyclic bonds and to eclipsed conformations
for cyclic bonds or bonds adjacent to double bonds or aromatic
rings by default. All other torsion angle upper bounds are set to
180° (trans conformations). Distance restraints for all other
atom pairs are defined so that the lower distance bound is set to
the sum of their van der Waals radii, while upper distance
bounds are set to the length of the longest chain between the
two atoms (i.e., the largest possible distance permitted by the
series of bonds that connect the two atoms). In addition to
these distance restraints, chiral centers are maintained by
calculating the vector cross product of the tetrahedron enclosed
by the four atoms attached to the chiral center and then
ensuring the sign of the vector cross product remains the same
in generated structures.
Once these distance restraints are generated, the triangle

inequality theorem is used to verify that all distances are
geometrically consistent. The triangle inequality theorem
simply states that for any set of three atoms A, B, and C, the
distance between atoms A−B cannot be longer than the sum of
the distances between atoms A−C and B−C. Random pairwise
distances that fall within the defined bounds are then selected

through a partial metrization method that ensures that the
majority of the random pairwise distances satisfy the triangle
inequality.34 The set of distances are then converted to discrete
Cartesian coordinates, generating a unique conformation.
These steps of selecting random pairwise distances and then
converting them to Cartesian coordinates are repeated until the
desired number of conformations is generated. Finally, a
clustering step is performed so that degenerate conformations
(pairwise root mean squared difference (RMSD) < 1.0 Å) are
removed. For the molecules in this test set, we generated
between 2000−20 000 conformations to assess how thoroughly
the distance geometry calculations sample conformational
space.
Many empirically derived mobility measurements are

determined with sodium coordination of the cationizing
species, in particular for natural products that can often contain
oxygen-rich carbohydrate moieties and the high oxyphilicity of
alkali metals. The initial conformations from distance geometry
require connectivity for all atoms, which does not allow for easy
incorporation of a coordinated cation. We used the XLEaP
module in AMBER to coordinate a sodium cation with each
conformer generated by the distance geometry program,
placing the ion at the minimum of the molecular electrostatic
potential computed from the partial charges. Then we tested
both a semiempirical QM technique and molecular mechanics
energy minimization for the geometry optimization step. For
the QM geometry optimization we used the PDDG/PM3
Hamiltonian35 with Gaussian09.26 A QM geometry optimiza-
tion calculation is somewhat more CPU-intensive than
molecular mechanics energy minimization, but may be the
only practical option when suitable force fields are not available.
We also used molecular mechanics energy minimization
calculations, with either the MMFF94x force field25 in
MOE32 or the GAFF force field24 in AMBER.28 For the
GAFF force field calculations, we used atomic partial charge
parameters developed for the MD simulations described above.
Otherwise, we used default parameter values from each force
field for all molecules.
Suppose36 and OC37 programs were used to cluster low-

energy structures generated by each computational protocol
into conformational families to achieve data reduction and
facilitate structural analysis. The Suppose program super-
imposes all possible pairs of conformations and computes the
RMSD in structure for each pair. The OC program then sorts
the structures into clusters based on structural similarities as
determined by a threshold RMSD cutoff value. For comparison
purposes an RMSD cutoff value of 1.0 Å was chosen for both
distance geometry and MD calculations. The OC program was
used to select a molecular conformation that most closely
represents the mean structure for each cluster. As described
above, MOBCAL was then used to calculate the theoretical
CCS for each cluster representative.

Experimental CCS Measurements. All 10 natural
products were obtained from Sigma Chemical Company (St.
Louis, MO). Matrix-assisted laser desorption ionization
(MALDI) was performed for 200:1 molar ratios of the analytes
with either 2,5-dihydroxybenzoic acid or α-cyano-4-hydrox-
ycinnamic acid matrix. The MALDI-IM-TOFMS has a 13.9 cm
IM drift cell that is maintained at a pressure of ca. 3 Torr
helium and an orthogonal reflection TOFMS with a 1 m flight
path maintained at a pressure of 5 × 10−8 Torr. The
temperature of the drift tube was ∼293 K, and the
electrostatic-field strength ranged from ∼90 to 120 V cm−1.
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Further experimental and instrumentation details have been
presented previously in the literature.4,38

■ RESULTS AND DISCUSSION
Results. The 10 natural products studied here are shown in

