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ABSTRACT

The analysis of mRNA transcript abundance with
RNA-Seq is a central tool in molecular biology re-
search, but often analyses fail to account for the un-
certainty in these estimates, which can be signifi-
cant, especially when trying to disentangle isoforms
or duplicated genes. Preserving uncertainty necessi-
tates a full probabilistic model of the all the sequenc-
ing reads, which quickly becomes intractable, as ex-
periments can consist of billions of reads. To over-
come these limitations, we propose a new method
of approximating the likelihood function of a sparse
mixture model, using a technique we call the Pólya
tree transformation. We demonstrate that substitut-
ing this approximation for the real thing achieves
most of the benefits with a fraction of the compu-
tational costs, leading to more accurate detection of
differential transcript expression and transcript co-
expression.

INTRODUCTION

The past decade has seen RNA-Seq become a central tool in
molecular biology research. Along the way there have been
numerous methods developed to analyze this data. We will
propose an entirely new methodology based on likelihood
approximation, which enables inference on full probabilistic
models that would otherwise quickly grow intractable. In
preparation, we will first give a brief overview of notable
approaches to RNA-Seq transcript and gene quantification,
to give some sense of where this new method fits in.

Gene/transcript quantification is not the only application
of RNA-seq. Most prominently, the technology has been
used to discover and annotate new transcripts, either by de
novo assembly (1–3), or processing reads aligned to a ref-
erence genome sequence (4–6). Other applications include
detection of fusion transcripts (7) and RNA editing (8). We
will largely ignore these uses of RNA-seq to focus squarely
on quantification. For the most part, we will assume that a

suitable reference genome sequence and transcript annota-
tions are available (or simply transcript sequences).

Because of alternative splicing, alternative transcription
start and termination sites, and paralogous genes, tran-
scripts often have a degree of sequence similarity that ren-
ders short reads ambiguous. Short read RNA sequenc-
ing in transcriptionally complex organisms thus produces
a mixed signal. A broad distinction that must be drawn
among quantification methods is between those that avoid
trying to deconvolute these mixed signals and those that em-
brace deconvolution. A fundamental assumption of most
RNA-seq analyses is that transcript expression is propor-
tional in expectation to the number of reads observed from
that transcript (when transcript lengths and sample specific
effects are accounted for). As Mortazavi et al. (9) notes,
read counts were observed to be ‘linear across a dynamic
range of five orders of magnitude in RNA concentration’.
Yet reads of ambiguous origin cannot be trivially assigned
to transcripts. Estimating transcript expression thus neces-
sitates either ignoring ambiguous reads, explicitly assigning
them to transcripts, or otherwise implicitly considering the
space of possible assignments.

Transcript expression is not the only possible quantity of
interest. Many methods have found success using different
sets of less ambiguous features. The most obvious choice
is genes, which are sometimes ambiguous, but far less so
than isoforms. Less obvious sub-gene features are also used.
DEXSeq (10) approaches the problem by considering exon
usage. JunctionSeq (11) and LeafCutter (12) are both meth-
ods that specifically focus on reads crossing splice junctions,
with the goal of detecting changes in usage. Two recent
methods (13,14) both focus on equivalence classes, which
are sets of transcripts that do not share any reads. Similarly,
Yanagi (15) first segments the transcriptome into relatively
unambiguous features, before applying a count based anal-
ysis.

Finding creative ways to bypass the issue with ambigu-
ous features is a powerful approach that enables analyses
that are computationally efficient and statistically powerful.
Yet, we should not lose track of the fact that transcript ex-
pression is the most direct and interpretable quantity of in-
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terest. Interrogating transcript expression necessitates con-
fronting read ambiguity head on. Though there are non-
probabilistic approaches to this problem, including meth-
ods using network flow for transcript quantification (16)
and assembly (17), and integer programming (18), the prob-
abilistic approach has been by far the most common and is
the one we will focus on here.

The common probabilistic approach to the transcript
quantification problem is to treat transcripts as inducing
distinct probability distributions over reads (or read pairs).
Starting with the assumption that we have a known tran-
scriptome consisting of n annotated transcripts, the experi-
ment as a whole can then be thought of as a mixture model,
in which the goal is to infer relative transcript expression
(i.e., mixture coefficients). More explicitly, given a set r of
m reads, we define a probability function pj over possible
reads, for every transcript j ∈ {1, . . . , n}. The likelihood for a
relative expression vector x ∈ �n − 1 (here �n − 1 is the open
unit (n − 1)-simplex, i.e. the set of all vectors of length n,
with entries in (0,1) summing to 1) is

P(r |x) =
m∏

i=1

n∑
j=1

xj p j (ri ) (1)

There are many issues surrounding the question of how
best to model each transcript read distribution pj. RNA-Seq
protocols involve many steps like fragmentation, reverse
transcription, amplification, and fragment size-selection
which each influence the observed distribution of reads.
Assuming reads to be uniformly distributed across a tran-
script, subject to some fragment length distribution, is the
most straightforward model, but some success has been had
in building more accurate models that capture positional
and sequence-specific biases (see e.g. (19–23)). Though we
do account for these effects in practice (see Supplementary
Section 6), we will set these issues aside for now and simply
assume we have some agreed upon model.

Relative transcript expression for an individual RNA-
Seq sample is not typically interesting on its own. RNA-
Seq experiments are nearly always concerned with detecting
transcriptional changes between groups of samples. From
a Bayesian perspective, we would like to build a model of
transcriptional changes among k samples consisting of sets
of reads r(1), . . . , r(k), with model parameters � (e.g. effect
sizes, pooled means, or latent space encodings), then con-
sider the posterior distribution P(�|r(1), . . . , r(k))∝P(r(1), . . . ,
r(k)|�)P(�).

If we adopt the likelihood function in Equation (1), then
r(i) is independent of all other variables when conditioned
on x(i). In typical models expression vectors x(i) will also
be mutually independent when conditioned on the model
parameters �, so we can write this posterior distribution in
terms of the latent expression vectors x(1), . . . , x(k), treating
them as nuisance parameters.

P(θ |r (1), . . . , r (k))

∝
∫

x
P(r (1), . . . , r (k)|x(1), . . . , x(k))P(x(1), . . . , x(k)|θ )P(θ )dx

=
∫

x

k∏
s=1

P(r (s)|x(s))P(x(s)|θ )P(θ )dx (2)

This is all very straightforward but presents some practi-
cal problems. To evaluate the likelihood functions, some in-
formation about each unique read must be stored (typically
in a sparse matrix where entry i, j corresponds to the proba-
bility assigned to the ith read by the jth transcript distribu-
tion). This translates to hundreds of megabytes to several
gigabytes per sample. Estimating the posterior for moder-
ately large experiments requires either a great deal of mem-
ory or cycling read data in and out of memory, as is done in
stochastic gradient methods.

