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Differences in the development of the male and female brain are an evolving area of

investigation. We are beginning to understand the underpinnings of male and female

advantages due to differences in brain development as well as the consequences

following hypoxic-ischemic brain injury in the newborn. The two main factors that appear

to affect outcomes are gestation age at the time of injury and sex of the subject.

This review starts with a summary of differences in the anatomy and physiology of the

developing male and female brain. This is followed by a review of the major factors

responsible for the observed differences in the face of normal development and hypoxic

injury. The last section reviews the response of male and female subjects to various

neuroprotective strategies that are currently being used and where there is a need for

additional information for more precise therapy based on the sex of the infant.
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INTRODUCTION

Care and management of sick and premature newborn infants is generally based on
specific diagnoses and conditions and does not take into consideration the infant’s sex. Infant sex
can play a major role in disease onset, course and resolution. A well-known example is respiratory
distress syndrome or RDS. It is well-documented that surfactant production in the fetal lung is sex
dependent (1). It is confirmed by the lower incidence of RDS in females than males (2). Even in the
era of improved therapy for RDS that includes antenatal corticosteroids and postnatal treatment
with surfactant therapy, the gender gap in respiratory outcomes has not narrowed. Additionally
the utilization of these therapies have not changed for male and female preterm infants despite our
current knowledge on the influence of the fetal/infant’s sex.

It likely that the lung is not the only organ system that functions differently inmales and females.
In a study aimed at investigating the effect of sex on survival and short-term outcomes of very low
birth weight infants (VLBWIs) born in Japan (2003 and 2012- Neonatal ResearchNetwork of Japan)
with the primary outcome of a composite ofmortality or anymajormorbidity, including neurologic
injury, bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), or retinopathy of
prematurity requiring treatment, it was shown that the composite primary outcome was worse
in males (3). A recent report from the Vermont Oxford Network NICUs reiterates the outcome
differences between the sexes in premature infants (4).

Differences in behavioral and psychological responses between the sexes are well-known. Only
recently has there been documentation for this finding including fundamental cellular, molecular
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and physiological differences, especially as they pertain to
neuronal function, brain injury and the response to the injury,
and to therapy. In fact recent data suggests that therapies may
need to be sex-specific to have maximal effectiveness and best
outcome (5).

The biological underpinnings of sexual differentiation in
males and females have traditionally been considered to be
based on sex chromosomes and production of sex hormones
that interact with their cellular receptors. Many conditions
in human health and disease are sexually dimorphic with
different manifestations and outcomes in males and females.
More recently it has become apparent that these differences exist
independent of hormonal differences and that the differences
are not just in the input of signal through the receptor to
the cell but there are differences in the cellular output and
response. The anatomic and pathologic correlates of this have
been well-described with many clinical conditions, including
cerebral ischemia and stroke, in the developing male and female
brain (6, 7). Given the evidence that male and female infants
have different neurodevelopmental profiles it is important to
examine the evidence for the cellular, molecular, hormonal,
and/or physiological reasons for these differences. Our research
group has done studies utilizing the Rice Vannucci model
of hypoxic ischemic injury in preterm and term equivalent
rat pups and evaluated cellular, histological, physiological, and
behavioral outcomes based on sex (8–12). We have found that
despite similar histological findings after brain injury, there were
significant differences in various domains of neuro-behavioral
responses and outcomes based on sex.

The focus of this review is to explore what is currently
known about the influence of sex on fetal and neonatal brain
development, injury, therapy, and outcome. Currently fetal,
neonatal, and post-neonatal care pertaining to the brain and
neurological conditions does not take into consideration the sex
of the fetus or infant. Thus, there is no attention to sex specific
management for neonatal conditions such as intraventricular
hemorrhage, periventricular leukomalacia, perinatal infection,
inflammation associated with chorioamnionitis, and diffuse
perinatal cerebral hypoxic-ischemic events. The importance of
neonatal sex dimorphism as part of treatment strategies in infants
is best illustrated by the studies on prophylactic indomethacin for
prevention of intraventricular hemorrhage (IVH) in premature
infants in the perinatal period. An initial RCT by Ment et al.
showed that prophylactic indomethacin given to very low birth
premature infants soon after birth helped in reducing the
incidence and severity of IVH (13). This finding was followed by
wide-spread use of prophylactic indomethacin in this population.
When data were re-analyzed several years later, entering male sex
as a primary variable, it was discovered that only the male infants
had benefited from prophylactic indomethacin (14). Had there
been sex based evaluation of outcomes in the initial study, the
use of this therapy could have been more specifically applied.

Currently magnesium sulfate is given to women believed
to be at risk for delivering a preterm infant. The therapy is
given specifically to prevent cerebral palsy. Caffeine is given
to preterm infants to decrease the incidence of BPD and
cognitive impairment. Term infants who have evidence of

hypoxic ischemic encephalopathy are treated with hypothermia.
None of the trials that led to our current use of these therapies
have taken into account the sex of the infant.

