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Abstract
Telomeres	have	emerged	as	important	biomarkers	of	health	and	senescence	as	they	
predict	chances	of	survival	in	various	species.	Tropical	birds	live	in	more	benign	envi‐
ronments	with	lower	extrinsic	mortality	and	higher	juvenile	and	adult	survival	than	
temperate	birds.	Therefore,	telomere	biology	may	play	a	more	important	role	in	trop‐
ical	 compared	 to	 temperate	 birds.	 We	 measured	 mean	 telomere	 length	 of	 male	
stonechats	 (Saxicola spp.)	 at	 four	 age	 classes	 from	 tropical	African	 and	 temperate	
European	breeding	regions.	Tropical	and	temperate	stonechats	had	similarly	long	tel‐
omeres	as	nestlings.	However,	while	in	tropical	stonechats	pre‐breeding	first‐years	
had	 longer	 telomeres	 than	 nestlings,	 in	 temperate	 stonechats	 pre‐breeding	 first‐
years	had	shorter	telomeres	than	nestlings.	During	their	first	breeding	season,	tel‐
omere	length	was	again	similar	between	tropical	and	temperate	stonechats.	These	
patterns	may	indicate	differential	survival	of	high‐quality	juveniles	in	tropical	envi‐
ronments.	Alternatively,	more	favorable	environmental	conditions,	that	is,	extended	
parental	care,	may	enable	tropical	juveniles	to	minimize	telomere	shortening.	As	sug‐
gested	by	previous	studies,	our	results	imply	that	variation	in	life	history	and	life	span	
may	be	reflected	in	different	patterns	of	telomere	shortening	rather	than	telomere	
length.	Our	data	provide	first	evidence	that	distinct	selective	pressures	 in	tropical	
and	temperate	environments	may	be	reflected	in	diverging	patterns	of	telomere	loss	
in	birds.

K E Y W O R D S

extended	parental	care,	life	history,	pace	of	life,	selective	disappearance,	telomeres,	tropical	
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1  | INTRODUC TION

Variation	in	life	histories	is	thought	to	result	from	differential	alloca‐
tion	of	limited	resources	to	competing	life	history	traits.	Such	trade‐
offs	 and	 the	 resulting	 optimal	 resource	 allocation	 may	 vary	 with	
environmental	conditions	(Stearns,	1992).	For	example,	tropical	en‐
vironments	have	favored	a	slow	pace	of	life,	that	is,	reduced	fecun‐
dity	but	increased	life	span,	in	many	vertebrates	(Ricklefs	&	Wikelski,	
2002).	This	is	especially	well	studied	in	birds	where	tropical	species	
produce	 fewer,	 but	 higher	 quality	 offspring	 (Jetz,	 Sekercioglu,	 &	
Böhning‐Gaese,	 2008;	Martin,	 2015),	 have	 lower	 basal	 metabolic	
rates	 (Tieleman	 et	 al.,	 2009;	 Wiersma,	 Muñoz‐Garcia,	 Walker,	 &	
Williams,	 2007)	 and	 live	 longer	 (Møller,	 2007;	 Peach,	 Hanmer,	 &	
Oatley,	2001)	than	temperate	species.	Therefore,	a	comparison	be‐
tween	tropical	and	temperate	species	may	reveal	physiological	con‐
straints	that	may	limit	the	evolution	of	alternative	combinations	of	
life	history	traits	(Ricklefs	&	Wikelski,	2002).

An	important	candidate	mechanism	with	respect	to	physiologi‐
cal	constraints	of	growth,	reproduction	and	survival	are	telomeres	
(Haussmann	&	Marchetto,	2010).	Telomeres	are	noncoding	DNA—
protein	caps	at	the	end	of	eukaryotic	chromosomes	that	protect	ge‐
nomic	integrity,	but	shorten	during	cell	division	and	potentially	when	
exposed	to	oxidative	stress	(Boonekamp,	Bauch,	Mulder,	&	Verhulst,	
2017;	Reichert	&	Stier,	2017;	Zglinicki,	2002).	Critically,	short	telo‐
meres	eventually	lead	to	cell	senescence	or	death	(Blackburn,	2000,	
2005),	and	 the	accumulation	of	cells	with	short	 telomeres	may	be	
one	of	the	factors	that	causes	aging	and	senescence	in	vertebrates	
(López‐Otín,	Blasco,	Partridge,	Serrano,	&	Kroemer,	2013).

Both	 longitudinal	 and	 cross‐sectional	 studies	 in	 birds	 show	
that,	 in	 general,	 older	 individuals	 have	 shorter	 telomeres	 than	
younger	 ones	 with	 the	 greatest	 loss	 in	 telomeres	 occurring	 early	
in	 life	 (Heidinger	et	al.,	2012;	Pauliny,	Larsson,	&	Blomqvist,	2012;	
Salomons	 et	 al.,	 2009;	 Spurgin	 et	 al.,	 2018;	 Tricola	 et	 al.,	 2018).	
Furthermore,	 an	 increasing	 number	 of	 studies	 in	 birds	 show	 that	
individuals	 with	 longer	 telomeres	 or	 little	 telomere	 attrition	 have	
better	 survival	prospects	 than	 individuals	with	 short	 telomeres	or	
high	levels	of	telomere	attrition	(reviewed	in	Wilbourn	et	al.,	2018).	
This	has	been	especially	well	 studied	 in	zebra	 finches	 (Taeniopygia 
guttata),	for	which	it	has	been	shown	that	long	telomeres	in	early	life	
are	associated	with	increased	survival	and	a	long	life	span	(Heidinger	
et	 al.,	 2012).	 In	addition,	 studies	 in	a	variety	of	 species	 show	 that	
telomere	dynamics	 are	 sensitive	 to	environmental	 influences	 such	
as	variations	in	food	availability	(Spurgin	et	al.,	2018),	parasitic	dis‐
eases	(Asghar	et	al.,	2015),	and	exposure	to	stress	(Hau	et	al.,	2015).	
In	particular,	conditions	experienced	during	development	can	influ‐
ence	telomere	dynamics.	For	example,	exposure	to	poor	or	stress‐
ful	 environments	 can	 lead	 to	 accelerated	 telomere	 loss	 in	 young	
birds	 (Costanzo	et	al.,	2017;	Haussmann,	Longenecker,	Marchetto,	
Juliano,	&	Bowden,	2012;	Herborn	et	al.,	2014;	Nettle	et	al.,	2017;	
Salmon,	Nilsson,	Nord,	Bensch,	&	Isaksson,	2016;	Soler	et	al.,	2017;	
Young	et	al.,	2017),	which	can	be	predictive	of	decreased	survival	as	
nestlings	or	 fledglings	 (Boonekamp,	Mulder,	 Salomons,	Dijkstra,	&	
Verhulst,	2014;	Salmon,	Nilsson,	Watson,	Bensch,	&	Isaksson,	2017;	