In practice, this kind of textbook model is often short-
circuited. Point estimates are made for transcript expression
vectors x, usually by maximum likelihood

x(i )∗ = arg max
x(i )

P(r (i )|x(i ))

Then these are plugged into the full model, forming an al-
ternative posterior distribution

P(θ |x(1)∗, . . . , x(k)∗)

This model adopts the (false) assumption that these expres-
sion values are observed, substituting them for what is ac-
tually observed: the reads. Non-Bayesian models have the
same issues, and often resort to the same two-step approach.
When estimates are treated as observations, the uncertainty
of these estimates is flushed from the analysis, artificially
inflating the certainty of the end result. This two-step ap-
proach can be thought of as an approximation of the de-
sired model, but one that captures none of the uncertainty
of read assignments.

Some methods have been developed to account for this
estimation uncertainty. In prior work, we built a joint model
that avoids the two step approach, directly conditioning
on reads (24). This produced accurate expression estimates
but only scaled to a relatively small number of samples.
BANDITS (25) uses equivalence class counts as input, then
models transcript level counts as observed variables, doing
inference on a full model. BitSeq (26) implements a two
step model in which transcript expression is sampled us-
ing MCMC and these samples used in the second step as
‘pseudo-data’. MMSEQ (27) incorporates MCMC samples
by fitting a Normal distribution to the samples and using
that distribution in the differential expression model, while
Swish (28) introduced a way of using MCMC samples di-
rectly in nonparametric tests of differential expression. In
later work, variational inference was added to BitSeq (29),
but observing an underestimation of variance, the authors
express reservations about using it to call differential ex-
pression. Using a generalized Dirichlet distribution (30) was
shown to help reduce this issue.

In Sleuth (31), variance is estimated from bootstrap sam-
ples of maximum likelihood estimates. Incorporating these
variance estimates into regression models, they show sub-
stantial improvements in accuracy when calling differen-
tial expression, particularly at the transcript level. IsoDE2
(32) instead used bootstrap samples to directly compute
confidence intervals over fold changes. Bootstrap methods
do have limitations. Estimates of variance are guaranteed
to converge asymptotically to the true value with enough
reads, but this leaves lightly sequenced loci with potentially
unreliable estimates.
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Whether using the bootstrap or MCMC, generated sam-
ples have limited applications. For example, powerful prob-
abilistic programming languages have become an increas-
ingly popular way to implement models, but efficient in-
ference is usually performed using variational inference or
some form of Hamiltonian Monte Carlo which rely on di-
rectly evaluating and differentiating the likelihood function.
Variational methods of approximating the likelihood pro-
duce just such a function, but are highly contingent on the
distribution family used to make the approximation. An in-
sufficiently flexible family will systematically underestimate
variance, inflating false positives.

With this in mind, we developed a compact, highly accu-
rate approximation of the likelihood function that can be
efficiently evaluated and differentiated. Because the likeli-
hood function for a full experiment factors into per-sample
likelihood functions (as in Equation 2), this approxima-
tion can be built one sample at a time. Once fit, evaluating
and sampling from the approximation is orders of magni-
tude faster than using the likelihood function. Substituting
this approximation for the real thing can make inference on
full probabilistic models, with billions of reads, tractable on
even modest computers. The basis of this new method in a
technique we call the Pólya tree transformation, which al-
lows us to fit our approximation to the sparsity structure of
the data, avoiding systematic underestimation of variance
common to other variational methods. The software we im-
plement to apply this method we call Polee, a portmanteau
of ‘Pólya tree’. Figure 1 gives an overview of our approach
to approximate likelihood, while Figure 2 provides some il-
lustrative examples of fitting an approximation.

There has not been much work exploring the idea of ap-
proximating the RNA-Seq likelihood function to facilitate
tractable posterior inference, but one notable exception is
Zakeri et al. (33) who developed an approach in which reads
that have similar values assigned by pj( · ) for every tran-
script j are treated as equivalent and combined in Equa-
tion (1). This can significantly improve efficiency of the like-
lihood function with only a moderate decrease in fidelity.
What we propose goes further, reducing the likelihood func-
tion into an exceedingly efficient constant time and space
function, with only slight reductions in accuracy.

MATERIALS AND METHODS

Practical benefits of likelihood approximation

Our approach to approximation is unusual: factoring the
likelihood, then fitting a proportional approximation to
each factor. Though it could be used in other settings, it is
particularly well suited for RNA-Seq, compared to other
possible approaches.

The obvious alternative for tractable inference is simply
to use variational inference on the posterior we are actually
interested in. That is, if we have a model of, say, differen-
tial expression, with parameters �, we want to approximate
the intractable posterior P(�|r). For a large experiment, all
of the reads r will not fit in memory, but this problem is
amenable to stochastic variational inference, or SVI (34).
In SVI, batches of data are subsampled to update estimates
of ‘local’ latent parameters (transcript expression estimates

x(i) for each sample i), before updating ‘global’ latent pa-
rameters (�).

Because SVI algorithms must cycle many gigabytes of se-
quencing data in and out of memory to repeatedly com-
pute stochastic gradients, they are likely much less efficient
than likelihood approximation. Two additional considera-
tions further increase the latter’s desirability.

First is reusability. Large RNA-Seq experiments can be
rich with insight, and lend themselves to multiple analyses.
Differential expression, differential splicing, clustering, and
dimensionality reduction are separate tasks that might be
carried out on the same data, each with its own model, each
representing a separate inference task. For these tasks, like-
lihood approximations must be made only once, after which
they can be reused over an over. Amortized over every iter-
ation of every analysis typically run on a dataset, likelihood
approximation is far more efficient than other approaches
to tractable inference.

Second, likelihood approximation can obviate some of
the cumbersome data transfer and storage issues with
RNA-Seq. High throughput sequencing produces huge
datasets, which must be stored and transferred to collab-
orators, which can mean waiting on long downloads or ex-
changing hard drives. Our approach to approximated like-
lihood, on the other hand, summarizes all expression infor-
mation for a sample using only a few megabytes per sample.
The 1443 brain samples produced by the GTEx project (35),
are reduced to 7.8GB of likelihood approximation data. The
most compact exact representation of the likelihood func-
tion for this experiment would be about 1.5TB, often a pro-
hibitively large amount of data to keep in memory.

Approximating likelihood with variational inference

Variational inference is usually presented as a means of
estimating an otherwise intractable posterior distribution.
Given a distribution function p, and a family of distribu-
tions q( · ; �) parameterized by �, we fit q to p, given some
data y, by choosing � to minimize the Kullback-Leibler
(KL) divergence,

arg min
φ

DKL(q(θ ; φ)||p(θ |y))

A key feature of this method of inference is that q does
not depend directly on y, so that once � is optimized, the
approximate probability can be evaluated without the data,
only retaining the typically much smaller parameter vector
�.

This suggests a solution to the issue of building large joint
models. Instead of using variational inference to approx-
imate a posterior distribution, we can use it to separately
approximate the likelihood of each sample. By substituting
an approximation q(x; �) for each sample’s likelihood func-
tion P(r|x), we can capture the likelihood with some fidelity
without having to keep the RNA-Seq reads in memory. This
would allow us to build a very large model, encompassing
hundreds or thousands of samples, that can be run on lap-
tops or meager servers.

