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Johne’s disease (JD), also known as paratuberculosis, is a severe production-limiting

disease with significant economic and welfare implications for the global cattle industry.

Caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP), JD

manifests as chronic enteritis in infected cattle. In addition to the economic losses and

animal welfare issues associated with JD, MAP has attracted public health concerns

with potential association with Crohn’s disease, a human inflammatory bowel disease.

The lack of effective treatment options, such as a vaccine, has hampered JD control

resulting in its increasing global prevalence. The disease was first reported in 1895, but

in recognition of its growing economic impact, extensive recent research facilitated by a

revolution in technological approaches has led to significantly enhanced understanding

of the immunological, genetic, and pathogen factors influencing disease pathogenesis.

This knowledge has been derived from a variety of diverse models to elucidate

host-pathogen interactions including in vivo and in vitro experimental infection models,

studies measuring immune parameters in naturally-infected animals, and by studies

conducted at the population level to enable the estimation of genetic parameters, and

the identification of genetic markers and quantitative trait loci (QTL) putatively associated

with susceptibility or resistance to JD. Themain objectives of this review are to summarize

these recent developments from an immunogenetics perspective and attempt to extract

the principal and common findings emerging from this wealth of recent information.

Based on these analyses, and in light of emerging technologies such as gene-editing,

we conclude by discussing potential future avenues for effectively mitigating JD in cattle.

Keywords: cattle, MAP infection, Johne’s disease, paratuberculosis, disease resistance

INTRODUCTION

Johne’s Disease—Global Context, Economic, and Zoonotic
Relevance and Control
The Food and Agriculture organization (FAO) estimates that in order to meet the growing demand
from a world population projected to reach over 9 billion, annual meat production will need to
increase by 41 million tons over 2019 production levels to 376 million tons by 2030 (1). In addition,
according to International Farm Comparison Network (IFCN), growth in global milk production
be required to increase by 35% by 2030 (2).
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Leading the response to this demand is the bovine industry,
and a number of recent changing trends in dairy production
across the globe have been identified, with significant increases
in the size of dairy herds (3), and a sectoral expansion in the
EU after the abolition of milk quotas (4). These increasing
cattle numbers and production levels, and other factors like
recent changes toward increased animal housing in parts of
the world, will exacerbate issues associated with the control
of infectious diseases (5). A key feature of successful farm
enterprises of the future will be efficiency of production,
and multiple infectious diseases not only threaten sectoral
efficiency and sustainability, but also have serious animal
welfare and public health implications (6). There is a growing
appreciation of the need to control infectious diseases at
source, and infections with zoonotic potential are of particular
concern. The advent of the “One Health” approach to achieve
optimal health among humans, animals and environment is
a major step in the efforts to control infectious and zoonotic
diseases (7).

The focus of this review is on one such disease with
serious animal production, welfare, and potential human health
implications named Johne’s disease (JD) or paratuberculosis. JD
is a chronic progressive intestinal inflammatory disease caused
by infection with Mycobacterium avium subsp. paratuberculosis
(MAP) in cattle. The disease is named after a German pathologist,
Heinrich Albert Johne, and was first reported in cattle in 1895
(8). JD pathogenesis is characterized by a long latent sub-clinical
phase lasting for years, followed by clinical phase, where overt
signs such as chronic diarrhea, emaciation, and decreased milk
production and fertility are exhibited by infected animals before
eventually leading to death (9).

JD is now a globally prevalent contagious disease with major
economic and welfare implications on the cattle industry. In a
recent survey involving 48 countries, authors reported a herd-
level prevalence of JD ranging between 1 and >40%; and the
within-herd prevalence ranging between 1 and 15% in dairy cattle
alone (10). Prevalence of JD is not just limited to livestock, as
MAP has also been isolated from wild ruminants as well as non-
ruminants suggesting their possible role as reservoir hosts (11).
Ruminant species such as bison (11), white-tailed deer (12), red
deer (13), elk (14), and non-ruminant species such as wild rabbits,
foxes, guanacos (15), and even primates such as mandrills and
macaques (16), have been shown to harbor MAP illustrating
the broad host species adaptation of this mycobacteria. MAP
has also been isolated from free-living amoebae suggesting
their under-appreciated role as vectors in water-borne MAP
transmission (17). This broad range of host species could account
for widespread transmission ofMAPmaking it difficult to control
JD across the globe.

MAP is shed from infected hosts into the environment
through feces, therefore, the fecal-oral route is considered the
primary mode of transmission. Neonatal calves, and calves <6
months of age, are highly susceptible to MAP infection (18),
via their consumption of contaminated colostrum, waste milk,
and/or feed contaminated with feces containing MAP (19, 20).
Other routes of MAP transmission have also been documented
including intra-uterine transmission from dam to calf (21),

potential transmission through semen from infected bulls (22),
and the bio-aerosol route (23).

As a result of its success as a pathogen, MAP infection
is responsible for significant negative impacts on dairy cattle
economics worldwide. Herd-level economic losses associated
with JD in U.S. dairy operations was estimated at $200-$250
million dollars annually (24). In Canada, estimated loss due
to JD is $49 CAD per cow per year (25). For a cow in a
JD affected herd in Ireland, a profit margin reduction between
e168 and e253 was estimated (26), while in Australia, it was
estimated to be AUD 44.84 per cow/year (27). Although these
are per cow estimates, the losses incurred amount to millions in
lost revenue when the overall affected population is considered.
These losses are due to decreased milk production in the
infected herds, increased mortality and premature culling of
MAP infected animals, reduced fertility, reduced slaughter value
as JD is associated with weight loss, increased management
costs, and diagnostic and veterinary costs aimed at reducing
the incidence of JD (28). Further, initial reports have speculated
that MAP co-infection as a potential reason for thwarted bovine
tuberculosis (bTB) eradication schemes in United Kingdom, as
chronically bTB infected herds have increased risk of having
positive MAP infection status as opposed to non-chronically
infected herds (29).

Another serious implication of MAP is its potential zoonotic
association with Crohn’s disease (CD), an inflammatory bowel
disorder in humans (30). The basis for this zoonotic link stems
from studies reporting detection of MAP from patients suffering
from CD (31–35) along with reports of remission of clinical
symptoms in CD patients treated with antimicrobial drugs
(36). Despite this, the zoonotic nature of MAP is still deemed
debatable andwill remain such until conclusive evidence is drawn
explaining the cause-effect mechanism involved between MAP
and CD (37, 38). Of particular concern for the globally expanding
dairy sector is the reports of MAP being detected in pasteurized
milk and dried milk-based products, which has sparked MAP
public health concern debates (39). Together, these two elements
of heat resilience and association with CD makes MAP one of
the most potentially devastating infectious disease agents for the
global dairy industry.