Watson,	Bolton,	&	Monaghan,	2015).	Thus,	telomere	length	and	the	
rate	of	telomere	loss	are	considered	biomarkers	of	individual	health	
and	quality	(Young,	2018).

Fewer	studies	have	compared	telomere	length	between	taxa	that	
vary	in	their	life	histories	and	life	span.	In	mammals,	a	comparative	
study	 found	 that	 short‐lived,	 small	 species	 have	 longer	 telomeres	
and	 higher	 telomerase	 expression	 than	 long‐lived,	 large	 species	
(Gomes	et	al.,	2011).	In	a	study	on	rodents,	no	relationship	between	
maximum	 lifespan	and	 telomere	 length	was	detected	 (Seluanov	et	
al.,	2007).	 In	birds,	absolute	telomere	 length	does	not	seem	to	re‐
late	to	variation	in	lifespan	between	species;	however,	longer‐lived	
avian	species	seem	to	have	lower	rates	of	telomere	shortening	than	
shorter‐lived	species	 (Dantzer	&	Fletcher,	2015;	Haussmann	et	al.,	
2003;	Sudyka,	Arct,	Drobniak,	Gustafsson,	&	Cichoan,	2016;	Tricola	
et	 al.,	 2018).	 This	 relationship	 between	 rate	 of	 telomere	 loss	 and	
maximum	lifespan	in	birds	may	be	caused	by	variation	between	spe‐
cies	in	how	well	telomeres	are	maintained	throughout	their	lifespan.	
In	 addition,	 it	 may	 reflect	 selective	 disappearance	 of	 low‐quality	
individuals	with	short	telomeres.	In	longer‐lived	species,	that	expe‐
rience	 lower	 levels	of	extrinsic	mortality,	 individual	 condition,	 and	
thus	telomere	dynamics,	may	play	a	greater	role	as	determinants	of	
mortality	 (Kirkwood	 &	 Austad,	 2000).	 Therefore,	 selective	 disap‐
pearance	of	individuals	with	short	telomeres	may	be	more	apparent	
in	long‐lived	species	(Tricola	et	al.,	2018).

Tropical	 species	 live	 in	 less	 seasonal	 environments	with	 lower	
levels	 of	 adult	 extrinsic	 mortality	 than	 temperate	 ones	 (Brown,	
2014).	Consequently,	 tropical	songbirds	have	higher	survival	prob‐
abilities	 than	 temperate	 birds	 (Martin	 et	 al.,	 2017;	 Muñoz,	 Kéry,	
Martins,	&	 Ferraz,	 2018).	 Therefore,	 stronger	 selective	 disappear‐
ance	of	individuals	with	short	telomeres	is	expected	in	tropical	com‐
pared	to	temperate	birds.	However,	mortality	rates	are	age‐specific,	
and	 therefore,	 the	 strength	 of	 selective	 disappearance	 may	 vary	
with	age.	 In	birds,	mortality	 is	usually	highest	during	the	first	year	
of	 life,	 especially	 directly	 after	 fledging	 (Cox,	 Thompson,	 Cox,	 &	
Faaborg,	 2014;	 Naef‐Daenzer	 &	 Grüebler,	 2016).	 As	 predicted	 by	
life	history	theory	 (McNamara,	Barta,	Wikelski,	&	Houston,	2008),	
juvenile	 survival	 is	 in	 general	 higher	 in	 tropical	 compared	 to	 tem‐
perate	birds	(Lloyd,	Martin,	&	Roskaft,	2016;	Remes	&	Matysiokova,	
2016).	Tropical	parents	take	care	of	their	fewer	fledglings	for	con‐
siderably	 longer	 than	 temperate	birds	and	may	 thereby	be	able	 to	
lower	extrinsic	mortality	 in	 juveniles	 (Styrsky,	Brawn,	&	Robinson,	
2005).	We,	therefore,	hypothesize	that	differential	survival	of	high‐
quality	fledglings	should	be	more	apparent	in	tropical	compared	to	
temperate	birds.	Assuming	 that	 telomeres	are	bioindicators	of	 so‐
matic	 state	and	 individual	quality	we	expect	 that	 in	 tropical	birds,	
individuals	with	short	telomeres	disappear	faster	from	a	population	
than	in	temperate	birds	both	during	the	critical	first	year	of	life	and	
later	as	adults.

