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Intraoperative Parathyroid 
Localization with Near-Infrared 
Fluorescence Imaging Using 
Indocyanine Green during Total 
Parathyroidectomy for Secondary 
Hyperparathyroidism
Le Cui1, Yang Gao2, Heping Yu1, Min Li2,3, Birong Wang1, Tao Zhou4 & Qinggang Hu2

The detection of all glands during total parathyroidectomy (TPTX) in secondary hyperparathyroidism 
(SHPT) patients is often difficult due to their variability in number and location. The objective of this 
study was to evaluate the feasibility of near-infrared fluorescence (NIRF) imaging using indocyanine 
green (ICG) for intraoperative parathyroid gland (PTG) localization in SHPT patients. Twenty-nine 
patients with SHPT were divided into two groups with or without intraoperative NIRF imaging. ICG 
was administered in patients undergoing intraoperative imaging, and the fluorescence of PTGs was 
assessed. Clinical and histopathologic variables were analyzed to determine factors associated with 
ICG uptake. Comparisons between NIRF and preoperative imaging, as well as differences between 
groups with or without NIRF imaging, were carried out to evaluate the efficacy of this technique. Most 
PTGs could be clearly identified, including one ectopic gland. The sensitivity of NIRF imaging is 91.1% 
in contrast to 81.82% for ultrasonography (US), 62.34% for 99mTc-MIBI and 85.71% for computed 
tomography (CT). In addition, intraoperative NIRF imaging can reduce the operation time and improve 
the complete resection rate compared with the group not using it. Intraoperative NIRF imaging using 
ICG during TPTX is technically feasible and reliable for assisting surgeons in detecting and confirming 
PTGs.

Secondary hyperparathyroidism (SHPT), a common serious and progressive complication associated with 
chronic kidney disease (CKD), is characterized by persistently elevated serum parathyroid hormone (PTH), par-
athyroid gland (PTG) hyperplasia and mineral metabolism abnormalities1. SHPT patients present with various 
bone disorders and cardiovascular disease, leading to substantial morbidity or mortality2. Total parathyroidec-
tomy (TPTX) is an effective approach for severe SHPT patients who are resistant to pharmacological treatments3. 
Removal of all PTGs is the essence of successful PTX, which prevents continuous residual gland stimulation in 
the CKD environment. However, it is difficult to resect all PTGs because of their variability in number and loca-
tion, causing enormous challenges to parathyroid identification for even experienced surgeons4. The persistent 
and recurrent rate ranges between 10% and 30% due to incomplete resection5–7. Nevertheless, this situation could 
be easily improved with an effective parathyroid identification method. Although there have been advances in 
nuclear, ultrasound (US) and computed tomography (CT) imaging, the sensitivity of 99mTc-MIBI is reported to 
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range between 50% and 80%, that of US ranges between 40% and 85%, and that of CT ranges between 60% and 
80%8–14. Worse still, these preoperative images are difficult to translate into intraoperative real-time anatomical 
information to help surgeons make an immediate decision. Thus, there is an urgent need for a safe, convenient 
and sensitive real-time intraoperative approach for PTG identification.

Near-infrared fluorescence (NIRF) imaging has gained increasing attention in recent years for image-guided 
surgery due to their strong anti-interferences of optical absorption, high tissue penetration, low photo-damage 
and minimal auto-fluorescence from tissue15. Therefore, NIR methylene blue (MB) and blue aminolevulinic acid 
(ALA) were used to identify the normal PTG or parathyroid adenoma in several literature reports4, 16, 17. However, 
the toxicity and lack of data demonstrating the improvement of outcomes have restricted its popularization in 
parathyroid surgery. Thus, a desired NIR probe is the critical element in image-guided parathyroid surgical pro-
cedures. Indocyanine green (ICG) is an anionic, water-soluble tricarbocyanine molecule that could emit strong 
fluorescence with a peak wavelength approximately 830 nm once excited by NIR light when it binds to proteins18. 
Because of much better tissue penetration and biocompatibility, ICG has been applied to general surgical and 
oncologic procedures, including intraoperative cholangiography, the assessment of anastomotic perfusion and 
sentinel node mapping for decades19–22. In a pre-clinical trial, the location of PTGs could be visualized using ICG 
through a NIRF imaging technique in dog models23. Subsequently, Berber et al.24 further assessed the usefulness 
of ICG fluorescence imaging in patients undergoing PTX procedures for primary hyperparathyroidism, demon-
strating that ICG could reliably localize the PTGs with a high detection rate of 92.9% of 112 glands in 33 patients. 
Additionally, a recent study evaluated the vascularization of PTG remnants by ICG fluorescence imaging during 
subtotal PTX to predict postoperative remnant function25. However, no study has yet reported its application 
for intraoperative parathyroid localization in patients with SHPT. Herein, we investigated the real-time intra-
operative ICG fluorescence imaging of hyperplasic PTGs during TPTX for SHPT and prospectively assessed the 
feasibility, utility and safety of image-guided surgery for TPTX.