Currently, there is no cure for MAP, and JD control across
the globe has proven difficult. The first contributory issue is that
it is challenging to fight MAP infection when it is so difficult
to detect. As JD is a contagious infectious disease, its accurate
diagnosis during early stages is critical to limit MAP spread
and infection within and across herds. JD diagnosis is based on
immune assays like ELISA that detect MAP-specific antibodies in
milk or serum, and by tests that detect MAP in feces or tissues
either by culture, or polymerase chain reaction (PCR). However,
these tests are limited in their ability to diagnose early stages
of MAP infection because of their reduced sensitivities during
subclinical stages where antibody levels and fecal MAP shedding
are low (40). Adding to this, MAP culture techniques are highly
specific, but lack sensitivity during intermittent shedding of JD,
plus MAP culture requires a long turnaround time to confirm
positivity (41). Milk/serum ELISA is a commonly used diagnostic
method because it is cost-effective, simple to perform, and has a
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quick turnaround time compared to MAP culture. However, the
drawback of this method is its low sensitivity (30%), which may
not allow for detection during the early phase of infection when
the antibody response is minute (40).

Prevention of JD is the most preferable option, but currently
no efficacious vaccine exists to confer protection against MAP.
Inactivated MAP vaccines tested in cattle have so far only been
effective at reducing fecal shedding and tissue colonization, and
are unable to eliminate MAP infection (42, 43), and efforts to
produce a vaccine that can prevent MAP infection and/or confer
protective immunity are still ongoing (44).

With the absence of vaccines and treatment options,
the current control measures to reduce JD incidence are
management-based; including employing a “test and cull
strategy” to remove MAP infected animals from the herd (45),
and enhancing on-farm biosecurity and surveillance measures
to prevent MAP transmission within and between herds (46).
In this regard, several countries have adapted voluntary JD
eradication programmes (47). Genetic regulation of the host
response to MAP infection is also being extensively studied in
order to explore potential genetic selection strategies to enhance
resistance of dairy cattle to JD (48).

Overall, JD continues to seriously plague the cattle industry
worldwide. Understanding of host immune response to MAP
infection and its genetic regulation in cattle has been made
possible by diverse research studies over the years. We now
know that response to MAP infection is complex and heritable
(49), leading to differences in clinical presentations of JD
between individuals. These findings have opened up potential
new avenues for early disease diagnosis and implementation of
genetic and genomic selection schemes for breeding more JD
resistant animals. Furthermore, the genetic regulation of the
same has been studied by estimating genetic parameters and
identifying genetic markers influencing JD susceptibility and
resistance in cattle. The main objectives of this review are to
highlight the key findings from an immunogenetic perspective,
potential mitigation strategies through selective breeding, and to
highlight knowledge-gaps that future research efforts could aim
to address to help advance our progress toward the control of JD.

UNDERSTANDING MAP INFECTION

JD Pathogenesis
Despite the evidence for an extensive environmental reservoir
of MAP, infection levels in dairy cattle are relatively low
at a national level, implying that possibly innate immune
processes and the genetic background of the host may play
a determining role in resistance to infection. Resilience to
MAP infection is seen in cattle, and it has been reported
that only fraction of infected animals progressing to clinical
JD (50). The pathogenesis of JD follows various stages and
is broadly classified into early, sub-clinical and late infection
phases. The early stage encompasses interactions between
MAP, which is an obligate intracellular bacterium, and innate
immune cells called macrophages. Following ingestion by the
host, MAP translocates into gut-associated lymphatic tissues
(GALT) where it is phagocytosed by macrophages. Translocation

across the mucosal epithelium is facilitated by specialized
intestinal epithelial cells such as M cells and enterocytes through
fibronectin-dependent mechanisms (51–54), and likely also by
motile dendritic cells that can directly sample the pathogen
from the intestinal lumen and migrate to draining lymph
nodes to carry out antigen presentation (55) (Figure 1). Pattern
recognition receptors (PRRs) on the macrophage surface, such
as complement receptors (56), mannose receptors (57, 58), β-
integrin receptors such as CD11a and CD18 (59), and CD14
receptors (60), are shown to mediate MAP recognition and
phagocytosis. When fully activated, macrophages are capable of
exerting their microbicidal defense against MAP such as MAP
ingestion and creation of a phagosome. However, similar to other
mycobacteria spp., MAP has evolved several strategies to survive
within host cells like macrophages and disseminate infection
within the host (61). These include inhibiting phagosomal
maturation (62), interfering with macrophage apoptosis and
phagosome acidification (63), evading antigen presentation
by macrophages by down-regulating the expression of MHC
molecules (64), and regulating different signal transduction
pathways (65, 66). Successful establishment of MAP within host
cells in the early stage gives way to the latent subclinical phase
that can last for 2–5 years (67). During the subclinical phase,
no display of overt clinical signs is noticed in the infected
animal making JD diagnosis difficult, although intermittent
fecal shedding of MAP is often detected later leading to MAP
contamination and spread within herds. During both the early
and subclinical phases, the host inflammatory response induces
localized granuloma formation aimed at sequestering MAP-
infected macrophages to contain infection (67). However, as
disease progresses, further dissemination of MAP infection
leads to severe intestinal inflammatory granulomatous lesions
and subsequent onset of the clinical phase of JD, which is
characterized by the previously described clinical symptoms
(68). These clinical signs are a result of the immunopathology
associated with granulomatous lesions, which include thickening
of intestinal wall leading to malabsorption, chronic diarrhea
and profuse protein losing enteropathy (9, 68). Diagrammatic
representation ofMAP uptake and immune response is presented
in Figure 1.

Host Immune Response
The immune response to MAP infection in cattle involves a
complex interplay between host and the pathogen highlighted
by activation of different immune cells by numerous cytokines
and co-stimulatory molecules during different stages of JD
pathogenesis. Phagocytosis of MAP by macrophages is followed
by an early cell-mediated immune response. This includes
activation of immune cells such as γδ T cells, antigen processing
and presentation by macrophages, and the activation of CD4+ T
cells whose effector function has a great bearing on the outcome
of MAP infection in the host particularly during early stages (67,
69). CD4+ T cell subtypes are responsible for steering the cell-
mediated immune response against intracellular MAP. Activated
macrophages secrete IL-12 and chemokines that recruit CD4+ T
cells to the GALT. CD4+ T cells further recognize MAP antigenic
determinants presented by macrophages via MHC II molecules
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FIGURE 1 | Diagrammatic representation of MAP uptake and immune response during disease progression. Following oral ingestion of MAP, M cells facilitate uptake

of MAP across mucosal epithelium into submucoal gut-associated lymphatic tissue (peyer’s patches). Here MAP is phagocytozed by macrophages (sometimes

dendritic cells can sample MAP from intestinal lumen directly). Early immune response against MAP infection involves activation of macrophages and T-cells to

promote Th1 cell-mediated immune response. Predominance of cell-mediated immune response is observed during subclinical stage of the disease; however, the

onset of clinical signs coincides with shift from Th1- to- Th2 antibody-mediated immune response.

and in turn secrete IFN-γ, which enhances macrophage effector
killing functions (67). IFN-γ further acts on macrophages to
secrete more IL-12, which stimulates proliferation of more CD4+

T cells leading to enhanced inflammatory changes and polarizes
a Th1 cell-mediated immune response (67, 69). The IFN-γ
ELISA, a diagnostic tool used to detect sub-clinical stages of
JD is based on measurement of production of IFN-γ by MAP-
stimulated peripheral blood mononuclear cells (PBMCs) (70).
The ability of IFN-γ to enhance the anti-mycobacterial activity
of macrophages against intracellular MAP is well-documented; it
has been reported that IFN-γ induces nitric oxide synthesis and
phagosome maturation in MAP-infected macrophages, which
negatively affects the intracellular survival of MAP (71–73).
Although protective in nature, prolonged production of IFN-
γ at the infection site also leads to chronic inflammation and
contributes to immunopathology associated with JD (74).