In	addition,	 there	 is	good	evidence	 that	 tropical	 species	 invest	
more	 into	 self‐maintenance,	 but	 are	 less	 fecund	 than	 temperate	
species.	For	example,	tropical	species	exhibit	stronger	sickness	be‐
havior	 after	 infection	 during	 the	 breeding	 season	 than	 temperate	
species	 (Owen‐Ashley,	 Hasselquist,	 Raberg,	 &	 Wingfield,	 2008).	
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Furthermore,	in	tropical	species,	reproductive	workload	is	reduced	
as	they	lay	smaller	clutches,	thereby	caring	for	fewer	young	and	ex‐
pending	less	energy	than	temperate	birds	(Nilsson,	2002;	Tieleman	
et	al.,	2006).	Thus,	they	may	reduce	high	 levels	of	oxidative	stress	
(Noguera,	2017)	and	potential	telomere	loss	associated	with	breed‐
ing	 (Reichert	 et	 al.,	 2014).	 In	 addition,	 tropical	 songbirds	 seem	 to	
have	 lower	 post‐natal	metabolic	 rates	 and	 slower,	more	 sustained	
growth	despite	similar	nestling	times	than	temperate	birds	(Martin,	
2015;	Ton	&	Martin,	2016).	These	slower	growth	trajectories	in	com‐
bination	with	increased	parental	care	per	offspring	may	favor	lower	
levels	of	telomere	attrition	during	early	 life	in	tropical	birds,	which	
in	 turn	 may	 be	 important	 determinants	 of	 their	 longer	 life	 spans	
(Monaghan	 &	 Ozanne,	 2018).	 Thus,	 longer‐lived	 tropical	 species,	
which	invest	more	in	growth	and	self‐maintenance	than	in	fecundity,	
are	expected	to	show	longer	telomeres	as	nestlings	or	a	slower	rate	
of	 telomere	 loss	 than	short‐lived	 temperate	species.	To	determine	
how	 life	history	 variation	has	 shaped	variation	 in	 telomeres,	 com‐
parisons	 between	 the	 same	or	 closely	 related	 species	 in	 different	
environments	are	necessary.

Here,	 we	 compare	 telomere	 length	 of	 two	 closely	 related	 sis‐
ter	 taxa	 of	 stonechats,	 Saxicola torquatus axillaris (Figure	 1)	 and	
Saxicola rubicola that	breed	in	tropical	and	temperate	environments,	
respectively	 (Doren	 et	 al.,	 2017;	Urquhart,	 2002).	 At	 all	 latitudes,	
stonechats	 are	 socially	 monogamous,	 open	 habitat,	 insectivorous	
passerines	that	aggressively	defend	breeding	territories	(Apfelbeck,	
Mortega,	Flinks,	 Illera,	&	Helm,	2017).	However,	 they	vary	 in	pace	
of	 life	 according	 to	 their	 environment	 (Ricklefs	&	Wikelski,	 2002).	
Stonechats	 show	a	 latitudinal	 cline	 in	metabolic	 rate,	with	 geneti‐
cally	 inherited,	 higher	 metabolic	 rates	 in	 higher‐latitude	 popula‐
tions	 (Klaassen,	 1995;	 Tieleman	 et	 al.,	 2009;	 Versteegh,	 Schwabl,	
Jaquier,	&	Tieleman,	2012;	Wikelski,	Spinney,	Schelsky,	Scheuerlein,	
&	 Gwinner,	 2003).	 Further,	 temperate	 stonechats	 have	 a	 geneti‐
cally	 fixed	 larger	clutch	size	 than	 tropical	ones	 (Gwinner,	König,	&	
Haley,	 1995),	 and	 their	 higher	 fecundity	 correlates	 with	 elevated	
baseline	 corticosterone	 concentrations	 during	 the	 breeding	 sea‐
son	 (Apfelbeck,	Helm,	et	al.,	2017).	 In	agreement	with	 lower	adult	
extrinsic	mortality	 in	 tropical	environments,	 local	 survival	of	 trop‐
ical	 stonechats	appears	 to	be	much	higher	 than	 that	of	 temperate	

F I G U R E  1  Adult	male	African	stonechat TA
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stonechats.	In	previous	studies,	the	local	apparent	annual	survival	of	
stonechats	in	East	Africa	varied	between	65%	and	85%	(Scheuerlein,	
2000),	while	in	a	European	population,	it	was	only	29%–45%	(Flinks,	
Helm,	&	Rothery,	2008;	Flinks	&	Pfeifer,	1984).

We	collected	samples	from	Afrotropical	(referred	to	as	tropical)	
and	temperate	European	(referred	to	as	temperate)	male	stonechats	
from	different	 individuals	 at	 four	age	classes:	 as	nestlings,	 as	pre‐
breeding	first‐year	birds	 (within	their	 first	6	months	of	 life),	during	
their	 first	 breeding	 season	 (~1‐year‐old),	 and	 during	 their	 further	
adult	 life	 (≥2	years	old).	Because	of	their	slow	pace	of	 life,	tropical	
stonechats	are	expected	to	prioritize	somatic	maintenance	over	fe‐
cundity.	Thus,	we	expected	longer	telomeres	in	tropical	compared	to	
temperate	stonechats.	Further,	because	of	their	higher	juvenile	sur‐
vival	and	extended	parental	care	we	expected	a	shallower	decrease	
in	telomere	length	during	the	first	year	of	life	in	tropical	compared	to	
temperate	stonechats.