This paper will focus on what is known about the sex
differences in brain structure and function, cellular, and
molecular mechanisms underlying such differences and their
variable responses to therapies following hypoxic ischemic injury.
Such knowledge should lead to sex specific therapies following
brain injury.

Gross Structural and Functional
Differences in the Male and Female
Nervous Systems
In reviewing sex differences it is important to first examine the
anatomy and physiology of the normal brain prior to examining
issues of brain injury and therapy.

Neuro-Anatomical and Hormonal Differences

Between Sexes
There aremany sexually dimorphic regions in the brain, generally
as a result of hormonally influenced cell growth and apoptosis
during brain development. Gonadal androgens are critical for the
development and maintenance of sexually dimorphic regions of
the male brain that are responsible for male-specific behavior and
physiological functioning (15). Different expression of estrogen
and testosterone receptors on the neuron in the different
sexes may also play a role (16). The hormonal control of cell
death is currently the best-studied mechanism for explaining
sex differences in cell number in the brain and spinal cord.
For example, males have more cells than do females in the
principal Bed Nucleus of the Stria Terminalis (BNSTp) and
in the Spinal Nucleus of the Bulbocavernosus (SNB), whereas
females have a cell number advantage in the AnteroVentral
PeriVentricular nucleus (AVPV). In each case, the difference in
cell number by adulthood correlates with a sex difference in
the number of dying cells at some point in development (17).
The difference in apoptosis between males and females appears
to be responsible for sexual differentiation and lateralization of
neuronal number in a discrete forebrain nucleus (SDApc) which
influences masculine vocal emission in the gerbil (18). In animal
studies the medial PreOptic Area (mPOA) of the hypothalamus
is found to contain a Sexually Dimorphic Nucleus (SDN-POA)
that is 5–7 times larger in males than females and plays a part
in the development and expression of male-specific sex behaviors
in adulthood. These differences in the size of the SDN-POA are
thought to be related to estrogen-associated effects on apoptosis
during early development. Aside from a critical role for estrogen,
the mechanisms that establish and maintain this sex difference
are largely unknown (19).

Male rats have more neurons than females in the primary
visual cortex, with 19% more neurons than female rats in the
binocular region and 18% more in the monocular region of
the primary visual cortex (20, 21). In other animals such as
Xenopus laevis, where the laryngeal motor nucleus (nucleus of
cranial nerves IX-X) is part of a sexually differentiated, androgen-
sensitive neuromuscular mechanism devoted to vocalization,
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males have more IX-X neurons than females (22). For all
of the sex related differences it is not clear to what extent
sex hormones, receptors, and male/female function drive these
dimorphic differences and what is due to other factors.

Role of sex hormone effects in the sexually dimorphic areas
of the brain such as the medial Pre-Optic Area (mPOA) of the
hypothalamus and the Spinal Nucleus of the Bulbocavernosus
(SNB) in the rat are modulated differently in males and females
and this effect is mediated by alterations in cell preservation
and cell death (23, 24). The action of testosterone as well
the aromatization of gonadal derived testosterone to estradiol
in the brain play important roles in developing this sexual
dimorphism (19, 25).

In studies of the rat Spinal Nucleus of the Bulbocavernous
(SNB), the interaction of brain-derived neurotrophic factor
(BNDF) with the androgen receptor (AR), and the activation
of androgen-response elements (ARE) on the gene appear to
be closely interconnected (15). A perinatal surge in androgen
activity in male rat fetuses not only helps in preventing
programmed cell death of the SNB in males but also preserves
the muscles that this nerve innervates (26). In male songbirds the
sexually dimorphic nuclear complex involving high vocal control
nuclei (HVC), and Robust Arcopallium (RA) nuclei appear to
be regulated not just by the direct effect of androgens on cell
preservation but also by estrogen receptor-containing cells that
create dimorphisms in cellular specification (27, 28).

Hormonal modulation of apoptotic process has been
well-documented especially during fetal and neonatal brain
development (23). There is a greater and more prolonged
apoptosis in females in selected areas of the developing brain
resulting in female rats with a smaller visual cortex than males
and female gerbils with a lesser number of neurons in the primary
forebrain nucleus responsible for vocalization (18, 21, 29). The
mechanism by which androgens and estrogens regulate cell
number in sexually dimorphic regions of the brain is most likely
linked to their influence on cell death and apoptosis rather by
their influence on neurogeneisis. It has been shown that sex
hormones influence this mechanism by their effect on nuclear
Androgen Receptors (AR) or Estrogen Receptors (ER) which
work via effectors such as bax and bcl2 proteins that regulate
apoptosis (17). Pathways downstream from hormone and
receptors may also show sexual dimorphism. For example, the
handling of Ca related cellular signaling in neurons is sexually
dimorphic and but may also be related to the effects of androgens
in the first week of life (30).