Of course, the likelihood is not a distribution over expres-
sion vectors x but over reads r, so the KL divergence is not
well-defined here. But in models making use of the likeli-
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Figure 1. An overview of the proposed analysis pipeline. Standard RNA-Seq pipelines work from intermediate point estimates of expression (x*), then
go on to assume those estimates are observed. Our method instead makes an intermediate approximation of the likelihood function using a Pólya tree
transformation. Using this in downstream models has the effect making a more realistic assumption: reads are observed. This principled accounting of
uncertainty leads to more accurate downstream analysis, especially when features are ambiguous, as is the case with isoform level quantification.

Figure 2. Contrived examples of fitting an RNA-Seq likelihood function. Three examples of hypothetical RNA-Seq reads covering three transcripts are
shown on the left. On the right, in blue, contours of the their likelihood functions are plotted, and in orange, various approximations made by minimizing
KL divergence. The approximation we propose, based on what we call the Pólya tree transformation, is shown in the second and third columns. This
transformation is defined in terms of a tree. Choosing the right tree plays a large role in how well the approximation fits. In example A, every read can
be unambiguously attributed to a single transcript. In this easy case, a Dirichlet distribution is perfectly proportional, and the approximation, regardless
of the tree, is a near perfect fit. In examples B and C, reads cannot by unambiguously assigned. Here, the proposed approximation remains a good fit,
provided the right tree is selected. Using the approximation in place of the exact likelihood function can enable dramatically more efficient inference.



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 5

hood function, multiplicative constants are generally irrel-
evant, so our approximation only has to be proportional to
the likelihood. To bring the machinery of variational infer-
ence to bear, instead of approximating likelihood directly,
we approximate a normalized likelihood function, mathe-
matically equivalent to a posterior distribution under a uni-
form prior. We will denote with P(x|r ) this normalized like-
lihood function, defined simply as

P(x|r ) = P(r |x)∫
x∈�n−1 P(r |x)

(3)

Revisiting Figure 2 , we can see that capturing the depen-
dence structure of P requires careful selection of the dis-
tribution family being used, but it is often possible to do
so very accurately. In simple cases lacking any read ambi-
guity, the likelihood is proportional to a Dirichlet distribu-
tion, but this model is inadequate for cases where reads are
compatible with multiple transcripts. The model we propose
can perfectly capture the cases of zero read ambiguity (see
Supplementary Section 3), but is strictly more expressive,
and able to capture more complex dependence structures
while being similarly efficient (i.e. linear time and space in
the number of transcripts). In this way, it can be thought
of as a way of further generalizing the generalized Dirichlet
distribution (36). Minimizing the KL divergence is straight-
forward without need to explicitly normalize the likelihood
function (Supplementary Section 4).

Because RNA-Seq data is compositional, our approxi-
mating family of distributions q(x; �) must be defined over
a simplex �n − 1. Without going into the mathematical de-
tails (see Supplementary Section 3), the common approach
to optimizing the KL-divergence additionally requires a dis-
tribution that can be expressed as a deterministic bijection
of a random variable drawn from some fixed distribution (a
technique termed the ‘reparameterization trick’ (37,38)).

The Dirichlet distribution tends to be the default choice
distribution over the unit simplex, but besides being insuf-
ficiently expressive for our goals (see Figure 2), it is not
efficiently computable in terms of reparameterization. In-
stead, we consider transformations of other distribution
families onto the simplex. For this to work we need a bijec-
tion T : Rn−1 → �n−1 (or perhaps T: (0, 1)n − 1 → �n − 1),
with an efficiently computable Jacobian determinant.

Compositional data analysis transformations. The compo-
sitional data analysis literature has traditionally been con-
cerned with how best to transform data to and from the
simplex. A number of �n−1 → R

n−1 transformations have
been proposed, some with inverses. When used to transform
a normal distribution, for example, these can induce useful
simplex distribution families. Three such bijective transfor-
mations are explored here as possible candidates to define a
suitable distribution.

The first common approach is the additive log-ratio
transformation.

alr(x) =
(

log
xi

xn
; i = 1, . . . , n − 1

)
for x ∈ �n−1 (4)

The alr is typically defined, as it is here, with the divisor
xn, but the vector can be permuted to make any element the

divisor. In some settings it makes sense to choose a particu-
lar element as the reference for interpretability; for example
we might choose xn to be the expression of a housekeep-
ing gene. When searching for the best fitting approximation,
there is not an obvious choice. If y ∼ Normal(�, �), then
the distribution induced by alr−1(y) is sometimes referred to
as a multivariate logit-normal distribution.

The second useful transformation is the multiplicative
log-ratio transformation (39)

mlr(x) =
(

log
xi

1 − ∑i
j=1 xj

; i = 1, . . . , n − 1

)
for x ∈ �n−1 (5)

This transformation can be best understood using a se-
quential stick-breaking metaphor. If a stick is broken into n
pieces, and x1, . . . , xn give the size of each piece, in propor-
tion to the whole, then mlr(x) gives the log-ratio between
each piece and the remaining length of the stick, if the stick
were broken one piece at a time. We will return to this stick-
breaking metaphor shortly.

The probabilistic programming language Stan (40) imple-
ments essentially this transformation as a general purpose
variational approximation to distributions on the simplex as
part of its Automatic Differentiation Variational Inference
approach (41).

The third and most modern approach comes from Aitchi-
son geometry (42). Under specific definitions of scalar mul-
tiplication, vector addition, and inner product the simplex
forms a inner product space. The isometric log-ratio (ilr)
transformation (43) is a bijection that maps a point on a
simplex �n to its coordinates in R

n with respect to some ba-
sis. Though it is not necessarily clear how to choose simplex
basis vectors for the transformation, one proposed scheme
computes vectors corresponding to a full binary tree (44),
bearing some resemblance to the transformation we will
propose.

Figure 3 gives some intuition for how these transforma-
tions operate.

The Pólya tree transformation. To revisit the stick-
breaking metaphor, it is often easiest to consider generating
a vector x ∈ �n − 1 by starting with a stick of length 1 and
breaking it n − 1 times in sequence.

Let yi ∈ (0, 1) represent the proportion of the remaining
stick to break off on the ith break. Then x ∈ �n − 1 can be
produced from y ∈ (0, 1)n − 1 with

xi = yi

i−1∏
k=1

(1 − yk) = yi

(
1 −

i−1∑
k=1

xk

)
∀ 1 ≤ i < n (6)

xn =
n−1∏
k=1

(1 − yi ) = 1 −
n−1∑
k=1

xk (7)

The equivalence between the product and sum form shown
here may not be immediately obvious, but is easy to show by
induction (45), or by noting that 1 − ∑i−1

k=1 xk is the length
of the stick remaining after i − 1 breaks.