2  | METHODS

Blood	samples	were	collected	from	two	phylogenetically	closely	re‐
lated	 stonechat	 species	 (Table	 1)	 during	 their	 respective	 breeding	
seasons	 (nestlings	 [day	 8–14	 post‐hatch],	 first	 year	 breeding	 [~1‐
year‐old]	and	adult	males	 [≥2	years	old])	or	 just	after	 the	breeding	
season	 (first	 year	 pre‐breeding	 males	 (3–6	months	 post‐hatch).	 In	
addition,	in	tropical	stonechats,	we	were	occasionally	able	to	catch	
fledglings	(>16	days	old),	which	had	only	recently	left	their	nest	and	
were	still	 in	 their	 juvenile	plumage	and	cared	 for	by	 their	parents.	
Stonechats	 were	 sampled	 in	 tropical	 East	 Africa	 (Saxicola torqua‐
tus axillaris,	 four	 populations,	 latitudes	 0°–4°S,	 altitudinal	 range:	
1,376–2,500	m	at	 sea	 level	 [asl],	 sampled	 from	2012	 to	2014)	and	
Europe	(S. rubicola,	three	populations,	latitudes	37°–51°N,	altitudinal	
range:	15–40	m	asl,	sampled	from	2013	to	2015,	Table	1).	While	East	
African	stonechats	are	residents,	European	populations	vary	in	mi‐
gratory	strategy	from	short‐distance	migrants	to	residents	(Table	1).	
Samples	from	some	of	these	birds	were	also	used	to	study	baseline	
and	 stress‐induced	 corticosterone	 concentrations	 of	 tropical	 and	
temperate	stonechats	during	the	breeding	season	(Apfelbeck,	Helm,	
et	 al.,	 2017).	 All	 samples	were	 analyzed	with	 telomere	 restriction	
fragment	analysis	 (TRF)	and	we	restricted	our	analysis	to	males	to	
optimize	sample	sizes	across	species	and	age	classes.

2.1 | Capture methods

Male	stonechats	were	caught	between	07:00	hr	and	18:00	hr	with	
baited	 clap	 net	 traps	 but	 also	 in	 some	 cases	 additionally	 lured	 by	
a	mounted	decoy	and	playback.	Traps	were	observed	continuously	
and	upon	capture	birds	were	immediately	removed	from	the	traps.	
Nestlings	were	bled	during	the	last	third	of	the	nestling	stage	(i.e.,	
between	 day	 8	 and	 14	 post‐hatch).	 Pre‐breeding	 first‐year	 males	
were	 caught	 3–6	months	 (see	 Table	 1)	 after	 their	 likely	 hatching	
dates,	 after	 completing	 post‐juvenile	 moult,	 but	 before	 their	 first	
breeding	season.	Breeding	first‐year	males	were	caught	during	their	

first	breeding	season	before	their	first	post‐nuptial	moult.	All	males	
were	measured	(weight,	tarsus,	and	wing	length),	checked	for	moult,	
ringed	with	a	numbered	aluminum	ring	and	a	combination	of	three	
color	rings	and	were	then	released	back	into	their	territories.	We	de‐
termined	the	age	of	all	individuals	caught	as	either	in	their	first	year	
or	as	adults	(≥2	years)	based	on	feather	moult	pattern	of	the	wings	
(Flinks,	1994).	Nestlings	and	fledglings	were	ringed	with	a	numbered	
aluminum	ring	only.

2.2 | Blood sampling

Blood	 samples	 (~120	µl)	 were	 taken	 within	 3	min	 of	 capture	 by	
venipuncture	 of	 the	 wing	 vein	 or	 (less	 often)	 with	 an	 insulin	 sy‐
ringe	 from	 the	 jugular	 vein	 and	 collected	 into	 heparinized	 capil‐
laries.	Plasma	was	 immediately	 separated	by	centrifugation	with	a	
Compur	Minicentrifuge	 (Bayer	Diagnostics)	 or	 a	 Spectrafuge	Mini	
Laboratory	 Centrifuge	 (Labnet	 International,	 Inc.)	 and	 plasma	 and	
blood	cells	were	stored	separately	in	pure	ethanol	or	in	few	cases	in	
Queens	buffer.	In	the	case	of	fledglings	and	nestlings,	whole	blood	
(~40	µl)	was	directly	stored	in	pure	ethanol.	Correct	measurement	of	
telomere	length	across	samples	relies	on	DNA	integrity	and	recent	
studies	have	shown	that	DNA	integrity	can	depend	on	the	way	sam‐
ples	were	stored	(Nussey	et	al.,	2014;	Reichert	et	al.,	2017),	and	thus,	
preferentially	 samples	 should	 be	 treated	 similarly	 across	 groups.	
Although	in	our	study	storage	method	varied	across	samples,	we	are	
confident	that	this	did	not	influence	our	results	as	DNA	integrity	was	
checked	for	each	sample	by	standard	gel	electrophoresis	(Kimura	et	
al.,	 2010).	 Samples	 that	 showed	signs	of	degradation	were	not	 in‐
cluded	in	the	TRF	assay.	Upon	return	from	the	field,	samples	were	
stored	at	~2°C	whenever	possible.	During	periods	of	transportation,	
samples	were	stored	at	room	temperature.

2.3 | Sex determination of nestling and 
fledgling samples

Molecular	sexing	was	carried	out	by	amplification	of	the	chromodo‐
main‐helicase‐DNA	binding	(CHD)	genes	in	10	µl	PCR	reactions	fol‐
lowing	the	standard	procedure	described	in	Fridolfsson	and	Ellegren	
(1999)	and	Griffiths,	Double,	Orr,	and	Dawson	(1998).