Results
Patients.  Twenty-nine patients planning TPTX were entered in this study. These patients were divided into 
two groups. The TPTX group without ICG fluorescence imaging included 9 patients (No. 1 to No. 9), from whom 
42 lesions were resected. Of these 42 lesions, 33 lesions (78.57%) were confirmed to be PTGs. Another group 
undergoing TPTX with ICG fluorescence imaging included 20 patients (No. 10 to No. 29), from whom 82 lesions 
were resected. Of these 82 lesions, 77 lesions (93.90%) were confirmed to be PTGs. Thus, the resection rate in 
the group with ICG fluorescence imaging was significantly higher than that in the group without ICG fluores-
cence imaging. Additionally, there were no statistically significant differences between the two groups regarding 
demographic and preoperative clinical data. The patients presented with various clinical symptoms, but the main 
complaints were osteodynia, osteoporosis, skeletal deformity and pathological fractures. Details about patient 
characteristics, histology results, and operation times are shown in Figure 1. We did not encounter in-hospital 
mortality in either series, and postoperative surgery-related complications such as bleeding or nerve injury did 
not occur in either group. Still, we had four patients (2 cases in each group) with persistent hyperparathyroidism 
after surgery, a fact that we interpreted as missing glands.

Intraoperative NIR fluorescence imaging.  Seventy-seven of the resected glands of the group with ICG 
fluorescence imaging were hyperplasia according to the postoperative pathology. Intraoperative ICG fluores-
cence imaging successfully identified most pathologic enlarged PTGs. Figure 2 shows a representative example 
of the intraoperative fluorescence signal in a PTG. The fluorescence intensity of the PTG was greater than that 
of all other tissues. The thyroid exhibited a weaker fluorescence signal than the parathyroid but was consist-
ently stronger than that of muscle, fat, and other surrounding tissues, which showed almost no fluorescence. 
The average SBR of the identified PTGs was 1.92 ± 0.52. Figure 3 shows the SBR of all resected glands from 
the total 20 patients. The ROC curve of NIRF was also made based on SBR, including 5 false-positive and 2 
false-negative cases (Fig. 4). The mean time interval between the administration of ICG and detection of the 
PTGs was 75 ± 35 minutes. The PTGs could be identified up to 225 minutes after administration, providing suffi-
cient imaging time until resection in these patients. Notably, 1 patient (No. 28) had an ectopic PTG in the thymus, 
and the fluorescence imaging also successfully identified it with an SBR = 1.55 (Fig. 5), demonstrating that ICG 
can also be taken up even in ectopic PTG.

Factors associated with SBR.  To analyze the clinical variables associated with the SBR of PTGs, analysis 
was performed to determine factors associated with ICG uptake. As shown in Table 1, by Pearson’s Chi-squared 
test or Fisher’s exact test analysis, the age, gender, dialysis time, calcitriol pulse therapy, preoperative phosphate 
and calcium, and histology showed no correlation with the SBR. A significantly higher degree of fluorescence 
was seen in patients presenting with a preoperative PTH level >1900 pg/mL (P < 0.05) and in PTGs larger than 
10 mm (P < 0.01). There was also a tendency toward increased SBR in patients with hemodialysis (P < 0.01).