Stick-breaking metaphors like the one used to describe
the mlr transformation have a long history. An early exam-
ple (45) explores a stick breaking process of ‘random alms’
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Figure 3. Examples of simplex transformations and simplex distributions that can be induced by transforming a normal distribution. On the left, Cartesian
grid lines are transformed onto �2 using three classes of transformations: additive log-ratio (alr), isometric log-ratio (ilr), and multiplicative log-ratio (mlr).
Grid lines are spaced evenly at a distance of 0.5 in Euclidean space and the point (0,0) is marked with a circle. Each transformation has variations shown in
the columns. The variations are formed by choosing a different denominator, basis, or permutation for alr, ilr and stick breaking, respectively. On the right,
various parameterizations of a 2D multivariate normal distribution, with a diagonal covariance matrix, are mapped onto the simplex with alr, ilr, and mlr
(for each, the furthest right of the three variants shown on the left). The choice of transformation has a dramatic effect on the resulting distribution.

in which each yi is uniformly distributed in (0,1) using the
motivation of distributing a pile of gold dust to a count-
ably infinite sequence of beggars. The possibility of yi be-
ing drawn independently from arbitrary distributions is also
briefly considered. In recent literature, stick breaking oc-
curs most commonly in descriptions of the Dirichlet pro-
cess, which can be formulated as an infinite stick breaking
procedure in which the breaks yi are Beta distributed vari-
ables (46). Random alms can be seen as special case of this
where the splits are U(0, 1) = Beta(1, 1) distributed. The re-
sulting stick sizes are then used to weight draws from a base
distribution. When n → ∞ in Equations (6) and (7), and
each yi is i.i.d. Beta(1, �) distributed, for some �, the result-
ing distribution family is commonly denoted GEM(�), after
Griffiths, Engen, and McCloskey (47). This notion of a stick
breaking prior been generalized to, among other things, in-
clude finite stick breaking distributions (48).

Khan, et al. (49) brings up an issue often ignored in these
sequential stick-breaking procedures. They point out that
the model represents a kind of decision boundary between
every category i and the n − i categories that follow it in the
process, so a particular ordering may fit the data poorly if
no such boundary naturally exists. Zhang et al. (50) take up
this issue in a more serious way, demonstrating classification
problems with as few as three categories that show dramatic
differences in performance depending the permutation of
those categories in the stick breaking process. They go on
to propose models in which category permutations are in-
ferred along with regression coefficients when performing
multinomial logistic regression.

The second key insight that is sometimes neglected is that
there are other ways of breaking a stick. Rather than break-
ing pieces off the stick and setting them aside, we might keep
and recursively break both of the resulting pieces. This can
be thought of as hierarchical stick breaking, as opposed to
common sequential stick breaking. To define a transforma-
tion onto �n − 1, we must always end up with n pieces, so n −
1 total breaks must still be made. Under these restrictions,
breaks in a hierarchical stick-breaking scheme must occur
according to a full binary tree with n leaves (i.e. where every
node is either a leaf or has two children).

With these two insights, we have a space of possible stick-
breaking transformations along the lines of Aitchison’s mlr,
but considering not just the n! permutations of the stick
breaking process, but also the Cn−1 = 1

n

(2(n−1)
n−1

)
(the (n − 1)st

Catalan number) possible full binary trees with n leaves, re-
sulting in a family of Cn−1n! = (2n−2)!

(n−1)! possible transforma-
tions.

This notion of hierarchical stick-breaking bears some re-
semblance to the hierarchical softmax transformation (51),
a technique used in some natural language models, but dif-
fers critically in that hierarchical softmax is not bijective and
is used purely as a means of accelerating inference. More
closely related are Pólya tree distributions (52–54), which
are also defined in terms of a (not necessarily finite) binary
tree, in which each split or break is drawn from a Beta dis-
tribution. Due to this similarity, and apparently lacking any
existing terminology, we refer to this family of hierarchi-
cal stick-breaking transformations as Pólya tree transfor-
mations. One special case of distribution families induced
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Figure 4. Any example showing the calculations done by the Pólya tree
transformation, here taking a vector y ∈ (0, 1)4 to a vector x ∈ �4. At each
node, we compute an ‘intermediate value’ ui which can be thought of as a
stick piece. We recursively ‘break’ these pieces by splitting them according
to the elements of y. The resulting pieces in the leaf nodes are of positive
length and sum to 1, and thus represent a point in the simplex. Importantly,
this transformation in a bijection with simple Jacobian determinant. Dif-
ferent tree topologies yield different transformations that correspond to
different independence structures.

by Pólya tree transformations is the Hyper-Dirichlet Type 1
distribution described by Dennis (55). Figure 4 shows an ex-
ample of calculating a Pólya tree transformation on a small
vector.

Tree topology heuristics. Though Zhang et al. (50) were
able to effectively optimize over stick-breaking topologies,
at most 11 labels were used, and only permutations were
considered. We would have a much harder time sampling
over the possible configurations of a Pólya tree transfor-
mation. To avoid an exhaustive exploration of the space of
trees we must either find an adequate heuristic with which
to choose a tree, prior to optimizing parameters, or pursue
optimization metaheuristics (e.g. simulated annealing or ge-
netic programming) that could explore a subset of the space
in a guided way. The latter may be possible, but each topol-
ogy is accompanied with an entirely new set of parameters
that must be optimized. Optimizing both concurrently is
unlikely to be practical.

Fortunately, there are reasonable approaches we may take
to choosing a topology ahead of optimization. RNA-Seq
is typically a sparse mixture model. Most reads are com-
patible with only a small number of annotated transcripts.
Because of this, the problem displays subcompositional in-
dependence: knowing the mixture of isoforms expressed in
one gene tells us nothing about the mixture of isoforms ex-
pressed in another, if the genes share no reads. This suggests
that the transformation might be oriented in a way to try to
capture this structure.

Aitchison (39) discusses the concept of subcompositional
independence, as well as several other notions of indepen-
dence on the simplex. There, tests for independence are pro-
posed, but they necessitate estimating the full covariance
matrix, an intractable task for a large n. Instead we pursue
the idea of capturing a similar subcompositional indepen-
dence structure by using hierarchical clustering as a heuris-
tic. Each transcript is represented by its set of compatible
reads. We then cluster greedily, choosing the maximum Jac-
card index (i.e. the size of the intersection divided by the size
of the union) at each step. Transcripts, or sets of transcripts,
that share a large proportion of their compatible reads have
a higher Jaccard index, and thus their common ancestor is

placed lower in the tree. In an ideal scenario, this constructs
a tree that encodes a distribution family that has a similar
independence structure to that of the real likelihood func-
tion.

In cases of complete subcompositional independence,
where no reads are shared between transcripts, the likeli-
hood function in Equation (1) is proportional to a Dirich-
let distribution. In Supplementary Section 3 we show that
any Pólya tree transformation can exactly fit any Dirichlet
distribution of the same dimensionality, if applied to appro-
priately chosen Beta distributed random variables.