Figure 1. They range in size from 45 atoms ([M + Na]+, 303.0
m/z) to 169 atoms ([M + Na]+, 1133.6 m/z) and represent
different subclasses of natural product molecules. Representa-
tives from macrolides (brefeldin, erythromycin, josamycin),
cyclic peptides (valinomycin), aromatic polyketides (doxor-
ubicin), aminoglycoside antibiotics (neomycin), and other
classes (capsaicin, lincomycin, antimycin, and ampicillin) were
chosen to determine how distance geometry would perform
across a wide range of natural product molecules. These
different classes further emphasize the difficulty of trying to
select a force field that would accurately describe such a diverse
group of molecules.
The computational cost for both the MD-based method and

the distance geometry calculations is presented for all 10
molecules in the histogram in Figure 2. The computational cost
for the MD method is typically at least an order of magnitude
greater than the distance geometry protocol. These time values
reflect calculations that were run on a single processor except
for calculations performed in Gaussian09, which were run on
four processors. Note that the calculated times do not

Figure 1. Two-dimensional structure representations of the 10 natural products tested in the present study. Each natural product is labeled with
corresponding m/z, experimental CCS, and number of experimental CCS measurements.

Figure 2. Histogram summarizing the computational cost of the
distance geometry protocol compared to MD-based sampling. MD
results are shown in solid blue, and distance geometry results are
shown in dashed red and open black depending upon how many initial
conformations are requested (red for 20 000 conformations and black
for 8000 conformations). Results from the semiempirical geometry
optimization are shown in boxed green.
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incorporate the theoretical CCS calculation, only the time
required to generate the conformations, to better compare the
distance geometry and MD strategies. Although the computa-
tional cost for the QM geometry optimization with distance
geometry is not much smaller than that for the MD-based
sampling protocol, without an appropriate force field for the
molecule, this may be the best option. Also since distance
geometry calculations scale On and molecular dynamics

calculations scale O(n), the computational advantage for the
DG protocol decreases for extremely large, flexible molecules
(e.g., large peptides or small proteins).
To better ascertain the robustness and reliability of the

distance geometry computational protocol, we performed a
detailed analysis of results as a function of total number of
requested conformations. Conformational space plots are
shown in Figure 3 for 4 of the 10 natural products [lincomycin

Figure 3. Scatter plots for four representative natural products to show where the generated conformations occur in relative energy vs theoretical
CCS. The IM-MS measured CCS range (mean value and standard error) is indicated by the vertical gray bar. In panels a, c, e, and g, the comparison
for 8000 (black) vs 20 000 (red) conformations generated by distance geometry is shown. In panels b, d, f, and h, the comparison for 8000 (black)
conformers from distance geometry vs MD-based conformational sampling (blue) is displayed. Results are shown for lincomycin (a and b),
neomycin (c and d), josamycin (e and f), and valinomycin (g and h).
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(Figure 3, parts a and b), neomycin (Figure 3, parts c and d),
josamycin (Figure 3, parts e and f), and valinomycin (Figure 3,
parts g and h)], with detailed results for the remaining six
presented in the Supporting Information (Figures S-11 and S-
12). In the left panel of Figure 3, conformational space plots are
shown that compare the results when either 8000 or 20 000
conformations are generated by distance geometry. The
theoretical CCS value is plotted against the computed energy
for each conformation. The vertical gray bar indicates the
experimental CCS range. When only 8000 structures are
requested a similar conformational space is covered compared
to the 20 000-conformation sample for all test molecules, but at
a much reduced total computation time. While comparable
results are obtained for some of the test molecules when only
2000 conformations are requested [data shown in the
Supporting Information (Figure S-15)], this is not always the

case with some of the larger and/or more flexible molecules.
Thus, we conclude that for molecules of this size and molecular
complexity, 8000−10 000 generated conformations should
sample conformational space adequately.
In the right panel of Figure 3, the distance geometry results

and MD conformational sampling results are plotted for
comparison. There is a noticeable energy difference between
the two methods that is reflective of the approaches these
calculations take when sampling conformational space. The
MD-based conformational sampling method tends to generate
predominantly low-energy conformations, since MD preferen-
tially samples low-energy regions of the energy surface. By
contrast, distance geometry is designed to explore all
geometrically possible conformations (within the limits of the
defined distance upper bounds), so it should always generate
some slightly higher energy conformations as compared with