As noted above it is not clear if the anatomical difference is
due to growth or apoptosis and the role of sex hormones (30). It
is clear that fetal brain exposure tomale and female hormones has
lasting effects on brain development and subsequent behavior.
The male hippocampus, responsible for complex cognitive and
emotional responses, is larger than that of the female but it is
unknown if this is due to increased growth or less cell death
and what is the purpose it serves. Male neonatal hippocampal
cells appear to be protected from glutamate induced cell death in
the presence of DHT whereas the female cells suffer significant
injury. Bowers et al. explored the influence of estradiol on
hippocampal cells (31). Male and female rat pups were injected

with estradiol at birth. The hormone only affected females with
increase proliferation of neurons. Estrogen antagonists decreased
cell number only in the males. It was noted that the increased cell
number in the female was due to increase proliferation and not
decreased cell death. It also appears that the basal cell production
in the male must require some critical amount of estrogen for
normal cell production and hippocampal development (31).

Neuro-Physiological Differences
Observations from clinical research in humans have suggested
a difference in brain and neuronal physiology based on sex
differences starting in the fetal and newborn period and
extending through the human lifespan into adulthood. In a
retrospective review of human case fatality data following
traumatic brain injury, males had significantly more mortality
for similar injury severity suggesting a difference in injury
response and physiological repair mechanisms (32). Similarly,
cerebral palsy and related disorders of neurological injury
during perinatal development are more common in males
(33). Not only are male preterm infants more vulnerable to
intraventricular hemorrhage and white matter injury compared
to similar gestational age females, but their repair processes,
healing and ultimate neurodevelopmental outcomes also appear
to be worse (33). Physiological regulation such as cerebral blood
flow regulation also varies with sex but the differences vary with
age. In premature infants, girls have significantly lower CBF
than boys of similar gestational and postnatal age (34); however,
adults females have higher cerebral blood flow than males (35).
The mechanism regulating this are not well-understood but the
relative immaturity of cerebral blood flow auto regulation in
premature infantsmay be the reasonwhy females with a relatively
lower cerebral blood flow have lesser incidence of germinal
matrix or intraventricular hemorrhage.

Further investigation into the mechanism of many of the
above clinical observations appear to indicate basic physiologic
and pathophysiologic differences in apoptotic pathways
following hypoxic-ischemic injury. In animal experiments, it
has been demonstrated that the apoptotic pathway in males
with hypoxic neuronal injury tends to involve PARP-1 and
apoptosis inducing factor (AIF). Females, on the contrary, have
involvement of cytochrome c-caspase 3 pathways for apoptosis
(36). Similar results were found in in-vitro experiments without
external influences such as sex-specific hormones, suggesting
that the sex differences may be due to differences in intrinsic
genetic programming and subsequent physiology (33, 36, 37).

The location in brain where external modifiers act may also
be sexually dimorphic. Early life stress and neuropathic pain
are known to affect neurological responses to later life events
in humans, but the effects of the same stressor may involve
different brain locations in males and females. Phosphorylated
Extracellular signal-Regulated Kinase (p-ERK) activation has
been used to study neuronal response to stress. In animal studies
using this marker it was found that early life stress induced
by maternal separation and social isolation (MSSI) increased p-
ERK in the paraventricular nucleus (PVN) and amygdala of male
mice but the response in female mice was in a different part
of the brain, viz. in the medial prefrontal cortex and nucleus
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accumbens. However, combination of MSSI and neuropathic
pain increased p-ERK in the PVN and amygdala of female mice
(38). In another study evaluating the difference in pain responses,
the effect of vagal stimulation or ablation on neuropathic pain
and its response to opioids for tempo-mandibular joint disease
was demonstrated to be more severe in female than in male rats.
This finding correlates well with the clinical finding of higher
prevalence of tempo-mandibular pain in women (39).

From these observations and experimental findings it seems
very likely that not only are there anatomical and hormonal
differences that account for sex differences in neurologic response
to adverse events but theremay be intrinsic cellular pathways that
are different in males and females. A more detailed evaluation of
such molecular, metabolic, and cellular responses is important.

Differences in Cellular and Molecular
Mechanisms Between Males and Females
Apart from obvious anatomical and physiological changes
between males and females of various species of animals,
there is emerging evidence of changes in fundamental cellular
and molecular differences between the sexes. Processes of
cell proliferation, cell death with differences in cytosolic
and mitochondrial mechanisms have been shown to have
sexual dimorphism.