In a recent review, the potential inflammatory role of the IL-
17a cytokine secreted by Th17 cells, and IL-23 which activates
Th17 cell cytokine production, was also highlighted in JD
pathogenesis (75). IL-17 mediates recruitment of neutrophils to
mycobacterial infection sites (76), and increased levels of IL-17a
were noticed in the early stage lesions in the ileum of MAP-
infected animals (77). While the early induced immunological
responses will influence the disease outcome in the infected
animal (78, 79), MAP has evolved strategies to redirect the early
immune response to favor its survival.

In recent years, the role of γδ T cells during early infection
stages of MAP has been extensively studied. γδ T cells constitute
about 40% of circulating peripheral blood mononuclear cells
(PBMC) in calves and 10–15% in adult cattle and are thought

to be a link connecting the bovine and human innate and
adaptive immune responses during mycobacterial infections
(80). Based on expression of scavenger receptor workshop cluster
1 (WC1), two different subsets of γδ T cells have been defined in
cattle; WC1+ and WC1− (81). While WC1+ are predominantly
distributed in peripheral blood, WC1− are primarily found in
spleen, uterus, intestinal mucosa, and lymph nodes (81, 82). Early
recruitment of γδ T cells and their presence in MAP-induced
lesions have been reported in experimental calves injected with
live MAP inoculum and MAP-whole cell vaccine suggesting that
they play a role in granuloma formation (83). Given the relative
abundance of γδ T cells in the gut mucosa, their role as an innate
source of IFN-γ and IL17α (84), and their ability to influence
differentiation and maturation of monocytes (85), impact MAP
viability (86), and initiate granuloma formation (83), γδ T cells
likely play a critical role during the early stages of MAP infection.

Predominance of a Th1-mediated immune response is
observed during the early sub-clinical stage as extensive
proliferation of CD4+ T cells with the resultant increased
expression of pro-inflammatory cytokines like IFN-γ is detected
in the ileal tissue of sub-clinically infected animals (87, 88),
in PBMCs (89), and PBMCs stimulated with MAP whole-cell
sonicate (90). However, as the disease progresses, the Th1 cell-
mediated immune response wanes coupled with an increased
Th2 antibody-mediated response (67) and subsequent detectable
levels of the IgG1 subclass of anti-MAP antibodies (91). The
exact reason behind this Th1 to Th2 transition, and the time at
which it takes place, is currently unknown, but it corresponds
with onset of clinical disease. While earlier studies have reported
the role of IL-10 producing regulatory T cells (CD4+ CD25+)
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in the switch to Th2 antibody response (92, 93), other reports
have also suggested T cell unresponsiveness (77, 94), and loss of
antigen-specific CD4+ T cells (95), as possible reasons for Th1 to
Th2 switch. With a transition in the nature of immune response,
predominant up-regulation of anti-inflammatory cytokines such
as IL-10, TGF-β, and IL-4 in PBMCs, the ileum and associated
lymph nodes tissues is also observed in naturally infected
cattle (64–66). IL-4 is a Th2 polarizing cytokine that promotes
activation and proliferation of B-cells and antibody production
by plasma cells, which correlates with detectable antibody levels
during the clinical stage (96). The immunoregulatory effect
of IL-10 in suppressing IFN-γ production and favoring MAP
viability is well-documented (88, 97, 98). The clinical stage is
also characterized by constant shedding of MAP in the feces,
milk, and colostrum (19, 20), thereby increasing the risk of MAP
transmission within the herd.

In vitro Models
Our knowledge of the host immune response to MAP infection
has been acquired through the use of in vitro and in vivo
experimental MAP challenge studies, and in some cases by
studies that used naturally MAP-infected animals. Several in
vitro models concerned with MAP infection have contributed
immensely to our knowledge of MAP interaction with various
immune cells and immortal cell lines, and in explaining host
immune response and JD pathogenesis. Since macrophages
are the main effector cells of JD pathogenesis, they are the
predominant cells used in in vitro cell culture studies to
study host-MAP interaction. The in vitro cell culture-based
MAP-mononuclear phagocytic cell interaction studies have
enabled our current understanding of the role of macrophage
receptors in MAP phagocytosis (59), the ability of MAP to
promote its survival by inhibiting processes such as macrophage
apoptosis (63), phagosomal acidification (99) and maturation
(62), and MAP’s ability to inhibit signaling pathways such
as JAK-STAT (66), CD40L-CD40 signaling (65), as well as
to suppress monocyte microbicidal activity (99, 100). For
instance, by developing a co-culture model involving the bovine
mammary epithelial cell line (MAC-T) and bovine monocyte-
derived macrophages (MDM), followed by challenge with MAP,
Lamont et al. showed how phagosome acidification in MAC-T
cells and subsequent Ca+2-dependent IL-1β secretion initiates
recruitment ofmacrophages to the apical side ofMAC-T cells and
the entry of MAP into macrophages (100). Albeit this was shown
in vitro, a similar mechanism could be in play to establish MAP
infection at the intestinal mucosal level of MAP-infected animals.

The role of γδ T cells in the context of early MAP infection
in cattle has also been explored extensively. By developing a
bovine γδ T cell-MDM co-culture in vitro model, Baquero
et al. (84) showed co-culturing of primary WC1+ γδ T cells
in direct contact with MAP-infected MDMs led to decreased
MAP viability and increased MHC-I expression on MDM. It
was also shown that WC1+ and WC1− γδ T cells impacted the
function of monocytes during early MAP infection through their
involvement in the differentiation and maturation of monocytes
and dendritic cells (85). Decreased MAP viability was also
observed when WC1+ and WC1− γδ T cells from young calves

were separately co-cultured in direct contact with MAP-infected
MDM (86).

Cell culture tools and techniques are continually evolving.
The recent revolution in genetic engineering using CRISPR/Cas9
has rendered efficient modification and editing of genes. The
translation of such techniques is attainable using bovine cell lines
that can be further tested to study gene function, gene interaction,
and signaling pathway analysis. In the context of MAP infection,
gene edited cell lines offer a sound platform to validate biological
relevance of JD candidate genes, and related studies are now
showing up in the literature (101). Recently, in vitro modeling
of intestinal human diseases using 3D-intestinal organoids has
gained prominence (102), and similar approaches may also be
adapted to study JD in cattle.