Figure 4. IM traces for the representative natural products shown in Figure 3, namely, (a) lincomycin, (b) neomycin, (c) josamycin, and (d)
valinomycin. The most representative conformation generated with distance geometry from within the experimental range is shown for each natural
product to the left of the mobility peak, and a conformation that does not agree with the experimental measurement is shown on the right of the
mobility peak to illustrate the coordination of computation with experiment for interpretation of structure.
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MD-based sampling. While MD-based conformational sam-
pling does generate lower energy conformations (due to the
extensive cooling step in the calculation), nevertheless similar
conformations are generated with each method. Clustering data
as well as representative structures that illustrate these
similarities are presented in the Supporting Information
(Figures S-16−S-44).
For lincomycin in Figure 3b, neomycin in Figure 3d, and

josamycin in Figure 3f the distance geometry and MD methods
perform comparably, generating a similar number of con-
formations within the experimental CCS range. For valinomy-
cin in Figure 3h, the MD sampling method generates more
conformations that agree with the accepted experimental gas-
phase conformation of valinomycin.39 This is almost certainly
because valinomycin complexes the sodium cation within the
cyclic peptide structure, and its low-energy conformations are
thus influenced strongly by the presence of the cation. In the
absence of the sodium ion, a dramatically different conforma-
tional ensemble is sampled. By contrast, the presence or
absence of sodium coordination has little or no influence on the
overall ensemble of conformations obtained for the other test
molecules.
To illustrate the interpretation of experimental IM

conformation, IM traces for the representative natural products
are shown in Figure 4 along with sample conformations
generated with the distance geometry protocol for the four
natural products discussed above [results for all other
molecules are in the Supporting Information (Figure S-13)].
A conformation that agrees with the experimental data is shown
near the mobility peak to the left, while a conformation that
does not show agreement is also displayed for comparative
purposes to the right. For conformations that fall within the
experimental CCS range, sodium is typically coordinated with
multiple atoms, generally leading to conformational contrac-
tion. By comparison, when the sodium cation is coordinated
with only one or two atoms, the conformations tend to be more
open and extended. While there is modest conformational
contraction observed for lincomycin (Figure 4a), neomycin
(Figure 4b), and josamycin (Figure 4c), the effect is far more
dramatic for valinomycin (Figure 4d). The valinomycin
conformation that agrees best with the experimental data has
the sodium ion localized in the center of the cyclic peptide ring
where it coordinates with multiple oxygen atoms. The
valinomycin conformation that is inconsistent with the
experimental CCS data has the sodium ion coordinated on
the periphery to only two oxygen atoms, resulting in a more
elongated peptide conformation. Additional representative
conformations from RMSD clustering for all 10 of the natural
products generated with both distance geometry and the MD
sampling method can be found in the Supporting Information
(Figures S-16−S-36).
Advantages and Challenges for both Distance

Geometry and Molecular Dynamics Sampling. As
summarized in Table 2, both distance geometry and MD
sampling methods have potential advantages and challenges for
the conformational sampling task. It is important to first
consider how each method is sampling conformational space.
An MD calculation samples conformational space by generating
trajectories on an energy hypersurface. This surface is defined
by a force field, which describes all covalent and noncovalent
interactions for the molecule(s) of interest. A suitable force
field is crucial for effective use of an MD-based method; a force
field that is not properly parametrized for the molecules of

interest is not likely to yield relevant conformational
information.
Distance geometry uses only interatomic distance data to

generate a collection of conformations. The distance
information is typically defined as “bounds”, i.e., upper and
lower distance limits, rather than a fixed value, and these
bounds are defined by chemical properties such as equilibrium
bond lengths and bond angle values, van der Waals radii, etc.
Thus, distance geometry methods can be used for conforma-
tional sampling even when suitable force fields are not available
for the molecules of interest. This situation is exacerbated when
molecules contain many different and nonuniform chemical
functional groups and connectivity as encountered with natural
products.
Clearly, it is important to ensure that conformational space is

sampled adequately. Molecular dynamics simulations preferen-
tially sample low-energy regions of conformational space while
distance geometry can generate all geometrically possible
conformations allowed by the imposed bounds. Therefore,
distance geometry can sample all conformational space if
sufficiently loose distance bounds are set and if enough
conformations are generated. In principle, MD-based methods
can also sample all conformational space if a sufficiently long
simulation is run. In practice, the computation time required to
achieve any specified degree of “conformational space cover-
age” for molecules like those examined in this study will be
much greater for MD-based sampling methods compared to
distance geometry protocols, as our results clearly demonstrate.
Nevertheless, both of these methods can generate chemically