2.4 | Telomere length assay

Telomeres	were	measured	with	 the	TRF	assay,	 and	 the	procedure	
was	carried	out	according	to	previous	studies	(Haussmann	&	Mauck,	
2008;	 Marchetto	 et	 al.,	 2016).	 Briefly,	 DNA	 was	 extracted	 from	
packed	blood	cells	using	 the	Puregene	Blood	Core	Kit	B	 following	
the	manufacturer’s	 specifications	 (Qiagen).	 DNA	 integrity	was	 as‐
sessed	 through	 the	use	of	 integrity	gels	 (Nussey	et	al.,	2014),	 and	
telomeres	of	high	integrity	DNA	samples	were	then	measured	using	
the	TRF	assay.	A	10	µg	quantity	of	DNA	was	digested	using	1.0	ml	
of	 RsaI	 (New	 England	 Biolabs,	 R0167L)	 and	 0.2	ml	 of	 HinfI	 (New	
England	Biolabs,	R0155M)	in	CutSmart	Buffer	(New	England	Biolabs,	
B7204S)	overnight	at	37°C.	The	digested	DNA	was	separated	using	
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pulsed‐field	gel	electrophoresis	(3	V/cm,	0.5‐	to	7.0‐s	switch	times,	
14°C)	 for	19	hr	on	a	0.8%	nondenaturing	agarose	gel.	The	gel	was	
then	dried	without	heating	and	hybridized	overnight	with	a	32P‐la‐
beled	oligo	(5′CCCTAA‐3′)	that	binds	to	the	3′	overhang	of	telom‐
eres.	Hybridized	gels	were	placed	on	a	phosphor	screen	(Amersham	
Biosciences,	Buckinghamshire,	UK),	which	was	scanned	on	a	Storm	
540	Variable	Mode	Imager	(Amersham	Biosciences).	We	used	den‐
sitometry	 (ImageQuant	5.03v	and	 ImageJ	1.42q)	 to	determine	 the	
position	and	strength	of	the	radioactive	signal	in	each	of	the	lanes	
compared	 to	 the	 molecular	 marker	 (1	kb	 DNA	 Extension	 Ladder;	
Invitrogen,	CA).	The	background	was	fixed	as	the	nadir	of	the	low‐
MW	region	on	the	gel	(<1	kb).	Samples	were	distributed	among	six	
gels	and	mixed	by	population	and	age	class.	One	stonechat	sample	
was	 run	 three	 times	 on	 each	 gel	 to	 determine	 intra‐	 and	 inter‐gel	
coefficients	of	variation,	which	were	4.86%	and	7.54%,	respectively.

2.5 | Statistical analysis

Data	were	 analyzed	within	 the	R	 environment	 (R	 version	 3.2.2;	 R	
Core	Team,	2016)	and	the	packages	arm	(Gelman	&	Su,	2018),	JAGS	
(Plummer,	 2003),	 and	 runjags	 (Denwood,	 2016).	 Linear	 models	
were	used	to	determine	whether	variation	in	mean	telomere	length	
was	 related	 to	 breeding	 region	 (tropical,	 temperate),	 age	 class	 or	
the	 interaction	between	breeding	region	and	age	class.	We	tested	
whether	 tropical	 stonechats	had	 longer	 telomeres	 than	 temperate	
stonechats	 and	 whether	 differences	 between	 taxa	 declined	 with	
age	by	comparing	tropical	and	temperate	male	stonechats	in	differ‐
ent	age	classes	(nestling,	first	year	pre‐breeding,	first	year	breeding,	
≥2	years).	We	applied	linear	models	using	tropical	nestlings	as	refer‐
ence	level.	Body	mass	was	included	as	a	covariate	in	the	initial	model,	
but	dropped	in	the	final	model	as	it	did	not	detectably	explain	vari‐
ance	in	the	data.	Because	samples	from	tropical	stonechats	covered	
the	widest	range	of	age	classes,	we	ran	a	separate	linear	model	on	
tropical	stonechats	including	the	additional	factor	level	“fledglings.”

We	 chose	 a	 Bayesian	 approach	 to	 draw	 inferences	 from	 the	
models.	Bayesian	statistics	estimate	probability	distributions	of	the	

parameters	in	the	model	(i.e.,	posterior	distributions)	given	the	data	
and	prior	knowledge	about	the	distribution	of	the	data	(specified	as	
priors)	(Korner‐Nievergelt,	Roth,	Felten,	&	Guélat,	2015).	Model	pa‐
rameters	were	estimated	as	the	mean	of	their	posterior	distributions,	
and	the	2.5%	and	97.5%	upper	and	lower	margins	of	the	credible	in‐
tervals.	Minimally	informative	priors	for	both	mean	(dnorm	[0,	10−6])	
and	variance	 (dgamma	 [0.001,	0.001])	parameters	were	used,	 that	
is,	we	assumed	no	prior	knowledge	about	the	factors	in	our	models.	
Marcov	 Chain	Monte	 Carlo	 simulations	were	 checked	 for	 conver‐
gence	of	chains	using	trace	plots	and	psrf	values	(Brooks	&	Gelman,	
1997).	Effective	sample	sizes	were	>15,000	in	all	cases.	Model	resid‐
uals	were	graphically	checked	for	violations	of	model	assumptions	
(normality,	 heteroscedasticity,	 autocorrelations)	 (Korner‐Nievergelt	
et	al.,	2015).	Data	are	presented	as	means	and	their	95%	Bayesian	
credible	intervals	in	figures	and	as	the	difference	and	95%	Bayesian	
credible	 interval	 (in	 squared	 brackets)	 from	 the	mean	 intercept	 in	
tables.	Bayesian	statistics	do	not	produce	test	statistics	or	p‐values;	
however,	when	the	Bayesian	95%	credible	interval	of	the	difference	
between	two	means	does	not	include	zero,	this	can	be	interpreted	as	
a	detectable	difference	(Held	&	Sabanés	Bové,	2014).

3  | RESULTS

Overall,	 temperate	 and	 tropical	 male	 stonechats	 showed	 similar	
mean	telomere	 lengths	(Table	2,	Figure	2).	 In	particular,	temperate	
and	 tropical	 males	 had	 similar	 telomere	 lengths	 as	 nestlings,	 first	
year	and	adult	breeders.	Breeding	males	(first	year	and	adults)	had	
shorter	telomeres	than	nestlings	both	 in	tropical	and	 in	temperate	
stonechats	 (negative	 differences	 from	 intercept	 for	 first	 year	 and	
adult	tropical	breeders,	no	additional	detectable	difference	for	first	
year	 and	 adult	 temperate	 breeders,	 Table	 2,	 Figure	 2).	 However,	
telomere	 lengths	of	 tropical	 and	 temperate	 stonechats	differed	 in	
their	 first	year	of	 life.	While	 tropical	 first	year	pre‐breeding	males	
had	longer	telomeres	than	nestlings	(positive	difference	from	inter‐
cept),	temperate	first	year	pre‐breeding	males	had	shorter	telomeres	