MAP Animal Infection Models
Understanding JD pathogenesis and the early infection of MAP
at the host tissue level has been made possible by various
MAP bovine infection models. By creating ligated ileal loops
in calves followed by inoculation with MAP, Momotani et al.
(51) demonstrated MAP uptake by ileal M-cells and further
entry into subepithelial and intraepithelial macrophages within
5 h of inoculation. They also showed enhanced MAP uptake
when anti-MAP serum from MAP infected cows was added
to the inoculum. Using similar ligated ileal loop model, Khare
et al. (103) further studied early morphological lesions and
changes in the expression of several immune-related transcripts
upon MAP inoculation. Within 30min of inoculation, they
observed MAP entry into ileal mucosa, and within 4 h of
inoculation, increased expression of chemokines IL-8 and
chemokine monocyte chemotactic peptide (MCP-1/CCL2) was
seen with concurrent increased influx of migratory neutrophils
and monocytes in submucosal lamina propria. The expression
of pro-inflammatory genes (IL-1β , TNF-α, IL-6, and IL-15) was
also high 4 h post-inoculation. After injecting MAP into ileal
lumen, Wu et al. (104) studied the immune response during
the following 9 months post MAP inoculation. The authors
reported persistent infection of ileum and mesenteric lymph
nodes throughout the duration of the study with a predominant
Th1 type immune response, and the absence of fecal shedding
and humoral response. Using the same model, they were also
successful in differentiating the virulence of mutant and wild-
type MAP strains, wherein the mutant strain failed to establish
infection. After directly inoculating MAP into ileum using an
ileal cannulation model, Allan et al. (105) observed a similar
immune response as observed after oral challenge (106). In
another oral MAP experimental challenge, early transcriptomic
changes in PBMCs in MAP exposed animals indicated consistent
changes in the regulation of antigen presenting pathway and
processing genes and downregulation of lipid pathway associated
and anti-bacterial defense genes (CD38) (107, 108). By directly
inoculating MAP into ileocecal Peyer’s patches, Plattner et al.
(96) induced consistent intestinal MAP infection as evidenced by
dose-dependent histopathological lesions,MAP culture positivity
from tissues along with intermittent fecal shedding. The same
model was also used to assess efficacy of future MAP vaccines
and drug supplements (109). In another model, surgical isolation
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of an ileal segment of calf and its inoculation with MAP
enabled persistent enteric localized MAP infection leading to the
recruitment ofmacrophages, dendritic cells, CD8+, and γδT cells
in lamina propria (110). Furthermore, increased expression of
cytokines TNF-α and IFN-γ by lamina propria leukocytes was
also observed. The above described models offer tremendous
insight into early host-pathogen interaction dynamics post MAP
challenge. But the chronic nature of JD means that monitoring
clinical progression of disease in infected animals is challenging
and would require conducting longitudinal experimental trials
that could span several years (>5 years). However, as observed
by Begg et al. in their longitudinal study, not all the infected
animals will progress into clinical forms as some recover
from infection (111). Such animals are particularly intriguing
as models to study immunogenetics aspect associated with
resilience to MAP infection.

Genomic Approaches to Identify Putative
Biomarkers
While the host response at a cellular level to MAP infection
has been investigated comprehensively, the molecular regulation
of the immune response is still yielding valuable insights that
offer resolution into the evolutionary battle between the host
and MAP. Next-generation sequencing (NGS) technology-based
RNA-sequencing (RNA-seq) studies are commonly employed to
identify and quantify the expression of differentially regulated
genes (DEGs). These DEGs are further subjected to bioinformatic
analyses that enable identification of up- and down-regulated
biological pathways in the context of MAP infection, and
thereby generate better understanding of the biological processes
associated with MAP infection and the host immune response.
For instance, RNA-seq has been successfully used to profile
transcriptome expression in intestinal tissues (e.g., ileal tissue,
ileocecal valve), salivary glands, PBMC, and macrophages
challenged with MAP.

In order to understand gene regulation at the primary site
of MAP infection and how it varies between uninfected cows
(control) and naturally infected subclinical and clinical JD cow
groups, Hempel et al. (112) compared the ileocecal valve (ICV)
transcriptome profile between the respective groups, and their
results suggested enrichment of different pathways between
groups. While differentially expressed genes between the clinical
and control group influenced immunological pathways like
immune cell receptor signaling and apoptosis, genes related
to metabolism were differentially expressed between subclinical
JD and the control group. Moreover, comparison between
clinical and subclinical JD cows identified genes with a role in
chemotaxis, leukocyte migration, complement, and coagulation
pathway. Interestingly, in another comparative transcriptome
study involving naturally infected cows with JD-associated
histopathological lesions and control cows with no lesions, the
CXCL8/IL8 signaling pathway, which plays a role in neutrophil
recruitment, was found to be differentially regulated in both ICV
and PBMC (113). In another study, we recently characterized
RNA-seq salivary gland (mandibular and parotid) transcriptome
profile in MAP exposed cattle and identified downregulation

of genes such as lactoferrin and lactoperoxidase compared to
unexposed cattle (114). Using ileal loop model, Khare et al. (115)
assessed early transcriptome changes due toMAP infection in the
ileal mucosa by RNA-seq and identified downregulated pathways
that favor MAP survival (increased mucosal permeability,
decreased phagosome-lysosome fusion via inhibition of calcium
signaling, and decreased MHC-II expression) and promote
persistent infection (increased Th2 response).

RNA-seq has also been employed to study the biology ofMAP-
MDM interaction and indicated that transcriptome changes
in MAP-infected macrophages involve a balance between pro-
and anti-inflammatory responses (116), downregulation of
phagocytosis and antigen presentation genes, and activation
of pathways like suppressor of cytokine signaling (SOCS) and
cytokine-inducible SH2-containing protein (CISH) that favor
MAP survival (117). More recently, a study by Ariel et al.
showed that MAP infection altered gene pathways involved
in MDM metabolism, polarization and apoptosis also favoring
MAP survival (118). Lastly, using an in vitro co-culture model
comprised of MAC-T cells and macrophages, Lamont et al. (119)
identified activatedMAP gene pathways within MAC-T cells that
mediate MAP cell wall rebuild and MAP DNA repair to favor the
establishment of MAP infection (119).

RNA-seq also has applications in identification of microRNAs
(miRNA) for potential use as diagnostic biomarkers of JD. Based
on the small RNA-seq method, Farrell et al. (120) identified
both known and novel circulating miRNA from the sera of
MAP challenged sero-positive and unchallenged control calves
at 6 months post-infection. Although between group analysis
did not reveal significant differences in miRNA expression,
significant differences within group in the levels of miR-205
and miR-432 expression were found between pre-challenge and
6-month post-challenge levels. Using a combination of four
circulating serum miRNAs (miR-1976, miR-873-3p, miR-520f-
3p, miR-126-3p), Gupta et al. (121) developed a model that
can differentiate cattle based on severity of MAP infection
as either non-infected, moderately- or severely-infected (121).
Liang et al. (122) analyzed both microRNAome (microRNA)
and mRNA profiles in calf ileal segments after MAP infection
and identified a total of nine differentially expressed miRNAs.
Further integrated analyses of miRNAome and the transcriptome
indicated that the differentially expressed miRNAs contributed
to regulating the host immune response (e.g., proliferation
of endothelial cells, bacteria recognition, and regulation of
the inflammatory response) to MAP infection. By conducting
whole blood miRNA-seq, Malvisi et al. (123) identified 9 and
8 immune response associated miRNAs differentially expressed
between infected vs. unexposed and between exposed vs.
unexposed cows, respectively. The cows classified as infected
were ELISA and fecal culture positive, and both exposed
and unexposed cows were ELISA negative but were from JD
positive and negative herds, respectively. In another study, three
differentially expressed miRNAs were identified in bovine feces
with JD diagnostic potential (124). Alongside miRNA, long
non-coding RNAs (lncRNA) constitute another type of non-
coding RNA that function as regulators of gene expression.
In the context of MAP-macrophage interaction, macrophage
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lncRNAs that regulate immune genes involved in NF-κB2
signaling pathway were identified using RNA-seq (125). RNA-Seq
transcriptome studies have enhanced our understanding of host-
MAP interaction dynamics. While each RNA-seq studies differ
in the kind of tissue studied and the stage of disease in the study
animals, the differentially enriched biological pathways identified
thus far are predominantly associated with regulation of host
immune response to MAP infection. It all begins with the ability
of MAP to subvert macrophage response to establish persistent
infection followed by altering key immune pathways to promote
disease progression.