Apoptosis and Cell Death
While investigating the underlying mechanisms of sexual
dimorphism in neuronal cell death during normal brain
development, it is becoming increasingly clear that the
fundamental pathways of programmed cell death are
different in males and females of the species. While studying
postnatal development of lateral septum in mice brain,
there is evidence that apoptosis involving changes in both
single-stranded DNA and caspase-3 are different in males
and females (40). More evidence of differences between
the sexes in caspase-dependent and caspase-independent
programmed cell death comes from studies of neonatal
hypoxic ischemic injury in animals. A summary of the various
cellular mechanisms that differ between males and females are
shown in Figure 1.

i. Cell Glutathione levels: In a series of experiments conducted
using developing neurons derived separately from male
(XY) and female (XX) rats, Du et al. have delineated the
innate differences in cell death pathways (41). Male cells
are more susceptible to nitrosative stress and glutamate
related excitotoxicity with triggering of Apoptosis Inducible
Factor (AIF) and caspase independent cell death or necrosis.
On the contrary, when female cells were exposed to a
cytotoxic agent such as etopside and sturosporine they were
able to trigger a caspase-3 mediated programmed cell-death
response mediated by cytochrome-c. They explained this
by the innate difference in cellular glutathione anti-oxidant
effects where female cells were able to maintain a higher
glutathione levels under stress, irrespective of effect of sex
hormones (41).

ii. Caspases: Caspase activation dependent apoptosis has
consistently been found to be the dominant mechanism
of apoptosis in females (42). After hypoxic ischemic (HI)
injury, it has been shown that caspase 3 and 7 levels are
3–6-fold higher in female cortex and hippocampi. In other
experiments using the Rice-Vannucci model of hypoxic
ischemic injury it was demonstrated that not only was
caspase activation responsible for cell death selectively in
females but also they were less susceptible to oxidative
damage and the effects of treatment were also sexually
dimorphic (43). Sex -differences in caspase 8 expression
along with antiapoptotic protein bcl-2 have also been
incriminated in the increased susceptibility of male rats to
servoflane anesthesia related brain injury and subsequent
cognitive deficits (44). In any case, if females do follow a
caspase pathway to apoptosis after HI injury, it would explain
why females may derive greater benefit from therapeutic
hypothermia as opposed to males as the caspase pathway is
very temperature dependent. It would also suggest that other
interventions may be needed to preserve neurons in the male
brain in the clinical setting.

iii. Apoptosis Inducing Factor (AIF): Just as caspase related
mechanisms are dominant in females, Poly-ADP-Ribose-
Polymerase (PARP) and AIF mechanisms causing apoptosis
are dominant in males. AIF which translocates from
mitochondria to nucleus for initiation of apoptosis was more
prominent in male immature animal brains after injury.
Under similar conditions, in females, neuronal caspase-3
showed more prominent activation. However, the role of
nitrotyrosine formation and autophagy were not different
between sexes (45). Poly(ADP-ribose) polymerase (PARP),
a ubiquitous nuclear enzyme is activated by various injuries
and using NAD helps in synthesizing Poly (ADP-ribose) or
PAR and thus helps to stabilize and repair DNA. Its isoform
PARP-1 is the most active and important. Increased PARP
activity however can deplete NAD leading to lack of this
substrate for mitochondrial function of ATP production (46,
47). In males, PARP activation initiates the cascade of events
leading to depletion of NAD causing mitochondrial energy
failure and resulting in cell death. However, in females, with
similar PARP activation, NAD depletion does not occur.
These molecular mechanisms may be fundamental to the sex
differences in brain injury and repair (46, 47).

iv. X-linked inhibitor of apoptosis (XIAP): Another reason
for female cells preservation may be the presence of the
X-linked Inhibitor of Apoptosis factor in humans which
directly inhibits at least two members of the caspase family
of cell-death proteases, caspase-3 and caspase-7 (48, 49).
Animal experiments in a stroke model of brain injury
using microRNA-23A to block the translation of XIAP
was shown to decrease XAP-caspase 3 association resulting
in an increase in available caspase 3 and promotion of
apoptotic cell death. This may explain why, and adds to the
evidence that, ischemic neuronal death in females occurs
predominantly by caspase-dependent pathways (6). It has
also been shown that males and females have varying
processes for XIAP effects based not only on intrinsic gene
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FIGURE 1 | Different pathways of programmed cell death in the male and female newborn brain following hypoxic-ischemic injury.

expression but also the external sex hormonal mileu (50).
Regulation of XIAP via miRNA 23A and a plant derived
small molecule, embelin, are being considered as therapeutic
targets for future research although the effect of XIAP is still
speculative and direct evidence of protection rendered by this
factor is still under investigation (51–53).

v. Other Cellular Factors: Apart from the above listed factors,
other differences have also been noted in the apoptotic
mechanism in males vs. females. The pro-apoptotic molecule

p53 has been shown to have sexually dimorphic effects.
In UV induced apoptosis in brain Sub Ventricular Zone
(SVZ) cells, estrogen offered protection via its effects on
p53 but testosterone did not have this effect (54). Apoptosis
differences between sexes may also be influenced by sexual
differences in COX-2 expression. In rat models of traumatic
brain injury it has been shown that increase in COX-2
expression in male rats correlates with increased apoptotic
cell death but not with neuronal necrosis (55). There may
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also be other parts of apoptotic-antiapoptotic pathways such
as Bax, bcl-2 etc., that may be different among the sexes.
BAX—a pro-apoptotic gene and bcl-2 family of genes that
are anti-apoptotic may have different expression in males
and females and in different areas of the brain. Their
effect may be direct or indirect through their regulation
by estrogens and testosterone (17, 56). Apart from cell
death related pathways and modulators, cell proliferation,
and proliferating progenitor cells may also show sexual
dimorphism, but more evidence is awaited (57).