TA B L E  2  Mean	telomere	length	of	male	stonechats	(Saxicola ssp.)	in	relation	to	breeding	region	(tropical,	temperate)	and	age	class	
(nestling,	first	year	pre‐breeding,	first	year	breeding,	adult	breeding)

Factor level
Estimates (differences from the intercept) and 95% credible 
intervals, (mean telomere length, kpb)

Estimates and 95% credible intervals 
(mean telomere length, kbp)

Intercept:	tropical,	nestling 12.5	[11.9,	13.0] 12.5	[11.9,	13.0]

Tropical,	first	year	pre‐breeding 1.3 [0.4, 2.2] 13.8 [12.3, 15.2]

Tropical,	first	year	breeding −1.8 [−2.6, −1.0] 10.7 [9.3, 12.0]

Tropical,	adult	breeding −1.7 [−2.4, −1.1] 10.8 [9.5, 11.9]

Temperate,	nestling 0.3	[−0.5,	1.1] 12.8	[11.4,	14.1]

Temperate,	first	year	pre‐breeding −4.7 [−6.0, −3.5] 9.0 [6.5, 11.6]

Temperate,	first	year	breeding 0.2	[−0.8,	1.2] 10.9	[8.6,	13.5]

Temperate,	adult	breeding −0.8	[−1.8,	0.3] 10.0	[7.8,	12.1]

Note.	The	second	column	shows	the	estimated	difference	from	the	intercept.	In	this	case	the	reference	level	was	“tropical	nestlings.”	The	third	column	
shows	the	mean	estimates	for	each	factor	level,	which	were	calculated	from	column	2.	As	the	reference	level	was	“tropical	nestlings,”	for	temperate	
birds	the	estimated	difference	has	to	be	added	to	the	estimate	obtained	for	tropical	birds	for	each	age	class.	When	0	(zero)	is	not	included	in	the	credible	
intervals	there	is	an	effect	of	this	parameter	on	the	dependent	variable	(shown	in	bold).
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than	nestlings	(negative	difference	from	intercept,	Table	2,	Figure	2).	
Analysis	of	tropical	stonechats	across	the	whole	range	of	age	classes	
revealed	that	average	telomere	 length	was	similar	 in	nestlings	and	
fledglings	of	tropical	stonechats	(Table	3).	Similar	telomere	lengths	
of	 tropical	 and	 temperate	 first	 year	breeding	males	 indicate	 a	de‐
crease	 in	mean	 telomere	 length	 in	 tropical	 stonechats,	 but	 an	 in‐
crease	in	mean	telomere	length	in	temperate	stonechats	from	first	
year	pre‐breeding	 to	 first	year	breeding	males.	To	confirm	 this	 in‐
crease	in	temperate	stonechats	from	first	year	pre‐breeding	to	first	
year	breeding	males,	we	ran	a	linear	model	for	temperate	stonechats	
restricted	to	the	age	classes	first	year	pre‐breeding,	first	year	breed‐
ing	and	adult.	This	post	hoc	analysis	confirmed	a	detectable	increase	
from	 first	 year	 pre‐breeding	 to	 first	 year	 breeding	 in	 temperate	
males	 (intercept	 first	 year	 pre‐breeding:	 9.3	 [8.7,	 10.0],	 difference	
first	year	breeding	1.3	[0.5,	2.0],	difference	adult	0.9	[−0.04,	1.8]).

4  | DISCUSSION

Our	data	provide	first	evidence	that	distinct	selective	pressures	 in	
tropical	and	temperate	environments	may	be	reflected	in	diverging	
patterns	of	telomere	loss	between	age	classes.	Similar	to	other	stud‐
ies	(e.g.,	Spurgin	et	al.,	2018),	we	find	that	mean	telomere	length	de‐
creased	fastest	during	the	first	year	of	life	in	temperate	stonechats.	
In	contrast,	 in	tropical	stonechats	mean	telomere	length	increased	
initially	from	nestlings	to	fledglings	to	first	year	pre‐breeding	before	
dropping	 in	 first	 year	 breeding	 males.	 This	 suggests	 that	 tropical	
compared	to	temperate	stonechats	may	either	experience	lower	lev‐
els	of	telomere	loss	and/or	more	pronounced	differential	survival	of	
individuals	with	long	telomeres	during	their	first	year	of	life.

In	tropical	birds,	the	post‐fledging	period	has	emerged	as	a	criti‐
cal	period	during	reproduction	that	may	have	a	considerable	impact	

on	the	fitness	of	tropical	birds.	Tropical	birds	experience	high	levels	
of	 nest	 predation	 (Martin,	 1992),	 but	 high	 levels	 of	 adult	 survival.	
Therefore,	tropical	parents	may	raise	small	clutches	in	favor	of	ex‐
tended	offspring	care	(Russell,	Yom‐Tov,	&	Geffen,	2004;	Tarwater,	
Ricklefs,	 Maddox,	 &	 Brawn,	 2011),	 which	 has	 been	 shown	 to	 in‐
crease	fledgling	survival	(Grüebler	&	Naef‐Daenzer,	2010).	Tropical	
stonechats	 lay	 on	 average	 smaller	 clutches	 (3)	 than	 temperate	
stonechats	(5)	and	care	for	fledglings	for	several	weeks	after	fledg‐
ing,	often	allowing	juveniles	to	remain	on	their	territories	(Dittami	&	
Gwinner,	1985;	Scheuerlein,	Van’t	Hof,	&	Gwinner,	2001).	 In	addi‐
tion,	especially	under	high	predation	pressure,	stonechats	often	skip	
a	second	clutch	in	favor	of	their	fledglings	(Scheuerlein	et	al.,	2001).	
Also,	 as	 has	 been	 shown	 for	 other	 species,	 parents	 may	 actively	
favor	the	strongest	of	their	fledglings	(Barrios‐Miller	&	Siefferman,	
2013).	 Thus,	 while	 survival	 probabilities	 post‐fledging	 are	 in	 gen‐
eral	 low	 (Naef‐Daenzer	 &	 Grüebler,	 2016),	 high‐quality	 fledglings	
may	have	a	higher	survival	probability	in	tropical	than	in	temperate	
stonechats,	leading	to	longer	telomeres	in	tropical	compared	to	tem‐
perate	juveniles.