Before the advent of NGS, transcriptome profiling usually
involved microarray hybridization assays where transcript
profiling was limited to probes present on the panel (126–
129). NGS-based transcriptome profiling enables global
transcript analysis and the identification of genes and gene
regulation pathways with a potential to identify diagnostic
markers and vaccine targets; and this is particularly significant
for MAP infection with issues associated with accurate
early diagnosis coupled with the absence of an efficacious
vaccine (130).

GENETIC BACKGROUND OF JOHNE’S
DISEASE

Heritability and Breed Susceptibility to
MAP Infection in Cattle
Breed susceptibility to MAP infection has been widely reported
in cattle indicating genetic predisposition to JD. A survey
conducted in the UK reported a higher incidence rate of
JD in Channel Island cattle breeds such as Jersey and
Guernsey (odds ratio 10.9–12.9) compared to the Holstein
breed (131). Similarly, Sorge et al. (132) reported a higher
odds ratio (1.4–8.3) in Jersey and Guernsey cattle for being
milk ELISA positive for MAP antibodies in comparison with
Holsteins, Milking Shorthorn and Brown Swiss breeds. Bos
taurus indicus (Zebu) animals have a greater odds ratio for
being seropositive for MAP-specific antibodies in comparison to
Bos taurus taurus (Taurine) animals (133). Although the genetic
basis of breed susceptibility to MAP infection has not been
clearly defined, these reports indicate that JD resistance vary
across breeds.

An alternative strategy to reduce or eliminate JD is through
genetic selection. Susceptibility to MAP infection is a heritable
trait with heritability estimates ranging from 0.03 to 0.228
(49), indicating that there is enough genetic variability for JD
resistance to consider selective breeding. The differences in the
reported heritability estimates are attributed to factors such
as different phenotypes (e.g., results from alternative testing
protocols or biological samples), statistical procedures used to
determine heritability and variation in JD incidence in the
population studied (49). Although low-to-moderate, heritability
estimates reflect the role of host genetic makeup in influencing
MAP infection status in dairy cattle and offers a potential to
employ genetic selection to breed for JD resistance. The need to
adopt genetic selection in breeding becomes even more apparent

when considering the lack of highly effective treatments and
vaccines to deal with JD.

Genomic Studies Related to Johne’s
Disease
Further evidence for genetic basis for susceptibility to JD can
be found through candidate gene and genome-wide association
studies (GWAS). While candidate gene studies look for
association between polymorphisms in a particular gene and the
disease phenotype, GWAS are conducted at the whole-genome
level, usually based on single nucleotide polymorphism (SNP)
genetic markers distributed across all chromosomes, statistically
tested for their association with a JD phenotype. Recent studies
have employed several different phenotypes to identify such
associations. To selectively breed for disease resistance, a reliable
diagnostic phenotype (e.g., measurement of resistance to MAP
infection) must be available to livestock breeders. Given the
complex nature of JD and its pathogenesis, potential JD traits
can include direct indicators such as MAP load in feces and
tissues detected by culture and PCR tests, and indirect indicators
such as serum and/or milk ELISA test positivity for MAP-
specific antibodies that are indicative of MAP exposure and
a subsequent host immune response. As discussed earlier,
each available test has its own advantages and disadvantages
and they differ in their sensitivities depending on the stage
of infection.

A number of GWAS associated with JD in dairy cattle have
been published thus far, and several quantitative trait loci (QTLs)
and candidate genes have been identified accordingly. Using
12 paternal-half sibling families, Gonda et al. (134) performed
genome-wide linkage analysis and identified a QTL located on
the Bos taurus autosome (BTA) 20 that was associated with
MAP infection based on serum culture and/or fecal culture
positivity. Using the sire-maternal grandsire model, van Hulzen
et al. (135) genotyped 192 Dutch sires and carried out a
GWAS using deregressed estimated breeding values (dEBV)
for milk ELISA based on records from 265,290 individual
Holstein-Friesian cows, and identified five SNPs located on
BTA4, BTA5, BTA18, and BTA28 associated with susceptibility
to MAP infection. Settles et al. (136) reported QTLs on BTA3
strongly associated with MAP culture positivity in tissues
(ileum, ileo-caecal valve and two adjacent ileo-caecal lymph
nodes), and QTL on BTA9 associated with presence of MAP
in both tissues and feces. By further defining tolerance as both
quantitative and categorical trait, Zanella et al. carried out a
GWAS using the same data from the Settles et al. study, and
identified SNPs located on BTA1, BTA2, BTA6, and BTA15
to be significantly associated with tolerance to MAP infection
(137). Further they identified a positional candidate gene GNA12
located in proximity to significant SNP on BTA 15. Using
50K genotypes from 242 cows, Pant et al. (138) performed a
GWAS based on principal component regression analysis (PCA)
and identified QTLs on BTA1, BTA5, BTA6, BTA7, BTA10,
BTA11, and BTA14 significantly associated with ELISA positivity
for MAP antibodies. On BTA7, the positional candidate genes
identified included IL-4, IL-13, IL-5, IRF1, SLC39A3, TNFIP8L1,
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and TICAM1 that are associated with resistance to MAP. In
order to fine map the QTLs identified in the Pant et al. study
and to identify new QTLs, we further imputed 50K genotypes to
the 777K high-density (HD) panel using the FImpute software
(139); seven novel QTLs located on BTA15, BTA16, BTA20,
and BTA21 were identified in addition to previously reported
QTLs on BTA1, BTA5, BTA7, BTA10, BTA11, and BTA14. This
indicates that the use of higher density genotyping platforms, or
even better whole-genome sequence data, are recommended to
perform GWAS for highly polygenic traits such as JD resistance.
Furthermore, follow-up bioinformatic analyses revealed several
candidate genes involved in pro-inflammatory immune function
that are relevant to the host defense against MAP infection:
NLRP3, IFi47, TRIM41, TNFRSF18, and TNFRSF4 (140). Alpay
et al. has also reported SNPs located on BTA1, BTA2, BTA6,
BTA7, BTA17, and BTA29 that are significantly associated with
susceptibility to MAP infection in US Holstein cows using
a combined phenotype consisting of serum ELISA and fecal
MAP culture (141). In an earlier GWAS in Jersey cattle, Zare
et al. reported SNPs located on BTA3, BTA16, BTA17, and
BTA23 associated with MAP serum ELISA and fecal culture
positivity (142). In a GWAS involving 966 Italian Holsteins,
Minozzi et al. identified QTLs on BTA9, BTA11, and BTA12
that were associated with serum antibody response (143). In
a meta-analysis conducted using two earlier GWAS, Minozzi
et al. combined populations from the USA and Italy (n = 1,190
cows) and found significant associations on BTA1, BTA6, BTA7,
BTA12, BTA13, BTA15, BTA16, BTA21, BTA23, and BTA25
for combined MAP tissue culture and ELISA phenotype (144).
Using data from two different populations, Kirkpatrick et al.
performed both individual and combined data analysis and
identified 51 SNPs located on BTA2, BTA2, BTA4, BTA5, BTA6,
BTA7, BTA9, BTA10, BTA13, BTA14, BTA15, BTA16, BTA17,
BTA18, BTA20, BTA21, BTA22, BTA23, BTA25, BTA26, and
BTA29 that were associated with susceptibility to MAP infection
(145). In an across-breed (Holstein and Jersey) GWAS conducted
by combining P-values from previous independent within-
breed GWAS analyses, Sallam et al. identified two significant
SNPs Hapmap40994-BTA-46361 and ARS-BFGL-NGS-19381
located on BTA19 and BTA23, respectively (146). Within close
proximity to ARS-BFGL-NGS-19381, two positional candidate
genes with immunological roles were found including BTN1A1
(Butyrophilin) and TDP2 (tyrosyl-DNA phosphodiesterase
2. In a GWAS analyses conducted where JD cases were
defined as positive for MAP tissue infection, several positional
candidate genes (e.g., BCAR3, FLVCR2, RASA3, MGC134473,
MARK1, C16H1orf115,MARC2, C10H14ORF1, and CDC42BPA)
distributed across various chromosomes were identified (147);
the putative biological relevance of many of these identified genes
involved their roles in processes such as signal transduction,
MAP entry into host cells and other immunological effects. In
a recent study involving a Chinese Holstein population using
a high density SNP panel and two different GWAS methods
(GRAMMAR-GC and ROADTRIPS), Gao et al. identified 26
SNPs located on 15 chromosomes to be associated with serum
ELISA positivity for MAP infection (148). Interestingly, a few
of the positional candidate genes identified in this study were