Mitochondrial Differences in Males and Females
Mitochondrial dysfunction and subsequent energy metabolism
deficiencies are important in mediating cell function and cell
death. Testing the brain effects of male and female rats
with induced hypoxia ischemia suggests that mitochondrial
dysfunction in the HI-induced brain may be sexually dimorphic
(58). Following HI, male rats were observed to be more
susceptible to brain mitochondrial dysfunction than female rats
and this was related to increase in mitochondrial proteins present
in the electron transport chain complexes I, II, and IV in female
brains and not in male brains (58, 59). Other clinical and
experimental studies exploring this phenomenon suggest that
lower basal glutathione levels, lower post-hypoxic mitochondrial
glutathione peroxidase (mtGPx) activity, and mitochondrial
glutathione peroxidase 4 (mtGPx4) protein levels contribute to
the relative susceptibility ofmale brain damage by oxidative stress
and mitochondrial dysfunction (60). In contrast, female subjects
showed more resilience against mitochondrial dysfunction
following hypoxia-ischemia due to increased stimulation of
electron transport chain proteins. Experiments in 8-day old
rats subjected to HI and treated with acetyl-L-carnitine found
that citrate synthase activity was increased in the ipsilateral
hemisphere of both male and female rats (60). However, levels of
mitochondrial protein complexes I, II, and IV only increased in
the female brain (60). In addition, the mitochondrial biogenesis-
associated transcription factor NRF-2/GABP-alpha increased in
females but decreased in males (59). This suggests that one of
the reasons for different susceptibility to neurologic injury may
be the differences in mitochondrial related pathways in male and
female cells with female cells showing more resilience to injury.

Inflammatory Biomarker Differences in Males

and Females
Inflammatory mediators such as chemokines, cytokines, and
other biomolecules play an important role in brain cell injury
following HI in the newborn. Savman et al. studied pro- and
anti-inflammatory cytokines in infants who met criteria of birth
asphyxia and whose encephalopathy was staged with the criteria
of Sarnat (61). There was a strong correlation between IL-6 and 8
and the degree of encephalopathy while there was no correlation
with TNF or any of the other cytokines tested (61). Using the
Rice-Vannucci model in term-equivalent newborn mice, Mirza
et al. examined the timing of inflammatory response (62). At
24-h post HI, there were no differences in IL-1β and TNF but
at 3 days, males had significantly higher levels than the females.
There was greater neutrophil and lymphocyte infiltration into the

brain at day 3 in the males vs. females while there initially was
no difference on day 1. Infarct size correlated with the elevated
cytokine levels in the males. On follow-up after injury, females
exhibited fewer behavioral abnormalities. Interestingly, at this
young age, there were no differences in testosterone or estradiol
between the males and females at day 1 or day 3 (62).

Microglial activation, which plays an important role in brain
repair and neuro-inflammatory response to injury may also
be sexually dimorphic with males having microglia primed for
activation in excess to that in females following HIE in the
rat (62). There was also a similar sex difference seen in the
peripheral inflammatory response with higher serum levels of IL-
1β and TNF-α and infiltration of peripheral leukocytes seen in
males (62).

In our own lab we have demonstrated specific behavioral
abnormalities in pre-term and term rats that varied by sex (63).
Using our P6 HI rat model, we found that late or “chronic”
inflammatory factors such as Rantes (chemotactic cytokine
ligand 5; CCL5), MCP-1 (CCL2), and MIP-1a (CCL4) were
all significantly elevated in serum at 48 h in HI pups, and
these levels were highly predictive of subsequent behavioral and
neuropathologic outcomes measured months later. Based on our
success using caffeine as a neuroprotectant in this population, we
are currently studying its administration in a group of preterm
rat pups to determine its effects on the inflammatory biomarkers
by sex (64).

Neurosteroid Differences in Males and Females
As reviewed above, endogenous sex hormonal influences in the
brain and nervous system of the fetus and newborn infant have
been well-documented but the effect of local brain steroids or
neurosteroids is just emerging. Neurosteroids in the developing
fetal brain are important in protective and neurodevelopmental
processes and modulation of these hormones may be useful in
future therapeutic fetal neuroprotective strategies.

Testosterone and its metabolites function as neurosteroids
and have local effect on the fetal and neonatal brain. However, the
results of studies of testosterone and brain injury are inconsistent.
In studies with postnatal rats subjected to HI, injured males and
testosterone treated females had worse pathological changes and
neurodevelopmental outcomes than sham treated females (8).