Choosing a base distribution. Given a transformation onto
the simplex, we now need to choose the distribution that
will be transformed. The Pólya tree transform has been de-
scribed here as a (0, 1)n − 1 → �n − 1 transformation. Most
of the compositional data analysis transforms take the form
R

n−1 → �n−1. We can always use the logit function (or its
inverse) to move between the two so this distinction is in-
significant. We would like then to find a distribution over
R

n−1 or (0, 1)n − 1. To minimize the parameter space, each el-
ement will be considered independent (a common approach
refereed to as ‘mean field variational inference’).

We are limited to distributions that lend themselves to the
reparameterization trick. The two distributions we will con-
sider are the normal (or logit-normal) distribution and the
Kumaraswamy distribution (56), which is qualitatively simi-
lar to the Beta distribution but, unlike the Beta distribution,
can be easily expressed as a transform of a uniform distri-
bution.

Lastly we explore a further transformation of the nor-
mal distribution using a parameterized sinh-arcsinh trans-
formation of the following form

U(Z; α) = sinh(α + arcsinh(Z))

This technique, explored by (57) along with a two-
parameter version, provides an analytically convenient way
to add a parameter controlling skewness to a distribution.
Where Z ∼ Normal(0, 1), we use

Y = μ + σU(Z; α)

as our fully reparameterized distribution. We will refer to
the resulting distribution as a skew-normal distribution,
though other distribution families also go by this name
(58,59).

Mathematical details of the Pólya tree transformation

Earlier, we described the Pólya tree transformation as
a stick breaking transformation between (0, 1)n − 1 and
�n − 1. Here, we give a more formal definition, and gener-
alize it somewhat by not assuming the composition sums
to 1, allowing the stick being broken to be of arbitrary
length. We can then think of the transformation as between
(R+, (0, 1)n−1) and R

n
+, where R+ is the set of positive real

numbers. This can be thought of as mapping an initial stick
length, and n − 1 break points to n stick pieces of positive
length. We also state some properties of the transformation,
with proofs left to the supplement (Supplementary Section
3).
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The Pólya tree transformation is best represented as a full
binary tree, with 2n − 1 nodes, n of which are leaves. To sim-
plify notation somewhat, assume these are assigned indices
so that the root node is labeled 1, internal nodes 1, . . . , n
− 1, and leaf nodes n, . . . , 2n − 1. Additionally, we assume
internal nodes are numbered so that no node has a smaller
index that any of its ancestors, for example, according to a
pre-order traversal. Intuitively, we can think of the ith node
as representing the ith break in a stick-breaking process.

The tree can then be defined by functions giving an inter-
nal node’s left and right children respectively.

left(i): index of node i’s left child
right(i): index of node i’s right child

The transformation T from (u1, y) ∈ (R+, (0, 1)n−1) to
x ∈ R

n
+ is defined in terms of intermediate values u1, . . . ,

u2n − 1 for each node, which have the following relation,

uleft(i ) = yi ui (8)

uright(i ) = (1 − yi )ui (9)

The result of the transformation is then simply the inter-
mediate values from the leaf nodes:

xi = ui+n−1, for i = 1, . . . , n

Often we are operating on the unit simplex, in which case
u1 = 1. In these instances, we will leave the u1 = 1 implicit
and write the transformation as T: (0, 1)n − 1 �→�n − 1. Fig-
ure 4 gives an example of of the transformation from (0, 1)4

to �4.
When implemented, ui values are computed by travers-

ing the tree with any top-down traversal from the root.
In the stick-breaking metaphor, intermediate values can be
thought of as sizes of intermediate sticks after some number
of breaks are performed. The inverse transformation can be
computed by traversing the tree up from its leaves, as is done
in a post-order traversal.

Properties of the Pólya tree transformation. The Pólya tree
transformation has a few interesting properties, which we
summarize here with proofs and further exposition left to
the supplement.

First, importantly for the transformation to be tractable,
the Jacobian determinant has a simple form that can be
computed in time O(n). It is simply the product of the in-
ternal node intermediate values.

THEOREM. Let (u1, y) ∈ (R+, (0, 1)n−1), and JT be the Ja-
cobian matrix of T((u1, y)). Further, let ui for i = 2, . . . , 2n −
1 be the intermediate values as defined in Equations (8) and
(9). Then

| det(JT)| =
n−1∏
i=1

ui

The proof to this theorem is under Supplemental Theorem
3.4.

The choice of base distribution induces different families
of distributions on the simplex under the transformation.
If we use Beta distributions as our base and parameterize
them by assigning a vector of intensities � to the leaves, then

choose Beta parameters to be the sums of the left and right
subtree intensities, respectively, we have a class of distribu-
tions we call HierarchicalBeta. We go on to show this family
is equivalent to the Dirichlet distribution, regardless of the
tree topology defining the transformation.

THEOREM. For any Pólya tree transformation T: (0,
1)n − 1 �→�n − 1where n ≥ 2and any α ∈ R

n
+

Dirichlet(α) = HierarchicalBeta(T, α)

The proof to this theorem is under Supplemental Theorem
3.10.

This equivalency opens up the possibility of using Beta
distributions as the base distribution, which gives an ex-
act fit in cases of complete subcompositional independence,
while generalizing to capture uncertainty information in
ambiguous features. This relationship could also be ex-
ploited to speed up inference in models with Dirichlet pri-
ors.

RESULTS

To demonstrate the usefulness of our approach to likeli-
hood approximation, we undertook five analyses. In the first
two subsections we show that the approximation is a good
fit to the likelihood function of actual RNA-Seq datasets,
and that it can be efficiently fit and evaluated. Then we fo-
cus on demonstrating that it can improve the detection of
differentially expressed transcripts, using an existing simu-
lation benchmark, and then separately using real data from
the GTEx project. Finally, we show that using the approxi-
mate likelihood produces more reliable estimates of of pair-
wise correlation.

The Pólya tree transform improves the goodness of fit to like-
lihood marginals

We explored the fit of a number of possible approximations
to the RNA-Seq likelihood function produced transforming
standard probability distributions. We used a three bijective
transformations from the compositional data analysis liter-
ature: additive log ratios (alr), multiplicative log ratios (mlr),
(39) and isometric log-ratios (ilr) (43). The transformation
we propose, the Pólya tree transformation, is a fully gener-
alized stick-breaking transformation, which can be thought
of as an extension of mlr. The transformation is defined in
terms of a tree. We evaluated three heuristics for choosing
this tree: sequential trees (equivalent to mlr), random trees,
and trees based of hierarchical clustering. We also evaluated
three possible base distributions to be transformed: the Ku-
maraswamy (56), logit-normal, and logit-skew-normal dis-
tributions. These transformations and tree heuristics are de-
scribed in detail in the methods section.