In	addition,	as	environmental	conditions	and	parental	care	during	
growth	can	influence	telomere	loss	and	maintenance	(e.g.,	Costanzo	
et	 al.,	 2017),	 extended	 parental	 care	 may	 create	 more	 favorable	
conditions	for	tropical	fledglings	and	juveniles	that	may	allow	them	
to	maintain	their	telomeres	better	than	temperate	ones.	A	number	
of	recent	studies	in	temperate	songbirds	during	the	nestling	period	
have	shown	that	the	rearing	environment	has	an	influence	on	telo‐
mere	attrition	rates	in	early	life	(e.g.,	Salmon	et	al.,	2016;	Soler	et	al.,	
2017).	For	example,	growing	up	in	large	broods,	high	begging	effort	
and	low	food	availability	hasten	telomere	loss	in	nestlings	(Costanzo	
et	 al.,	 2017;	Nettle	 et	 al.,	 2017;	 Young	 et	 al.,	 2017).	 Furthermore,	
studies	 in	 jackdaws,	 Corvus monedula,	 and	 great	 tits,	 Parus major,	
demonstrated	that	the	rate	of	telomere	loss	early	in	life	matters,	as	
individuals	that	recruited	into	the	breeding	population	in	the	follow‐
ing	year	showed	lower	rates	of	telomere	loss	and	longer	telomeres	as	
nestlings	than	those	that	did	not	survive	their	first	year	(Boonekamp	

F I G U R E  2  Mean	telomere	length	(kbp)	of	tropical	and	
temperate	male	stonechats	(Saxicola ssp.) in	different	age	classes.	
Depicted	are	posterior	means	and	their	95%	Bayesian	credible	
intervals	(errors	bars).	Smaller	dots	represent	data	points	from	
individuals.	Sample	sizes	are	given	below	dot	plots

TA B L E  3  Mean	telomere	length	of	tropical	stonechats	in	
relation	to	age	class	(nestling,	fledgling,	first	year	pre‐breeding,	first	
year	breeding,	adult)

Factor level

Estimates (differences 
from the intercept) and 
95% credible intervals 
(mean telomere length 
[kbp])

Intercept:	nestling 12.5	[11.9,	13.0]

Fledgling 0.6	[−0.5,	1.6]

First	year	nonbreeding 1.3 [0.4, 2.2]

First	year	breeding −1.8 [−2.6, −1.0]

Adult	breeding −1.7 [−2.4, −1.0]

Note.	 Estimates	 are	 relative	 to	 the	 intercept	 as	 reference	 level,	 in	 this	
case	 nestlings.	When	 0	 (zero)	 is	 not	 included	 in	 the	 credible	 intervals	
there	is	an	effect	of	this	parameter	on	the	dependent	variable	(shown	in	
bold).
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et	al.,	2014;	Salmon	et	al.,	2017).	The	effect	of	extended	parental	
care	in	tropical	birds	on	telomere	dynamics	in	fledglings	should	be	
further	 investigated,	 for	example	 through	brood	size	manipulation	
experiments.

In	 contrast	 to	 telomere	 length	 in	 juveniles,	 telomere	 length	 at	
the	end	of	the	nestling	stage	did	not	differ	between	temperate	and	
tropical	stonechats	despite	smaller	clutches	 in	tropical	stonechats,	
which	 favor	 increased	 feeding	 rates	 per	 offspring	 (Martin,	 2015).	
As	ground‐nesting	birds	 in	open	habitat,	high	nest	predation	rates	
may	favor	fast	growth	and	consequently	similar	telomere	loss	during	
development	 in	 tropical	 and	 temperate	 environments.	 In	 tropical	
stonechats,	 frequent	 presence	 of	 predators	 reduced	 the	 growth	
rate	 of	 nestlings	 (Scheuerlein	 &	 Gwinner,	 2006),	 highlighting	 that	
lower	growth	 rates	 in	 stonechats	may	not	 represent	a	mechanism	
for	(supposedly)	slower	aging	of	tropical	stonechats.	However,	direct	
comparisons	of	growth	rates	in	nestlings	of	tropical	and	temperate	
stonechats	are	necessary	to	further	clarify	this	issue.

Selective	 disappearance	 of	 individuals	 with	 short	 telomeres	
during	 the	 first	 year	 of	 life	 also	 seems	 to	 take	 place	 in	 temper‐
ate	stonechats,	albeit	later	than	in	tropical	stonechats,	potentially	
during	the	first	migration	and	overwinter	period.	Migration	or	the	
winter	period	are	especially	challenging	for	inexperienced,	subor‐
dinate	 juvenile	 birds	 and	 accordingly	 mortality	 during	 migration	
and	winter	 is	 higher	 for	 juveniles	 than	 for	 adults	 (Ekman,	 1984;	
Rotics	et	al.,	2016).	Only	 the	highest	quality	 individuals	with	 the	
longest	telomeres	may	be	able	to	survive,	which	may	lead	to	longer	
telomeres	 in	first	year	breeding	males	compared	to	males	caught	
before	their	first	winter	(first	year	pre‐breeding).	Thus,	mean	telo‐
mere	length	across	age	classes	may	indicate	when	selective	disap‐
pearance	of	 low‐quality	 individuals	with	 short	 telomeres	 is	most	
likely	to	occur.