Comparison of NIRF imaging with preoperative imaging.  Patients in the ICG fluorescence imaging 
group all underwent preoperative imaging (US, CT, 99mTc-MIBI) and intraoperative NIRF imaging. We recorded 
the number and location of PTGs detected by each imaging modality. Figure 6 shows characteristics of the four 
imaging modalities. Preoperative US successfully detected 63 PTGs in 20 patients, and the sensitivity of US was 
81.82%. There were 48 PTGs in 17 patients identified by 99mTc-MIBI, and the sensitivity was 62.34%. The preop-
erative CT identified 66 PTGs in 20 patients, and the sensitivity was 85.71%. The receiver operating characteristic 
(ROC) curve was used to analyze the efficacy of NIRF imaging, with SBR being regarded as the test variable. The 
NIRF shows high accuracy with the area under curve (AUC) of 0.919 as shown in Fig. 4. Determination of the 
minimum SBR threshold can define whether a PTG will fluoresce and calculate the sensitivity of NIRF imaging. 
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Based on our experience and the ROC curve, the PTGs can be clearly and quickly identified by the NIRF imaging 
during surgery with a sensitivity of 91.1% and a specificity of 80% when the threshold is defined as 1.35.

Comparison between the two groups.  To demonstrate the application value of intraoperative imaging, 
we compared the differences between the group with or without ICG fluorescence imaging. As shown in Fig. 7, 
there was no significant difference between the two groups preoperatively and postoperatively regarding serum 
calcium, phosphorus and PTH variations (P > 0.05). The symptomatic relief rate was 100%, and no complication 
occurred. These results demonstrated that the two groups could achieve the same therapeutic effect in patients 
with complete resection. Unfortunately, each group had 2 cases with persistent hyperparathyroidism after surgery 
that we interpreted as missing glands. The incidence rates were 10.0% (2/20) vs 22.2% (2/9), which represented a 
significant difference between the two groups (P < 0.05), demonstrating that the high sensitivity of intraoperative 
ICG fluorescence imaging could help surgeons to identify PTGs for complete resection. Moreover, the mean 

Figure 1.  Patient, histopathologic and surgical characteristics. Abbreviations: M, Male; F, Female; Preop, 
preoperative; PTH, Parathyroid hormone; NPG, Normal parathyroid gland.
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operation time of the group with or without ICG fluorescence imaging was 130 min vs 156 min (P < 0.05), respec-
tively, demonstrating intraoperative ICG fluorescence imaging could reduce the operation time.

Discussion
Although PTX is a commonly performed and overall successful procedure, intraoperative detection of the gland 
is still challenging. Surgical failure is often due to missing resection, especially for ectopic glands26. Recently, 
many attempts have been made to aid intraoperative localization of PTGs. Among these efforts, NIRF imaging of 
PTGs using an exogenous fluorophore provides a promising approach to overcome this dilemma. Several studies 
employed MB as the fluorophore for parathyroid adenoma imaging. However, no study explored the feasibility 
for pathological enlarged parathyroid16, 17. Worse still, recent data have suggested that MB is associated with toxic 
metabolic encephalopathy, particularly in those patients taking serotonin reuptake inhibitors27, 28. The use of pho-
tosensitizers such as ALA is another emerging technology. However, this technology can be beneficial to only 50% 
of patients for detection the glands during the operation4. In addition, the photosensitizer-related complications 
are still a limitation, preventing its further application29. NIR-IR auto-fluorescence imaging is also a method for 
intraoperative real-time localization of PTGs. Although satisfactory performance of auto-fluorescence has been 
reported recently30, 31, the equipment for this method is not yet commercially available, and this technique has not 
been verified in SHPT patients so far.

Figure 2.  Representative hyperplastic PTG and intraoperative NIRF image using ICG. (a,b) Bright-field and 
(c,d) fluorescent images of hyperplastic gland intraoperative and after resection.

Figure 3.  The SBR distribution of total 77 resected glands of 20 patients with intraoperative NIRF image using ICG.
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An ideal fluorophore to facilitate intraoperative localization should be safe and convenient32. ICG, a NIR 
probe that has been approved by the FDA for decades clinically, was reported to be associated with less than 
0.05% of serious adverse events33. What’s more, it only needs intravenous injection before surgery without extra 
work pre- or post-operatively. More importantly, ICG has a property of accumulation in pathological PTGs, 
which attributes to the higher fluorescence intensity than the surrounding tissues. These advantages make ICG an 
ideal NIR probes for hyperplastic PTGs localization.