unreasonable conformations. While distance geometry can
create distorted, or strained, molecular conformations when
loose bounds are used, a short energy minimization calculation
can usually relax the distorted conformation. When distance
bounds are defined more tightly, few, if any, distorted
conformations are generated. MD-based conformational
sampling strategies will typically generate relatively few
strained, or high-energy, conformations. However, if elevated
temperatures are used to increase conformational sampling
efficiency by facilitating transitions from one low-energy region
to another on the energy surface, significantly more distorted,
high-energy conformations may be generated, and subsequent
energy minimization performed at the end of the calculation
may not always relax the distorted conformations. The unique
structural motifs (e.g., heterocyclization, macrocyclization)
typical of the natural products investigated in this study make
them particularly susceptible to conformational distortion

Table 2. Advantages and Challenges Associated with
Distance Geometry and MD-Based Strategies

distance geometry MD-based sampling

Advantages
samples the entire conformational
space

preferentially samples low(er)
energy conformations

calculation does not depend on a
force field

ion interacts with the molecule
throughout the entire simulation

time efficient
Challenges

ions not included explicitly during
DG calculations

simulation is based on force fields
which are not parametrized for all
molecules
no easy way to determine when
sufficient conformational sampling
has been achieved
time consuming
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during high-temperature MD simulations. Thus, while both
methods can produce chemically unreasonable structures in the
final solution data set, this issue impacts the MD sampling
protocol efficiency more dramatically due to the greater
computational cost for the MD calculations.
In order to generate structures that are relevant for

interpretation of the experimental data, conformations that
represent the cation−molecule complex explicitly must be
generated. In an MD simulation, the ion can be present
throughout the simulation to facilitate this task. In cases where
the cation may exert a significant influence on molecular
conformation, e.g., valinomycin, the MD sampling strategy may
generate a larger number of chemically reasonable conforma-
tions that agree well with experimental CCS data. While it is
possible to include the cation explicitly in the distance
geometry calculation protocol, it is generally much easier to
introduce the cation after the initial conformations have been
generated. In cases where the cation has significant impact on
the preferred conformations, it is quite possible that the
distance geometry protocol will produce far fewer structures
that agree well with experimental CCS data. This trade-off
between computational cost or explicit inclusion of the cation
during all stages of the conformational sampling procedure
(e.g., MD-based methods) clearly favors distance geometry
when the site of cationization is well-understood and can be
fixed prior to calculation.

■ CONCLUSIONS
These results clearly show that the distance geometry plus
geometry optimization protocol can be an effective and
computationally efficient conformational sampling strategy for
analysis of IM-MS data for natural products. In all but one case,
the distance geometry protocol performed at least as well as the
MD sampling method, but at a fraction of the computational
expense. The MD method appears superior only for
valinomycin, a cyclic peptide. There are two major factors
that contribute to this observation for valinomycin. First, it is
much larger than the other molecules in the test set, with many
more degrees of freedom. As a result, many more
conformations would have to be generated during a distance
geometry calculation to get reasonable conformational
sampling. More significantly, low-energy conformations for
valinomycin are strongly influenced by the presence and
position of the sodium cation. Therefore, explicit inclusion of
the sodium ion during the conformational sampling process is
important, but this cannot be done efficiently with our distance
geometry protocol at present.
Computational analysis of the conformational space for

natural products in support of structural IM-MS provides
further insight into the structural motifs that cause gas-phase
separation of these species from primary metabolites.
Incorporating computational methods with further IM-MS
studies will provide additional structural information, which
could aid identification of these natural products, because of
structural uniqueness compared to primary metabolites, from
complex biological samples. Additionally, IM-MS is currently
showing great promise as an analytical method in the fields of
systems, synthetic, and chemical biology. This is due to its
ability to separate and analyze complex samples containing a
wide array of biological molecules such as peptides,
carbohydrates, and metabolites. A computational method,
such as distance geometry, that can efficiently sample the
conformational space of all of these structurally different

biomolecules could potentially facilitate structural interpreta-
tion of IM-MS signals on a time scale more commensurate with
the experiment itself.
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