also identified in previous GWAS; this included the genes IL-4,
IL-5, IL-13, IRF1 from the Pant el. study (138) and TDP2 from
the Sallam et al. study (146). In a GWAS involving Canadian
Holsteins, SNPs on BTA1, BTA7, BTA9, BTA14, BTA15, BTA17,
BTA19, and BTA25 showing significant association with milk
ELISA positivity were identified along with two candidate genes,
CD86 and WNT9B (49). McGovern et al. conducted a GWAS
using imputed sequence data and identified and putative QTLs
on BTA1, BTA3, BTA5, BTA6, BTA8, BTA9, BTA10, BTA11,
BTA13, BTA14, BTA18, BTA21, BTA23, BTA25, BTA26, BTA27,
and BTA29 associated with MAP antibody response (149). They
also reported 10 candidate genes harboring these QTLs that
have been previously associated with human inflammatory bowel
disease. A recently reported sequence-based GWAS in French
Holstein and Normande cattle identified three QTLs located
on BTA12, BTA13, and BTA23 to be associated with resistance
to MAP infection; three functional candidate genes ABCC4
(BTA12), CBFA2T2 (BTA13), and IER3 (BTA23) that explained
a large proportion (28%) of the total additive genetic variance
were further identified (150). While causal variants were found
within the genesABCC4 and IER3, the geneCBFA2T2 is in strong
linkage disequilibrium with the causal variant with significant
effect. Table 1 lists all the positional candidate genes identified
by GWAS.

While the above studies made use of different phenotypes,
genotyping platforms, populations (e.g., breeds), sample sizes,
and employed different analytical models, the identification of
numerous QTLs located on almost all chromosomes, but with
little overlap, highlights the polygenic and complex nature of JD
resistance in dairy cattle (48). It is clear that JD is a complex
polygenic trait controlled by a large number of QTLs with
small effects distributed across the cattle genome. Although
GWAS have been successful in identifying genetic variants that
are associated with susceptibility/resistance to MAP infection,
the comparison of findings lacks congruency. The possible
reasons for this include uncertainty of accurately diagnosing
JD owing to issues associated with sensitivity of JD diagnostic
methods. Additionally, since JD is a complex chronic disease
with multiple stages seen during its pathogenesis, the genetic
associations observed during one stage of the disease may differ
from others and drawing a conclusive inference is difficult.
Additionally, as mentioned above in particular reference to case-
control study designs, the methods employed to define the
disease phenotype vary, and this could influence the associations
that are identified (165).

Candidate gene studies involve studying the association
between polymorphisms in a specific gene and a certain
phenotype. The candidate genes are selected based on
information available in the scientific literature, and their
functional role in the pathogenesis of JD, or a similar
disease such as CD. Candidate gene studies involve a case-
control experimental design where particular candidate gene
polymorphisms are genotyped followed by statistical analysis
to determine its association with the disease phenotype.
Polymorphisms in the candidate genes are typically either
SNPs or micro-satellite markers. Genes coding proteins of the
immune system are some of the candidate genes that have been
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TABLE 1 | Chromosomes with SNPs and candidate genes statistically associated with resistance to Johne’s disease in cattle.

Chra Referencesb Candidate genes

BTA1 (136–138, 141, 144, 149,

151)

ENSBTAG00000005101, ZBTB20, KARN, LPP, UMPS, SOD1, SSRG, SCL33A1, LDLRAD3,

KCNAB1, GMPS, TUBA3D

BTA2 (141, 145, 146) CREB1

BTA3 (136, 142, 145, 147, 149) DNAJC6, FOXJ3, EDN2, CTPS,CITED4, NFYC, BCAR3

BTA4 (135, 145) DLD, Q28899, LAMB4, Q6Q146, PNPLA8, LOC784535, Q2YDK7, Q17QP5, EPDR1

BTA5 (137, 138, 140, 142, 145) MANSC4, TRRAP, ALDH1L2, TAS2R42, MAGOHB, KLRA1, KLRJ1, CCDC59,

TMTC2, FAM113B, AMIGO2, SLC38A4,

SLC38A2, SLC38A1, SFRS2IP, ARID2,

ss61555725, PRICKLE1, PPHLN1, ZCRB1, YAF2, GXYLT1

rs29023629, TMTC1, OVCH1, ERGIC2, FAR2, TM7SF3

CCDC91, PTHLH, KLHDC5, MRPS35, FGFR10P2

PPFIBP1, ARNTL2, STK38L, MED21, ITPR2

BTA6 (137, 138, 140–142, 144,

145)

PAPSS1, DKK2, SGMS2, CYP2U1, HADH, LEF1, CRMP1, EVC, EVC2, STX18,

STK32B, MSX1, CYTL1

BTA7 (136, 138, 140–142, 144,

145, 148)