We first evaluated the fit of transcript marginal densities
using Wilcoxon signed-rank tests. For every transcript in a
set of annotations, 1000 samples were drawn from a Gibbs
sampler (representing the exact likelihood function) and
the same number of samples were drawn from the approx-
imated likelihood. The signed-rank test was run for each
transcript, producing a P-value.

The Gibbs sampler used 8 randomly initialized chains.
Each was burned-in for 2000 iterations, then 25 000 sam-
ples were generated and every 25th was saved for analysis,
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Figure 5. The goodness of fit of several approximations evaluated by in-
specting the distribution of P-values, where perfect fit would produce a uni-
form distribution. P-values represent the degree of disagreement between
1000 samples from the Gibbs sampler and 1000 samples drawn directly
from various approximations of the likelihood function for 16 mouse tissue
samples taken from (61). ‘Gibbs Replicate’ is a repeated run of the Gibbs
sampler, which is close to a hypothetical exact fit. P-values were computed
using the Wilcoxon signed-rank test. Here, ‘PTT’ is the Pólya tree trans-
form, which was tried with several distribution families and tree building
rules (‘sequential’, ‘random’, and hierarchical clustering, labeled ‘heuris-
tic’). The ilr and alr transformations are defined in the Methods section,
and ‘approximate factorization’ is the approximation scheme proposed by
Zakeri et al. (33). Boxplots are drawn with upper and lower whiskers cor-
responding to the 99th and 1st percentile, respectively.

producing a total of 1000 samples. We found these settings
sufficient for marginal distributions to have converged for
a vast majority of transcripts, where convergence was mea-
sured by comparing within-chain and between-chain vari-
ance (60).

If an approximation is a perfect fit, we would expect to
see a uniform distribution of P-values. Imperfect approxi-
mations will yield P-value distributions that are increasingly
skewed towards smaller numbers. The greater the tendency
towards small P-values, the worse the overall fit. Figure 5
shows the combined results of this test using a sample from
each of 16 tissues taken from a mouse body map data set
(61) (accession number PRJNA375882), and 138 930 tran-
scripts from the Ensembl 95 annotations (62). To provide
some intuition of the correspondence between P-value and

Figure 6. Kernel density plots of exact and approximate marginal densi-
ties for examples with small P-values. Columns correspond to P-values of
decreasing powers of 10, while rows are randomly selected examples with
approximately that P-value, giving a sense of how P-value corresponds to
goodness of fit. It can be seen that a very small P-value does not neces-
sarily correspond to a catastrophic failure of the approximation. The plots
shown were generated from a mouse liver sample from (61) with approxi-
mate densities using logit-skew-normal Pólya tree transform distribution,
using the hierarchical clustering heuristic to choose the tree topology.

fit, a number of examples with low P-values are plotted in
Figure 6.

We see that the approximating distribution family matters
a great deal. Distributions based on the Pólya tree transfor-
mation (labeled ‘PTT’) offer a dramatically better fit than
the traditional compositional data analysis transforms alr
and ilr, and we see that the heuristic tree construction is a
sharp improvement over a random tree topology. The com-
mon sequential stick-breaking approach (equivalent to the
mlr transformation) is seen to be the worst approach to
stick-breaking, perhaps in part because such a long chain of
dependent breaks is numerically less stable and thus more
difficult to fit to the target likelihood. As no attempt was
made to optimize over permutations, it is also possible se-
quential stick breaking could be improved with the right
permutation heuristic.

On this test, the approximate factorization approach pro-
posed by Zakeri et al. (33) also performs very well, offering
a slight median improvement over the Pólya tree transfor-
mation. Though far more efficient in time and space that
the un-approximated likelihood function, it does not match
the low constant time and space of the Pólya tree trans-
formation (Supplementary Figure S2). Exact factorization,
however, has little performance benefit as relatively few read
pairs will have identical probabilities when complex bias
modeling is used.

This results holds across the other samples from the
mouse body map data (Supplementary Section 2), but to
ensure that the approximation is broadly effective and not
somehow tuned to these particular datasets, we also eval-
uated logit-skew-normal Pólya tree transform distribution
with heuristic tree topologies on a variety of of other RNA-
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Table 1. Auxiliary datasets used to evaluate the consistency of like-
lihood approximation performance, as was done in Figure 5. Median
P-values are all for the proposed approximation (labeled ‘Logit-Skew-
Normal PTT|Heuristic’ in Figure 5). A uniform distribution of P-values,
and thus a median P-value near 0.5 is desirable as it would result from an
exact fit. Numbers of transcripts listed are those annotated in version 90 of
Ensembl. Accession numbers for these samples, from top to bottom, are:
SRR453566, SRR030231, SRR065719, SRR023546 and SRR896663

Species Num. Transcripts Med. P-value

S. cerevisiae 7126 0.28
D. melanogaster 34 749 0.37
C. elegans 58 941 0.35
M. musculus 131 195 0.40
H. sapiens 200 310 0.40

Seq datasets, spanning a number of species with varying
transcriptional complexity. We see that likelihood approxi-
mation has remarkably consistent performance across these
samples (Table 1). Curiously though, the approximation ap-
pears to fit moderately better with a larger number of tran-
scripts. The median P-value for both the human and mouse
samples is approximately 0.4, and for the yeast sample, 0.28.
Likely this is due to a smaller proportion of the transcripts
being expressed in species with extensive alternative splic-
ing.

We also evaluated how approximations affect the esti-
mation of effect size tail probabilities. We define minimum
log2 fold-change as 90% posterior lower bound on log2 fold
change. More precisely, if x(a)

i , x(b)
i are the unobserved tran-

script expression values for transcript i from samples a and
b, respectively, then the minimum log2 fold change is a num-
ber �i where

P

(∣∣∣∣∣log2
x(a)

i

x(b)
j

∣∣∣∣∣ > δi

)
= 0.9

Minimum log2 fold-change is a convenient way of summa-
rizing evidence for differential expression, so error intro-
duced into these estimates by an approximation would be
a major concern.

We compared estimates of minimum log2 fold-change
across all pairwise comparisons between individual sam-
ples from each of the 16 tissues. The results in Figure
7 broadly agree with the P-value goodness of fit tests.
The approximate factorization scheme introduces only
slightly more error than simply re-running the Gibbs sam-
pler, and the best Pólya tree transformation based ap-
proximation only slightly more than that, while being far
more efficient. Approximations based on standard compo-
sitional data analysis techniques can catastrophically in-
flate the estimates of fold-change and thus false-positive
rates.

Estimating and sampling from approximated likelihood can
be faster than bootstrap sampling

The procedure for sampling expression vectors from our
approximated likelihood function is to simply generate a
random vector from a Normal(0, I) distribution, and apply
the transform, which is O(n) where n is the number of an-

Figure 7. Error in estimates of minimum log2 fold-change introduced by
various approximations. A positive error indicates an overestimation of the
true effect size, potentially introducing false positives, a negative error an
underestimation, potentially introducing false negatives. ‘Minimum log2
effect size’ is the effect size at which there is a 90% posterior probability
that the true effect size is higher. Boxplots are drawn with upper and lower
whiskers corresponding to the 99th and 1st percentile, respectively.

notated transcripts. Because samples are so cheap to gen-
erate, for a sufficiently large numbers of samples, it out-
performs not only MCMC approaches, but also the ex-
tremely fast bootstrap approach implemented in Kallisto
(63).