The role of estrogens in brain recovery after HI was explored
in a rat model focusing especially on hippocampal neurogenesis
and it was shown that the beneficial effects seen in females were
not due to neurogenesis or death but due to other components of
neural responses (65).

The interaction of estrogen and testosterone in brains of
infants is complex because testosterone is a precursor of estradiol
via the action of aromatase enzyme which has high activity in
the brain. Therefore, higher local brain testosterone may result
in relatively high estradiol as well. However, administration
of estradiol in animal models of hypoxic ischemia had shown
improved long term outcomes. The effect is sex specific with
evidence of increased short-term cell genesis in hippocampus of
females (65).

In excitotoxic GABAA mediated insult usingMuscimol in a rat
model, it was demonstrated that both the sex-related hormonal
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milieu and the developmental stage of the brain had an effect on
the extent and sex-specificity of the injury (66). The fetal male rat
was more susceptible than the adult male (66).

Based on the findings of better brain recovery from injury
in females, the hypothesis was tested in a pilot clinical trial
(ProTECT trial) that progesterone therapy after traumatic brain
injury will improve recovery in males (67). The results were
promising with no evidence of any adverse effects. However,
larger phase III trials of progesterone for traumatic brain injury
(ProTECT III and SyNAPSE) have been disappointing (68). This
is further evidence that the sex differences in brain injury and
repair may not be based on purely hormonal difference.

Other Factors
In the face of HI injury, sex hormones may also play a role
in hippocampal injury and later brain function. Waddell et al.
using term-equivalent rat pups and the Vannucci model of
HI, treated male, and females with estradiol immediately after
the injury. Day 3 histological examination showed that drug
therapy increased cell genesis in the female CA1, CA3, and
dentate nucleus with no change in the male. Cell genesis was
increased in these same areas in both sexes on day 7. However,
on longer follow-up during behavioral testing, the HI males had
significant deficits compared to the females who often exhibited
no effect of HI or drug treatment. Drug treatment did seem
to benefit the treated males vs. control HI animals. Testing
included negative geotaxis, wire suspension, open field testing,
novel object recognition, social play, and the Morris water-maze.
In general males were negatively affected by HI on all tasks.
Estradiol improved performance on some tasks but not all. HI did
not negatively affect female rats in a number of tasks and estradiol
did not appear to have an effect. In those tasks where females were
negatively affected by HI, estradiol helped with wire suspension
and social activity and not with the Morris water-maze (65).

Miscellaneous Differences in Males and Females
1. Lateralization: In the Rice-Vannucci model of hypoxic

ischemic injury using 3-day old Wistar rats, it was shown
that both sex and laterality affected injury and outcome.
The outcome was worst in females with left sided brain
injury (69). The sex difference may have been in part due
to differences in the Na+/K+-ATPase responses (70). It
has been shown in human peripheral blood lymphocytes
that there is a sex difference in the expression and activity
of this enzyme (71). In this study the investigators found
differential expression of the Na+/K+ ATPase activity in
the right and left side of the brain with the differential most
pronounced in the female pups.

2. Adrenomedullin: The peptide adrenomedullin in the brain
and CSF is protective against brain injury via its actions
on vascular regulation of cerebral blood flow (72). It exerts
its cellular actions through the ERK-MAPK (Extracellular
signal-Related Kinase—Mitogen-Activated Protein Kinase)
pathways of signal transduction in cells. The level of this
peptide increases more significantly in female piglets than
in males after percussive brain injury and appears to be
neuroprotective in females. Adrenomedullin treatment or

increasing ERK-MAPK activity in pig models of brain
injury decreased brain injury and improved cerebral
autoregulation selectively in males (72).

3. Nitric Oxide Synthase: Another modulator of injury and
repair after hypoxic brain injury is the nitric oxide synthase
system. It is not clear if there are sex dependent variations
in activity of iNOS or nNOS per se but experiments in P7
rats using 2-Iminobiotin suggests that this compound is
selectively neuroportective in females not through its NOS
effects but probably via inhibition of initiation of cell death
pathways at a level upstream of the activation of cytochrome
c/caspase-3 dependent apoptosis (73).

G-protein coupled estrogen-receptor: The sex-hormonal
mileu in the brain does not always correspond with
estrogenic hormonal or receptor excess in females. Estrogen
is known to exert its cellular effects through the estrogen α

and β nuclear receptors. Recently a novel transmembrane
cell membrane receptor termed G-protein-coupled estrogen
receptor, GPER (aka GPR30) has been shown to be an
important mediator of cell injury and repair in neural
tissue and cerebral microvasculature and thus an important
target for therapeutic intervention (74). GPER is widely
distributed male and female brain but its levels rise more
significantly after ischemic injury in males compared to
females (both intact females and ovarectomized females)
suggesting an non-sex hormone dependent effect (26, 75).
Thus therapies using antagonists to the GPER may be more
effective in males (26).