Presently, the mechanisms that mediate the preferential accumulation of ICG in hyperplastic glands relative 
to other normal tissue remain unknown. It is known that hyperplastic PTGs have high metabolic activity because 
the parenchymal cells contain a proportionally higher number of mitochondria than other tissues34. In addition, 
hyperplastic PTGs always have architectural destruction due to disorder arrangement of the hyperplastic cells35. 
The proportion of hyperplastic cells increases in the parathyroid gland significantly. The types of cells tend to be 
consistent, with single main cells, clear cells or acidophilic cells occupying the whole gland. There is a significant 
increase in fiber septums whereas a decrease in adipose tissues. In addition, old hemorrhage and calcification 
always occur in hyperplastic gland36. Thus, we hypothesized that the preferential accumulation of ICG and subse-
quent fluorescence in PTGs may be related to the high metabolic activity and structural disorder of hyperplastic 
PTGs. When ICG flows through the PTGs, it will be taken up more by the hyper-functional cells. Other tissue 
cells (e.g., fat, muscle, lymph node, and other surrounding neck tissues) can rapidly clear out their ICG and 
appear dark, while ICG has delayed excretion due to architectural destruction in hyperplastic PTGs. According 
to the data we have now obtained (Table 1), the SBR is higher in patients with large PTGs and high PTH levels, 
which supports our hypothesis. This is only a preliminary exploration. Further studies, such as molecular and 
immunohistochemical research, are needed to understand the mechanism and pattern of ICG accumulation in 
PTGs.

Figure 4.  The ROC curve of NIRF image using ICG based on the SBRs.

Figure 5.  Bright-field (a) and fluorescent image (b) of the ectopic PTG in thymus.



www.nature.com/scientificreports/

6Scientific REPOrTS | 7: 8193  | DOI:10.1038/s41598-017-08347-6

A comparison was made between lesions detected by NIRF imaging and traditional preoperative imaging 
modalities. US and CT belong to morphological imaging, and the sensitivity of detection depends on the size of 
the lesion and density difference contrast to adjacent tissue. The sensitivity values of US and CT in our study were 
81.82% and 85.71%, respectively, indicating a unsatisfactory performance in identifying the PTGs. 99mTc-MIBI 
is one method of radionuclide imaging, which has a higher sensitivity to hyper-functional PTGs than normal 
glands. The potential role of 99mTc-MIBI in the preoperative localization of PTGs in SHPT patients has been inves-
tigated by several studies10, 37. The sensitivity of 99mTc-MIBI in our study was 62.34%, which was similar to that 
in recent reports of the variable accuracy of planar parathyroid scintigraphy using 99mTc-MIBI in SHPT ranging 
from 35% to 90%38, 39. However, the sensitivity of these preoperative imaging was lower than that of intraopera-
tive ICG fluorescence imaging that had a 91.1% sensitivity according to our data. Furthermore, ICG fluorescence 
imaging can transfer the location into real-time information for accurate and rapid surgery.

The complete resection rate of ICG fluorescence imaging group was remarkably higher, whilst the opera-
tion time and persistent hyperparathyroidism rate were less than these in the group without using it. On the 
other hand, variations in postoperative calcium, phosphorus and PTH, as well as complications and the relief 
rate, showed no difference between the two groups. These results suggest that NIRF imaging can be completed 
successfully for most patients and may be associated with a better outcome and reduced operating time with no 
difference in the therapeutic effect. Notably, there were also 2 cases in the ICG group with persistent hyperpar-
athyroidism after surgery that we interpreted as missed resection. Thus, several glands presented as false negative 
upon NIRF imaging, indicating that fluorescence imaging combined with careful visual inspection is still neces-
sary for these patients.