NLRP3, IFI47, OR2B11, TRIM52, GNB2L1, TRIM41, OR2C3, TRIM7, OR2G2,OR2V2, BTNL9,

COX7B, OR2G3, SPOCK1, IL12B, TIMD4, ITK, SLCO6A1,

IRF1, IL5, IL13, IL4, SSBP2, ATG10, XRCC4

BTA8 (136, 143, 147) STC1

BTA9 (136, 143, 145, 149) ZDHHC14, PREP, PRDM1

BTA10 (138, 140, 142, 147, 149) SNX1, SOCS4, GCNT3, FAM81A, CCNB2, RORA, ADAM10, ALDH1A2,

FLVCR2, C10H14ORF1, NARG2, ANXA2, FOXB1, ADAM10, GRINL1A,

BNIP2, GTF2A2, LIPC, TCF12, MYO1E, CCNB2, RNF111, AQP9,

GNB5, MYO5C, AP4E1, TRPM7, USP50, USP8, GABPB2, HDC, SLC27A2

BTA11 (138, 142, 143, 149) NPAS2, RNF149, RFX8, TACR1, E2F6, PQLC3, C2o50, KCNF1, PDIA6, ATP6V1C2, NOL10, ODC1, HPCAL1, PRKCE, EPAS1,

ATP6V1E2, PIGF, CRIPT, SOCS5, MCFD2, TTC7A, EPCAM, MSH2, KCNK12, MSH6, FBXO11

BTA12 (143, 144, 147, 150) ABCC4, RASA3, MGC134473, GPC6, TYRP2, TGDS, GPR180, SOX21, ABCC4, CFTR/MRP, ABCC4

BTA13 (142, 144, 145, 149, 150) CBFA2T2, SLA2, XKR7

BTA14 (135, 138, 140, 145, 147,

149)

CPA6, HAS2, SAMD12, MIR2489, EXT1, TNFRSF11B, EIF3H, UTP23,

RAD21,AARD,TRPS1, ANGPT1, RABL4, RSPO2, EIF3E, TTC35, TMEM74, TRHR

BTA15 (135, 137, 140, 141, 144,

145)

HTR3B, USP28, HTR3A, CLDN25, ZW10, ZBTB16, TMPRSS5, RBM7, REXO2, TTC12, NCAM1,

KCNA4, FSHB, LOC787432, A5PJ77, CK046, CD44, PAMR1, CACNA1B, LDLRAD3, COMMD9

BTA16 (135, 137, 140, 142, 144,

145, 147)

TNFRSF18, TNFRSF4, DNAJC16, CASP9, CELA2A, AGMAT, CTRC, SLC9C2,

ANKRD45, KLHL20, CENPL, TNNT2, LAD1, TNNI1, CSRP1, TIMM17A,

SHISA4, MIR2320, TPRG1L, MIR551A, ARHGEF16, PRDM16, PARP1,

POLR1D, PSEN2, CABC1, SCCPDH, MARK1, C16H1orf115, MARC2, CDC42BPA

BTA17 (141, 142, 145)

BTA18 (135, 145, 149) ENSBTAG00000040392, TEX101,A2VDX5, IRX5

BTA19 (135, 141, 146) BTN1A1

BTA20 (134, 135, 140, 145) HCN1, EMB, MRPS30, PARP8, SNX18, HSPB3, ESM1, GZMK, ARL15, GZMA,

CDC20B,GPX8,MIR449A

BTA21 (135, 136, 140, 144, 145,

147)

PLD4, KIAA0284, ZBTB42, SIVA1, ADSSL1, INF2, TMEM179, NRAC, BCL2A1,

ZFAND6, MESDC2, IL16, MCEE

BTA22 (144, 147, 148) ITPR1, CTN4, MyD88

BTA23 (136, 142, 144–146, 148–

150)

IER3, EEF1E1, SLC17, F13A1, CDYL, PACSIN1, DEF6, TDP2

BTA24 (145)

BTA25 (144, 145)

BTA26 (135, 145, 149) PRKG1

BTA27 (81, 135, 143)

BTA28 (135) ACM3, Q3SX15, ENSBTA00000018960, ZNF25, ZNF334, LOC534200,

ENSBTAG00000013592, BMS1, RET, CSGALNACT, QCE9S7

Adapted and updated from Brito et al. (49).
aNot necessarily the peaks in the same chromosome represents the same genomic region.
bDifferent phenotypes were used in these studies. fecal and/or tissue MAP culture (136, 137); milk ELISA (135); serum ELISA and fecal culture (141); fecal MAP culture and serum ELISA

(145); serum ELISA, fecal culture or both (141); MAP in tissues (culture and qPCR) (147); fecal culture or serum ELISA (Population 1) and serum ELISA (Population 2) fecal culture or

serum ELISA (146); serum ELISA and/or MAP tissue culture (144); serum ELISA (143, 148); serum ELISA and PCR (150); and, milk/serum ELISA (138, 149): milk/serum ELISA.
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TABLE 2 | List of Johne’s disease candidate gene studies in cattle.

Gene SNP Population Phenotype Location Risk allele Odds ratio References

NOD2 2197T > C Holstein, Jersey and Brahman

× Angus (n = 402)

Serum ELISA, milk PCR,

blood PCR, fecal PCR,

and fecal culture

Leucine rich domain

(non-syn)

C 2.32 (1.41–3.83) (152)

NOD2 c.*1908C>T Spanish holsteins (n = 241) Fecal culture, fecal PCR,

serum ELISA

3′ UTR C 2.043 (1.22–3.42) (153)

NOD2 g.521G>A German holsteins (n = 324) Fecal culture Exon 4 G – (154)

SLC11A1 c.1067C > G Spanish and Dutch holsteins

(n = 558)

Fecal culture, PCR, or

serum ELISA

Exon 11 (non-syn) C 1.484 (1.05–2.01) (155)

c.1157–91A > T – – Intron 11-12 A 1.592 (0.01–2.3)

SLC11A1

Haplotype

analysis

c.1067C > G

and c.1157–91A

> T

– – CA (risk

haplotype)

1.584(1.09–2.3)

SP110 c.587A>G Spanish holsteins (n = 355) Fecal culture or serum

ELISA

Exon 5 (non-syn) A 2.7 (1.69-4.54) (156)

TLR1 G658A

(Val220Met)

Slovak spotted cattle

Slovak spotted cattle x

Holstein

Polish red

Holstein

Pinzgauer

Slovakian Simmental

Dark brown Carpathians (n

= 711)

Blood PCR Ectodomain

(non-syn)

3.459 (157)

TLR2 A2038G

(Ile680Val)

– – Toll/IL-1R domain

(non-syn)

– NA (157)

TLR4 892G>Y

Gly298[Arg,Trp]

– – Ectodomain

(non-syn)

– NA (157)

G895A

(Asp299Asn)

G1165A

(Gly389Ser)

T1167C

(Gly389Ser)

–

–

–

–

–

–

Ectodomain

(non-syn)

Ectodomain

(non-syn)

Ectodomain (non-syn)

–

–

–

NA

NA

NA

(157)

(157)

(157)

TLR2

PGLYRP1

IFNGR2

IL12RB1

IL12RB2

IL23R

CLEC7A

WNT2

1903 T/C

c.480G>A

c.1674C>T

c.81T>C

c.-511A>G

c.1417A>C

c.589A>G

rs43390642: G>T

Dutch holsteins (n = 553)