Sex Differences Noted in Neonatal
Clinical Studies
General Differences
There are some fundamental differences in placental and somatic
growth in pregnancies with male and female fetuses. Female
fetuses rely more on intrinsic placental growth while male fetuses
are more dependent on transfer of nutrients across the placenta.
Therefore, in times of maternal stress and deprivation, males
are at higher risk of for growth retardation including brain
growth (76, 77). Male fetuses are also more susceptible to head
growth impairment. From data gathered after natural disasters
and pregnancy outcomes in humans as in the case of Project Ice
Storm in Canada, smaller head growth to birth length ratios was
primarily seen in boys (78).

The basis for this observationmay involve placental epigenetic
changes involving the DNMT1 DNA methyltransferase enzyme
and the differential effects of serotonin metabolism favoring
increasing resilience in females compared to males (79). There
is also evidence of modulation of fetal steroid exposure based
on fetal sex which may partly be based on differential effects of
the enzyme 11-β HSD (80). Moreover the effects of sex steroids
may not be via cell death or proliferation but rather involve
other components of neural functioning (65). There is suspicion
however, that there may be other more fundamental cellular
mechanisms that may be responsible for sex differences.

In a few retrospective studies it was shown that rates
of IVH for similar gestational age premature VLBW infants
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were higher in males than in females (81, 82). Evidence
from a large international series of neonatal ischemic stroke
also showed a male predominance in the incidence of
spontaneous and post-trauma arterial ischemic stroke suggesting
the role of vascular factors (83). This points toward the
above noted male dependence on placental nutrient/oxygen
transfer capacity.

Recovery from respiratory distress syndrome was better in
females not only for respiratory outcomes but also in cognitive
scores on long term follow-up (84). A meta-analysis of clinical
trials of preterm infants along with data from animal experiments
reported from our center showed a cognitive advantage in
females after hypoxic ischemic brain injury and the evidence was
strong for overall and performance IQ measures (9, 85).

Differences in Medication Responses in Males

and Females
Based on the demonstrated evidence of different anatomical,
physiological, cellular, and molecular mechanisms in males and
females, it is to be expected that the response to medications
and treatments may also be different. Surprisingly, there has been
very little recognition of this in clinical trials and in a majority of
reports of outcomes following treatment, sex related differences
are not reported. Below are some of the major neonatal clinical
trials related to neuro protection.

1. Indomethacin: The importance of neonatal sex dimorphism
in response to treatment strategies in infants is best
illustrated by the studies on prophylactic indomethacin

for prevention of intraventricular hemorrhage (IVH) in
premature infants in the perinatal period. An initial RCT
by Ment et al. showed that prophylactic indomethacin given
to very low-birth-weight premature infants soon after birth
helped in reducing the incidence and severity of IVH in
the brain (13). This finding was followed by wide-spread
use of prophylactic indomethacin in this population. By 36
and 54 month follow up of these infants difference in major
developmental outcomes had disappeared (86, 87). Analysis
of outcomes at 8 years of age in this cohort also showed
no differences in neurodevelopmental outcome but on sub-
group analysis male sex seemed to have more benefit from
this therapy (88). When the original data were re-analyzed
several years later entering male sex as a primary variable,
it was discovered that only the male infants had benefited
from prophylactic indomethacin (14). To test whether
indomethacin prophylaxis had a sex-mediated effect on
severe intraventricular hemorrhage (grade III and IV)
and on long-term outcomes in extremely-low-birth-weight
infants, a secondary analysis was performed in the entire
“Trial of Indomethacin Prophylaxis in Preterms study”
cohort. The results documented a differential treatment
effect of indomethacin by sex with male infants showing
more benefits of the therapy than females (89). Had there
been sex based evaluation of outcomes in the initial study
by Ment et al. the use of this therapy could have been more
specifically applied.

Other therapies for neuroprotection in premature and
newborn babies may have sexual dimorphisms and specific
sex-related benefits and harms may have been overlooked.

2. Caffeine: Neonatal caffeine treatment (adenosine receptor
antagonist, 15 mg/kg/day, between postnatal days 3 and 12)
affects respiratory patterns in adult male but not female
rats as shown by an increase in the respiratory frequency
in the early phase of response to hypoxia and an increase
in the tidal volume in the late phase of response. After
treatment with neonatal caffeine (NCT) or water (NWT),
they found that that NCT induces long-term changes
in the adenosine receptor system. These changes may
partially explain the modifications of the respiratory pattern
induced by NCT in adults. The increased expression of
the adenosine Adenosine(2A) receptor (specific to male
rats), combined with the decreased tyrosine hydroxylase
expression in the carotid body, suggests that NCT affects
adenosine-dopamine interactions regulating chemosensory
activity (90).