To locate the break even point, we recorded the overall
time needed to generate increasingly large numbers of sam-
ples with both methods. In both approaches these times
include the necessary initialization time. Kallisto uses its
own pseudoalignment algorithm, while Polee takes as in-
put existing alignments. To compare on equal ground, we
exported alignments generated by Kallisto and used them
as input into Polee. Added to the Polee timings is the
time Kallisto took to generate these alignments, the time it
took to approximate the likelihood function, and to gen-
erated the requested number of samples. Both methods
were run on 8 CPU cores. We found that past about 100
samples (where each sample is a vector of transcript ex-
pression estimates), the amortized cost of sampling be-
comes less for Polee than Kallisto (Supplementary Figure
S1).

Approximate likelihood functions can be evaluated di-
rectly, so there is not necessarily a need to sample, but sam-
pling is useful in some applications. For example, Polee can
be used as a drop-in replacement for Kallisto when using
Sleuth (31) to call differential expression. Speed will be sim-
ilar or faster, and this sampling technique is not subject to
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the limitations of bootstrap sampling, which can yield im-
precise results for transcripts with a very small number of
reads.

Approximate likelihood models outperform other models in
identifying differentially expressed transcripts

We expanded an analysis performed in Pimentel et al.
(31), which demonstrated superior performance when us-
ing Sleuth to call differential expression, especially at the
transcript level, using simulated data. We include the like-
lihood approximation method described here in two ways.
First we developed a Bayesian regression model (see Sup-
plementary Section 5) in TensorFlow (64) that makes use
of approximated likelihood functions directly, which is la-
beled ‘polee’ in the results. Second, we generated sam-
ples from the approximated likelihood to mimic the out-
put of Kallisto, and used this as input to Sleuth. This ap-
proach is labeled ‘polee/sleuth’. With low numbers of repli-
cates Swish will tend to produce low resolution p-values.
To compensate, we broke p-value ties using fold-change
estimates.

The three simulations, labeled ‘gfr’, ‘isoform’ and ‘gcd’
correspond to three sets of assumptions. The gfr simulation
matches simulated effect sizes to those detected by Cufflinks
(65) in a reference dataset. The ‘gcd’ simulation adopts the
assumption that gene expression is perturbed while hold-
ing isoform mixtures fixed, and the ‘isoform’ simulation as-
sumes the expression values of transcripts are perturbed in-
dependently of each other. Results from these simulations
are shown in Figure 8.

On the column to the right, we see that differential tran-
script expression tests show both polee and polee/sleuth
with significantly improved performance over other meth-
ods (i.e. greatly increased recall at the same fdr levels). These
results suggest that samples drawn in proportion to the like-
lihood are more informative than bootstrap samples for
this task, and that most informative of all is actually in-
cluding the likelihood function, or its approximation, in
the model. When detecting gene-level differential expres-
sion, Polee very slightly trails Sleuth, which exceeds the per-
formance of all the other methods. Oddly, using likelihood
approximation samples with gene-level Sleuth analysis (la-
beled ‘polee/sleuth’ in Figure 8) does not yield similar per-
formance. This may be due to Sleuth’s filtering heuristics be-
ing poorly calibrated for samples from the posterior, rather
that bootstrap samples.

Swish (28) shows a somewhat unusual precision-recall
curve with a high initial false discovery rate, but a very good
trade-off at points. Inspecting the results, this appears to be
due to it making overconfident differential expression calls
for genes or transcripts with high biological variance. Since
this simulation involves cases with very high biological vari-
ance, and only has three replicates per group, it rewards
parametric models of biological variance, and can trip up
nonparametric models like Swish. The authors of Swish are
aware of this limitation, noting that it does ‘not necessarily
have sufficient power to detect differential expression when
the sample size is <4 per group’, as is the case here. Despite
this, that it matches or outperforms Polee and Sleuth and
certain FDR cutoffs further reinforces the importance of

Figure 8. Plots of false discovery rate versus recall calling differential ex-
pression on simulated RNA-Seq experiments. False discovery rate (i.e., the
proportion of differential expression calls that are incorrect) and recall
(i.e. proportion of differentially expressed features identified) were com-
puted for each method on three simulations (gfr, isoform and gcd, ex-
plained in the text), with a variety of methods. Each line represents the
aggregate FDR-recall curve across 20 replicates of the simulation, each
consisting of six samples split across two conditions.

accounting for estimation uncertainty as these three meth-
ods do.

Differential expression calls made with approximate likeli-
hood are more internally consistent

Evaluating the accuracy of differential expression calls is
fraught by a lack of any agreed upon ground truth. Simula-
tions are one way around that issue, but assume the model
of expression and sequencing used to generate the simu-
lated reads is a good approximation of reality. Here we ex-
plore another option: calling differential expression with a
large number of samples, then testing the ability to recover
the same calls with a small number of samples. This avoids
putting our faith in the verisimilitude of a simulation, but
to be a reasonable proxy for accuracy it instead assumes the
model converges to the correct result with enough replicates.
Models can of course be both perfectly internally consis-
tent and totally wrong, but taken together with the simula-
tion benchmark in the previous section, consistency makes
a case for accuracy in real data.

Using brain tissue data from GTEx (35), we compared
the same regression model using five different approaches
to transcript quantification: maximum likelihood estimates,
maximum likelihood with bootstrap variance estimates,
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Figure 9. FDR/recall curves for subsets of the GTEx data, using differ-
ent methods of estimating transcript expression. For each curve, the same
regression model is used, with expression modeled as either maximum like-
lihood or posterior mean point estimates, bootstrap estimates of variance,
Gibbs sampler estimates of variance, or approximate likelihood. Note the
x-axis has been adjusted for each column to show the details of the curve.

maximum likelihood with variance estimated from a Gibbs
sampler, posterior mean estimates generated from the likeli-
hood approximations, and the full approximated likelihood.
In addition to running regression with all 13 brain tissues,
we also evaluated pairwise differential expression between a
transcriptionally similar pair of tissues (hippocampus and
amygdala), and a transcriptionally divergent pair (cortex
and cerebellum).

Each run was compared to the same regression model run
with a larger number of replicates (96 for the pairwise tests,
and 1443 with all tissues). These tests were run with 10 dif-
ferent random subsets to draw the aggregate FDR/recall
curves in Figure 9.