Although we have made some encouraging progress in the research of intraoperative NIRF parathyroid imag-
ing, an invincible drawback of this fluorescence technique is given by the optical property of light-penetrating 
tissue. NIR is generally known to have the deepest penetration among the spectrum, which can reach a tissue 
depth of only 10 mm40. Thus, surgery with broad exposure and careful dissection of the area close to the glands 
is still necessary. Another potential pitfall using this technique is the background signal in the thyroid gland that 
may interfere with the identification of PTG, and this situation may worsen with normal PTGs, which often have 
lower SBRs than the hyperplastic ones. Thus, the interval between ICG injection and imaging should be longer 
to obtain a good SBR. Further studies are required to determine the optimal dosage of ICG and interval time 

Parameter Number SBR (mean) P value

Age

 <50 year 9/20 1.94
0.38

 >50 year 11/20 1.91

Gender

 Male 11/20 1.98
0.26

 Female 9/20 1.87

Dialysis modality

 Hemodialysis 12/20 1.78
<0.01

 Peritoneal dialysis 8/20 2.13

Dialysis time

 <5 year 6/20 1.93
0.61

 >5 year 14/20 1.93

Calcitriol pulse therapy

 Yes 12/20 1.92
0.53

 No 8/20 1.95

Preoperative calcium

 <2.75 mmol/L 17/20 1.93
0.71

 >2.75 mmol/L 3/20 1.96

Preoperative phosphate

 <1.62 mmol/L 2/20 1.84
0.67

 >1.62 mmol/L 18/20 1.94

Preoperative PTH

 <1900 pg/mL 7/20 1.88
<0.05

 >1900 pg/mL 13/20 2.07

Parathyroid size (max diameter)

 ≤10 mm 16/77 1.47
<0.01

 >10 mm 61/77 2.04

Gland histology

 Diffuse hyperplasia 17/77 1.87
0.69

 Nodular hyperplasia 60/77 1.93

Table 1.  Analysis of parathyroid fluorescence by clinical and histopathologic parameters.
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between administration and imaging. Another cause of this situation is the poor specificity of ICG to parathyroid 
glands. Unlike antibody binding to an antigen showing the specificity, ICG could also accumulate in other tissues 
due to the lack of active targeting, resulting in a high background signal and a low SBR. Differences in contrast 
are mainly due to differences in retention of the dye within tissues and variability in clearance. Active targeting 
groups, such as antibodies coupling ICG, will be a good strategy to settle this problem. The conjugation of ICG 
with antibodies that combines the optical properties of ICG with the specific recognition ability of the antibodies 
to the antigens on the surface of tumor cells has made some progress. For instance, some proteins such as integrin, 
VEGF, and HER-2, are overexpressed on the surface of tumor cells compared with normal cells. Many studies 
have utilized these antibodies to conjugate with ICG and have achieved excellent effects for tumor imaging41–43. 
These studies may provide an approach to solve the specificity of ICG to the parathyroid gland in the future. 

Figure 6.  Number and location of the detected glands by different modalities and the max diameter of resected 
glands. Abbreviations: R, right; L, left; RU, right upper; LU, left upper; RL, right lower; LL, left lower.
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Currently, ICG fluorescence imaging might be not a complete substitute for careful visual inspection during 
operation, but this technique can be used as an auxiliary to help localize hyperplastic PTGs, which may have more 
sensitivity than preoperative images and provide real-time information to surgeons.

Conclusion
In this study, ICG was investigated for intraoperative NIRF imaging of PTGs in patients with SPTH during TPTX 
for parathyroid localization. The results demonstrated that this technique could easily localize the parathyroid 
and possess a high resection rate of 93.9%. The fluorescent intensity of PTGs was stronger than that of the sur-
rounding tissues, with an average SBR of 1.92 ± 0.52. Analysis revealed that the SBR of PTGs was associated with 
the dialysis modality, preoperative PTH level and size of PTGs. The sensitivity of intraoperative ICG fluorescence 
imaging was higher than that all of preoperative imaging modalities. Furthermore, surgeons can fast and easily 
identify the PTGs when using the intraoperative fluorescence imaging, as well as ensure the therapeutic efficacy. 
Thus, intraoperative ICG fluorescence imaging has promising application prospects in real-time PTG localiza-
tion. Utilizing this technique has the potential to help complete resection and improve the clinical outcome for 
SHPT patients.