Chronic administration of an adenosine receptor
antagonist disturbs spatial learning and memory in adult
mice and neonatal caffeine exposure results in long-term
behavioral and biochemical sequelae in mice and rats.
But these changes varied based on the sex of the study
animals (mice and rats). Neonatal caffeine exposure
significantly improved retention in females (P < 0.01) and
significantly decreased retention in males (P < 0.05). Thus,
caffeine exposure limited to the first week of life resulted
in alterations in passive avoidance retention that became
apparent over pubertal development. These changes were a
function of the sex of the animal (91).

Epidemiological studies indicate that caffeine
consumption reduces the risk of Parkinson’s disease
(PD) in men, and antagonists of the adenosine 2A
receptor ameliorate the motor symptoms of PD. These
findings motivated Jones et al. to identify proteins whose
expression is regulated by caffeine in a sexually dimorphic
manner. After experimental manipulations in rat models,
the researchers concluded that cytochrome oxidase is a
metabolic target of caffeine and that stimulation of its
activity by caffeine via blockade of A2AR signaling may
be an important mechanism underlying the therapeutic
benefits of caffeine in PD (92).

In the CAP trial of caffeine therapy in premature infants,
which showed an improvement in respiratory parameters
and chronic lung disease at discharge (93), there were also
improvements in neurodevelopmental outcomes at 18–24
month follow up (94). However, there appeared to be no
differences in neurodevelopmental outcomes noted at 5
years of follow-up (95). Since none of these studies were
subjected to sex based analyses of data, any specific sex
related benefits of therapy may have beenmasked. Given the
accumulated evidence of sex-related brain injury and repair
responses, a reappraisal of data is imperative before any
further inferences are drawn. We are currently conducting
studies to determine whether caffeine has greater benefits to
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male or female preterm equivalent rats who have undergone
HI injury via the Rice Vannucci model (64).

3. Therapeutic Hypothermia: Another therapy for neonatal
neuroprotection that has not been evaluated in a sex-specific
manner is therapeutic hypothermia for hypoxic ischemic
injury in the term neonate soon after birth (96–101). Studies
conducted in North America, Europe and Australia have
all shown benefits of therapeutic hypothermia whether used
as whole-body cooling or by selective-head-cooling but in
none of these studies were specific sex-based outcomes
analyzed (102–108). Studies from Dietz et al. using different
mice models are highly suggestive of sex-related differences
in therapeutic hypothermia (109). In the mouse cardiac
arrest/CPR model of brain injury, male, and female juvenile
mice showed equivalent neuronal injury following CA/CPR;
and hypothermia protects both sexes. However, there
was a sexually dimorphic response to mild therapeutic
hypothermia protection of synaptic function, where males
needed a deeper level of hypothermia for equivalent synaptic
protection. Studies from our lab using the Rice-Vannucci
model for hypoxia-ischemia in newborn animals have
shown sex dimorphism following injury as well-application
of hypothermia in the preterm rat pup (8–11).

4. Erythropoietin(Epo): Epo is an emerging therapy for
neuroprotection in neonates. Epo shows sex-specific
differences in hippocampal gene expression after brain
injury; and variable distribution after high-dose rEpo
treatment, based on single-gene, and gene set analyses
(110). Evidence from animal studies has shown that this
drug has more benefits in females with focal cerebral
ischemia compared to male animals with similar lesions
(111). There is currently a phase III trial of hypothermia
and Epo for infants with moderate to severe HIE. Upon
completion, this study has the opportunity to demonstrate
if there is an added benefit of Epo to hypothermia and
whether that benefit is greater in one sex or the other. There
have been small clinical reports of Epo for HIE in human
term infants. None of these studies have reported outcomes
based on sex of the infant (112–117). Given the findings of
sexual dimorphism from animal studies it is imperative that

any analysis of clinical data includes sex-related differences
in outcomes.

5. Prenatal maternal magnesium sulfate: Multiple studies
have examined the effect of maternal administration of
magnesium sulfate prior to an anticipated preterm birth
(118–123). Virtually all of these clinical studies have found
a decrease in cerebral palsy (CP) and mortality but no
effect on cognitive function. However, none of the clinical
studies have taken into account sex dimorphism (118, 124–
127). Studies in term equivalent newborn piglets have shown
that pre-HI administration of magnesium interacts with
the NMDA post synaptic receptor in the cortex to prevent
influx and release of protein bound calcium (128). However,
animal studies designed to examine the mechanism for the
prevention of CP in preterm infants have failed to determine
mechanism (129, 130).

CONCLUSIONS

There are clearly differences in brain structure, response to
sex hormones, hypoxic ischemic injury, and responses to
interventions for HI injury in male and female fetuses, or
newborn preterm and term babies. The mechanisms for the
differences continue to be uncovered. However, it is most
important for clinicians to be aware of these sex based differences
in provision of acute care and long term intervention in order for
these children to have optimal neurologic outcomes.
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