The results show broadly that the full approximate likeli-
hood model outperforms point estimates, as well as boot-
strap and Gibbs sampler estimates. Estimating variance
with a Gibbs sampler is the most competitive alternative,
outperforming bootstrap variance estimates. This agrees
closely with with the results for ‘polee/sleuth’ we saw in
the simulated differential expression benchmark, where we
improved the baseline performance of Sleuth by using ap-
proximate likelihood samples rather that bootstrap samples.
Posterior mean estimates offer an improvement over max-
imum likelihood estimates, and appear to begin to catch
up to the approximate likelihood approach when a large
enough number of samples is used. An important caveat
is that producing posterior mean point estimates either in-
volves MCMC, or a variational inference, so in generating
the estimates, there is little or no performance advantage to
using posterior mean estimates instead of approximate like-
lihood. In the pairwise tests, bootstrap estimates perform
similarly to using posterior mean point estimates, while un-
derperforming when using all samples.

The amygdala versus hippocampus test shows very poor
performance for all the involved methods, as the differences
that do exist between these tissues are small or inconsis-
tent, so they are only reliably detectable with a large number
of samples. Nonetheless, approximate likelihood does make
better use of the limited data, showing a clear improvement.

Approximate likelihood improves estimates of pairwise corre-
lation

Large amounts of available sequencing data have led to
an increasing emphasis on deciphering the functional rela-
tionships between genes. Co-expression networks are often
a preliminary step towards inferring regulatory networks
(66). Constructing co-expression networks necessitates esti-
mating pairwise correlation or covariance between genes or
transcripts across samples. There are many pairs, but rela-
tively few that are highly correlated or highly anticorrelated,
so results can easily be contaminated by false positives, a
particular risk with low expression genes, and pairs of sim-
ilar isoforms.

Co-expression in the the GTEx data was examined by
Saha et al. (67). To control false-positives, aggressive ad
hoc filtering was done on the feature set. In addition to in-
cluding only isoforms with relatively high expression (‘iso-
forms with at least 10 samples with ≥1 transcripts per
million (TPM) and ≥6 reads’), additional filters were ap-
plied for isoform variability, mappability, and many features
were simply removed to maintain computational tractabil-
ity. This left only 6000 genes and 9000 isoforms (for compar-
ison, Ensembl annotates nearly 200 000 transcripts). After
filtering, a precision matrix was estimated using a graphical
lasso model.

This filtering procedure reduces false-positives, but at the
cost of potentially introducing false-negatives. A model af-
fording a more principled accounting of estimation uncer-
tainty would obviate the need for much of this ad hoc filter-
ing.

To explore this idea, we used a more simplistic analy-
sis of co-expression, computing pairwise Spearman correla-
tion matrices across all annotated transcripts, with no filter-
ing whatsoever. To see how the choice of estimate affected
the results, we did this with maximum likelihood, posterior
mean, bootstrap, and approximate likelihood. To avoid di-
vision by zero, and to otherwise slightly moderate the effects
of zeros, we added a pseudocount of 0.1 TPM to all esti-
mates in the maximum likelihood and bootstrap samples.
The uncertainty information provided by bootstrap and ap-
proximate likelihood was incorporated by computing the
average Spearman correlation across 20 samples.

As with differential expression, there are no plausible
gold standard estimates to compare to, so we resorted to
using consistency as a proxy for accuracy. We selected one
tissue from the GTEx data, cortex, consisting of 118 sam-
ples, and computed the correlation matrices. Treating this
as ground truth for each respective estimate, we recomputed
the matrices using random subsamples of 12 of the 118 sam-
ples, and measured the difference between each element in
the matrix. This was repeated 10 times for different random
subsamples. The aggregate results are plotted in Figure 10.

Looking first at transcript expression (Figure 10, upper
plots), we see that point estimates tend to produce mod-
erately unreliable estimates of positive correlation, and ex-
tremely unreliable estimates of negative correlation. In large
part, this is remedied by using either bootstrap or Gibbs
samples or approximate likelihood, with the latter offer-
ing a slight improvement. When considering isoform usage
(Figure 10, lower plots), point estimates are highly unre-
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Figure 10. Consistency of Spearman correlation using different methods of estimating transcript expression. Pairwise Spearman correlation was computed
for every pair of transcripts using maximum likelihood and posterior mean point estimates, as well as averages across bootstrap samples, Gibbs sampler
output, and samples from the approximate likelihood. In the upper plots, transcript expression was used, and in the lower, isoform usage (transcript
expression divided by the overall expression of its gene). Error here measures the difference between estimates made using all 118 cortex samples, and
estimates using a random subset of 12 samples (i.e. ‘true’ correlation minus predicted correlation). These plots show the aggregate error across ten random
subsets. Boxplots are drawn with upper and lower whiskers corresponding to the 99th and 1st percentile, respectively.

liable when measuring either positive or negative correla-
tion. Bootstrap and Gibbs estimates improve this, but ap-
proximate likelihood estimates are clearly the most reliable
here.

DISCUSSION

Here we have described how a full likelihood model of
RNA-Seq transcript expression can be made tractable by
approximating the likelihood function. Because including
the likelihood, rather than relying on point estimates, bet-
ter accounts for estimation uncertainty, differential expres-
sion calls are more reliable. The method we developed to
do so, the Pólya tree transformation, is a general purpose
approach to approximating sparse mixture models. Though
we have confined ourselves here to showing its benefits on
a few analyses, there are other possible applications. Other
RNA-Seq analyses, like classification, clustering, and di-
mensionality reduction could benefit from the same ap-
proach. It also presents an opportunity of performing iso-
form level analysis of single-cell RNA-Seq, accounting for
the high estimation uncertainty where there are relatively
few reads per cell.

This rethinking of RNA-Seq analysis also poses ques-
tions about how best to construct models of transcript
expression. In our purposely simplistic model of pairwise
transcript correlation we made a point of doing no filtering
or preprocessing. Sticking to this principle when develop-
ing a more sophisticated model of coregulation, while keep-
ing inference tractable, is not trivial. There is also also addi-

tional work needed to scale the method to run inference on
tens or hundreds of thousands of cells. Though we were able
to run a regression model on the GTEx brain data consist-
ing of 1443 samples and over 39 billion reads, this took over
two days to run. Scaling the method to tens or hundreds
of thousands of samples or cells will require additional en-
gineering, but with out of core methods and faster evalu-
ation of the approximation, it is a goal that is well within
reach.

Gelman (68) describes the way in which statistics is some-
times used, either deliberately or otherwise, to transmute
randomness into certainty as ‘uncertainty laundering.’ The
two-step process often used in RNA-Seq of first estimating,
then separately modeling transcript expression can be con-
sidered a form of uncertainty laundering, but a form under-
taken often out of practical necessity. We believe the method
described here, a general approach to reducing the the com-
putational demands of probabilistic RNA-Seq models, is a
significant push in the direction of honest accounting of un-
certainty.

DATA AVAILABILITY

The method is implemented in a Julia package available
from https://github.com/dcjones/polee

The mouse body map data used for goodness of fit tests
is available at accession PRJNA375882. Accession numbers
for the data shown in Table 1 are, from top to bottom,
SRR453566, SRR030231, SRR065719, SRR023546 and
SRR896663.

https://github.com/dcjones/polee
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SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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