Subjects and Methods
Patients.  Twenty-nine patients undergoing TPTX from SHPT caused by CKD at the Department of Thyroid 
and Breast Surgery of Puai Hospital were recruited and participated in the study. Our inclusion criteria based on 
the kidney disease outcomes quality initiative (KDOQI) guideline for TPTX were as follows: resistance to availa-
ble medical therapy; PTH levels greater than 800 pg/mL with hyper-calcemia and/or hyper-phosphatemia; severe 
clinical symptoms such as osteodynia, pruritus, pathological fractures, metastatic calcifications, and calciphylaxis; 
maximum diameter of PTG > 1 cm. Patients with an ICG allergy were excluded. This study was approved by the 
Medical Ethics Committee of Tongji Medical College and was performed according to the ethical standards of 
the Helsinki Declaration of 2013. Written informed consent was obtained from all individuals before surgery. 
Patients were divided into 2 groups with or without ICG fluorescence imaging. All procedures were performed by 
the same surgeon. Standardized care diagnostic work-up that, for our center, included preoperative cervical US, 
99mTc-MIBI and CT for preoperative planning, were performed in all patients. The number and location of PTGs 
detected by each method were recorded.

Fluorescence technique and intraoperative imaging.  The fluorescent imaging system was provided 
by AISERY Co. (Beijing, China). Briefly, light-emitting diodes with an excitation wavelength of 760 nm as the 
light source were aligned in the outer periphery of the detector, in which a charge-coupled device (CCD) camera 
is in the center. The detector is positioned above the surgical field when the fluorescent image is captured. An 
optical filter in front of the CCD camera can filter out emission light with a wavelength below 830 nm, and the 
fluorescence signal is then transmitted to the computer via an image capture card. Finally, the fluorescent image 
is created and presented on the display screen.

ICG (0.5 mg/kg) was intravenously administered 1 h before the start of anesthesia. A four-gland exploration 
was performed for patients undergoing TPTX. After sub-platysmal dissection, retraction, and initial explora-
tion, visual inspection combined with NIRF imaging was used for the identification of PTGs. To investigate the 
fluorescence signal, images were captured by the detector after full exposure. All suspected lesions were resected 
during surgery, and histologic analysis of frozen sections was conducted. The resected lesions were imaged again 
to identify the fluorescence signals. Postoperative histopathologic assessment of the resected lesions served as 
the gold standard for parathyroid identification. In addition, confirmation of surgical success was attained by 
a significant decrease (50%) of the intraoperative PTH from the baseline serum concentration 20 minutes after 
removal of the glands3, 44.

Figure 7.  (a) The variations of preoperative and the 1st, 3rd, 7th days postoperative serum calcium and 
phosphorus. (b) The variations of preoperative and the 1st, 3rd, 7th days postoperative PTH. Negative control 
(NC): patients without intraoperative NIRF imaging using ICG.
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Assessment of ICG fluorescence imaging.  The fluorescence intensity (I) of the PTGs and regions of inter-
est were measured using Image J software. Performance metrics of ICG was assessed by the signal-to-background 
ratio (SBR) compared with the surrounding peripheral tissue (adipose tissue or thyroid) of the parathyroid. The 
SBR was calculated as follows: SBR = (IPTG − Inoise)/(Iperipheral tissue − Inoise). The noise signal was recorded in a region 
outside the surgical field.

The clinical and histopathologic variables studied included age, gender, dialysis modality and time, preoper-
ative calcium, preoperative phosphorus, PTH, calcitriol pulse therapy, parathyroid size and parathyroid histo-
pathology. Analysis was conducted to determine the factors associated with ICG uptake. The sensitivity of four 
modalities (US, CT, 99mTc-MIBI and NIRF) was also evaluated. To evaluate the efficacy of NIRF in detection of 
the PTGs and to establish the optimal cut-off point, the receiver operating characteristic (ROC) curve was made. 
To compare the difference between groups with and without ICG fluorescence imaging, the serum levels of cal-
cium, phosphorus and PTH were regularly assessed at the 1st, 3rd, and 7th days after the operation, respectively. 
In addition, the operation time, complication, recurrence and persistence rate and symptomatic relief rate were 
also compared.

Statistical analysis.  Statistical analysis was performed using SPSS software (Version 20.0; Chicago, IL). To 
compare the characteristics between different groups, an independent-sample t test was used. All categorical var-
iables were analyzed statistically using Pearson’s Chi-squared test or Fisher’s exact test. The ROC curve of NIRF 
was made by SPSS. P < 0.05 was considered significant.
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