In	 contrast	 to	 our	 predictions,	 tropical	 and	 temperate	
stonechats	had	telomeres	of	similar	length	during	their	first	breed‐
ing	 season	 and	 as	 adults.	 Reproduction,	 especially	 parental	 care,	
is	energetically	costly	 (Nilsson,	2002),	 can	 lead	 to	oxidative	DNA	
damage	 (Noguera,	 2017)	 and	 potentially	 increased	 telomere	 loss	
(Heidinger	et	 al.,	 2012;	Reichert	 et	 al.,	 2014).	Our	previous	 com‐
parative	studies	on	hormone	levels	and	mating	behavior	in	tropical	
and	temperate	stonechats	have	shown	that	territorial	aggression	is	
accompanied	by	a	peak	in	testosterone	and	corticosterone	concen‐
trations	during	nest‐building	 in	both	 temperate	and	 tropical	male	
stonechats	(Apfelbeck,	Helm,	et	al.,	2017;	Apfelbeck,	Mortega,	et	
al.,	 2017).	 Thus,	 tropical	 and	 temperate	male	 stonechats	 engage	
similarly	 in	 costly	mating	 behaviors	which	may	 potentially	 affect	
telomere	length.	Furthermore,	in	adult	birds,	the	exact	age	of	indi‐
viduals	could	not	be	determined	and	we	probably	sampled	across	
their	life	expectancy,	which	might	mask	selective	disappearance	or	
lower	 telomere	 attrition	 in	 tropical	 birds	 and	 account	 for	 similar	
telomere	lengths	in	tropical	and	temperate	adult	stonechats.	To	de‐
termine	whether	 lower	mortality	 in	benign	tropical	environments	
favors	selective	disappearance	of	individuals	with	short	telomeres,	
studies	 in	 populations,	 in	 which	 the	 age	 of	 adult	 individuals	 is	
known,	are	needed.

In	 this	 study,	 samples	 from	 different	 age	 classes	 were	 col‐
lected	from	different	individuals.	Longitudinal	studies	show	that	
telomere	shortening	rates	are	often	higher	within	individuals	than	
telomere	 shortening	 rates	 at	 the	 population	 level	 (Salomons	 et	
al.,	 2009).	 Thus,	 in	 studies	 based	 on	 cross‐sectional	 samples,	 it	
is	 difficult	 to	 disentangle	 the	 effects	 of	 telomere	 attrition	 and	
selective	disappearance	for	different	age	classes.	Also,	we	were	
not	 able	 to	 sample	 all	 age	 classes	 in	 all	 populations.	 Thus,	 dif‐
ferences	between	populations	and	taxa	 in	breeding	altitude	and	
migratory	 strategy	 may	 have	 confounded	 our	 results	 as	 they	
may	 affect	 telomere	 dynamics	 (Bauer,	 Heidinger,	 Ketterson,	 &	
Greives,	2016;	Stier	et	al.,	2016).	For	 stonechats,	 the	effects	of	
breeding	latitude,	altitude,	and	migratory	strategy	are	not	easily	
separable	as	 tropical	 stonechats	breed	at	high	altitudes	and	are	
residents,	 while	 breeding	 altitudes	 and	 migratory	 strategies	 of	
European	stonechats	vary	more.	However,	a	resident	 lifestyle	 is	
commonly	found	in	the	tropics	and	is	actually	part	of	a	slow	life	
history	 (Dobson,	 2012).	 Variation	 between	 European	 stonechat	
populations	can	be	used	to	disentangle	potential	effects	of	breed‐
ing	altitude	and	migratory	strategy	on	telomere	dynamics	 in	 fu‐
ture	studies.

Nevertheless,	our	data	 indicate	that	different	 life	history	strat‐
egies	 of	 tropical	 and	 temperate	 birds	may	 be	 reflected	 in	 distinct	
patterns	of	telomere	loss	during	the	first	year	of	life	and	can	be	the	
basis	for	future	in‐depth	studies	on	variation	in	telomere	dynamics	
between	tropical	and	temperate	environments.	To	separate	the	rel‐
ative	importance	of	telomere	attrition	and	selective	disappearance	
during	the	first	year	of	life,	future	studies	should	measure	telomere	
length	and	survival	of	tropical	and	temperate	nestlings	and	fledglings	
longitudinally	in	different	stonechat	populations	within	tropical	and	
temperate	breeding	regions	and	with	different	migratory	strategies.	
Ideally,	 the	experiments	 should	be	extended	 to	other	 tropical	 and	
temperate	 species	 to	 determine	whether	 the	 patterns	 found	 here	
are	indeed	a	consequence	of	life	history	variation	between	tropical	
and	temperate	environments.

5  | CONCLUSIONS

To	 the	best	of	our	knowledge,	 this	 is	one	of	 the	 first	 studies	 to	
compare	 mean	 telomere	 length	 across	 several	 age	 classes	 in	
closely	 related	species	 that	breed	 in	 tropical	and	 temperate	en‐
vironments	 and	differ	 in	 their	 pace	of	 life.	As	 indicated	by	pre‐
vious	 interspecific	 studies,	 our	 results	 suggest	 that	 variation	 in	
life	 history	 and	 life	 span	may	 be	 reflected	 in	 different	 patterns	
of	telomere	 loss	between	species	rather	than	absolute	telomere	
length.	 Our	 data	 reveal	 that	 mean	 telomere	 length	 across	 age	
classes	 may	 indicate	 during	 which	 life‐cycle	 phases	 individuals	
with	short	telomeres,	and	thus	of	potentially	low	quality,	are	most	
likely	 to	disappear	 from	a	population.	These	patterns	closely	 fit	
with	 expectations	 from	 life	 history	 theory	 and	 match	 variation	
in	parental	behavior	and	juvenile	mortality	between	tropical	and	
temperate	birds.
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