Canadian holsteins (n = 439)

Canadian holsteins (n = 439)

Canadian holsteins (n = 439)

Canadian holsteins (n = 439)

Canadian holsteins (n = 439)

Canadian holsteins (n = 439)

German holsteins (n = 324)

Fecal culture and ELISA

Milk and blood ELISA

Milk and blood ELISA

Milk and blood ELISA

Milk and blood ELISA

Milk and blood ELISA

Milk and blood ELISA

ELISA and fecal culture

LRR (syn)

Exon 3 (syn)

Coding (syn)

Coding (syn)

Promoter

Coding (non-syn)

Exon 5 (non-syn)

Promoter

C

G

T

C

G

C

G

G

1.7 (1.2–2.8)

1.51 (0.99–2.31)

1.51 (1.03–2.22)

1.62 (1.22–2.15)

1.86 (1.17–2.96)

1.57 (1.01–2.43)

1.42 (1.09–1.9)

2 (1.03–4)

(158)

(159)

(160)

(160)

(160)

(160)

(161)

(162)

TLR4

(Haplotype

association)

c.-226G>C and

c.2021C>T

Canadian holsteins (n = 439) Milk and blood ELISA c.-226G>C (5’ UTR)

c.2021C>T (TIR

domain/non-syn)

CT (risk

haplotype)

1.38 (163)

IL10RA

(Haplotype

association)

633C > A

984G > A

1185C > T

Canadian holsteins (n = 446) Milk and blood ELISA All SNPs in coding

region (syn)

AGC

(risk haplotype)

1.42 (1.06–1.90) (164)

studied in the context of JD in cattle. For example, it has been
reported that polymorphisms in the following genes: Toll-like
receptors (TLR 1, 2, 4) (157, 158, 163); Nucleotide binding
oligomerization domain containing 2 (NOD2) (152–154); Solute
carrier family 11 member 1 (SLC11A1) (166); Interleukin 10
receptor alpha (IL-10Rα) (164); SP110 nuclear body protein
(SP110) (156); and IFN-γR2, IL-12Rβ1, IL-12Rβ2, IL-23R
(160); Dectin-1 (CLEC7A) (161); Peptidoglycan recognition
protein 1 (PGLYRP1) (159); and Wingless-type MMTV
integration site family member 2 (WTN2) (162) have been

significantly associated with MAP infection status in different
cattle populations.

In the context of JD, these candidate genes play an active
role in immune response acting as either pattern recognition
receptors (PRR), receptors of cytokines that drive inflammatory
and anti-inflammatory response, or genes that promote killing of
intracellular pathogens such as MAP.

NOD2 (previously known as CARD 15) codes for a
PRR implicated in recognition of the mycobacterial cell wall
constituent, muramyl dipeptide (167). NOD2 further stimulates
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the transcription factor NF-KB that regulates pro-inflammatory
cytokine expression (168). The TLR1, TLR2, and TLR4 genes
also code for PRRs that recognize MAP-associated membrane
patterns and initiate the host innate and adaptive immune
responses in the infected host (169–171). Another PRR coded
by CLEC7A is expressed on antigen presenting cells (APCs) and
is known to recognize MAP and initiate cytokine secretion by
phagocytic cells through its synergistic action with TLR2 and
TLR4 receptors (169). The PGLYRP1, SP110, and SLC11A1 gene
products are also known to trigger innate immune response
against intracellular bacteria. While PGLYRP1 functions via
neutrophil-mediated killing of bacteria (172), SP110 expression
in macrophages is shown to limit mycobacterial replication
(173). SLC11A1, formerly called as NRAMP1, gene product is
expressed on phagosomes and is a divalent phagosomal metal ion
(Mn+2, Fe+2) transporter (174) known to control intracellular
bacterial replication by regulating divalent ion concentrations
within phagosomes (175). The other candidate genes studied
for their association with MAP infection status include IL-10Rα,
IFN-γR2, IL-12Rβ1/ β2, and IL-23R, whose gene products serve
as the receptors of cytokines IL10, IFN-γ , IL-12, and IL-23,
respectively. IFN-γ, IL-12, and IL-23 are pro-inflammatory Th1
cytokines that control MAP infection in the early stages and play
a major role in the early cell-mediated immune response driving
the cell-mediate immune response in the infected host (89). In
contrast, IL-10 is an anti-inflammatory and immunoregulatory
cytokine that is involved in regulating the host inflammatory
response to MAP infection (176). Another reported candidate
gene associated withMAP infection status is theWNT2 gene with
a immunomodulatory functional role in regulating intestinal
inflammation and in maintaining tissue homeostasis (177). Not
being limited to single SNP associations with MAP infection
status, some studies have also reported haplotypes associated
with MAP infection status. The list of candidate genes and their
polymorphisms/haplotypes significantly associated with MAP
infection status are detailed in Table 2.

Validation of SNPs and Functional
Characterization of Candidate Genes
GWAS and candidate gene studies have revealed information
on the biology of resistance and genetic basis for JD in cattle.
While the genetic influence of MAP infection status is clear
and JD is a polygenic disease, validation of all the identified
genetic markers based on independent populations as functional
genomic studies to uncover the causal mutations are both
necessary as well. We recently conducted one such validation
study wherein we tested some of the previously identified JD
SNPs for their association with sire EBVs estimated for milk
ELISA test score (178). Using both General Quasi Likelihood
Scoring (GQLS) and single-SNP regression analysis we validated
five SNPs (rs41810662, rs41617133, rs110225854, rs110494981,
and rs136182707) that offer potential for their inclusion in future
marker-assisted breeding programs (178). While our study was
limited to a few SNPs, similar validation studies with inclusion of
all the reported JD SNPs in the literature should be explored in
the future.

JD candidate gene association studies offer great
insights on the biological mechanisms involved in JD
resistance/susceptibility. However, these are only statistical
associations and therefore studies validating the biological
significance of JD candidate genes are also warranted. The
recent evolution of genetic engineering technologies such
as CRISPR/cas9 gene editing (179) can be used to validate
JD candidate genes. Using the CRISPR/cas9 gene editing
technique, we recently created a IL10RA knock-out MAC-T cell
line to study functional relevance of candidate gene IL10RA
(164) in the context of MAP lysate stimulation (101). IL10RA
functions as a trans-membrane receptor of anti-inflammatory
cytokine IL-10 known for its immunoregulatory role during JD
immune-pathogenesis. Knocking out IL10RA led to dramatic
upregulation of pro-inflammatory cytokine expression after
stimulation with MAP lysate and further confirmed its role
in eliciting anti-inflammatory response via IL-10 during MAP
immune response.

FUTURE PROSPECTS

Research Tools to Enhance Resolution of
Infection Processes
Intestinal Organoids
To limit the use of experimental animals and obtain more
predictive results, other in vitro models that approach biological
reality more closely are increasingly being developed. One such
model includes organoids that mimic the three-dimensional
tissue structure (180). Organoids have been developed using
human cells and also in animal models of human disease (181).
Relevantly, organoids have also been developed from bovine
intestinal tissue (182). Such models can be used to identify host
and microbial factors and further characterize early host immune
response. Recently, human colon organoids developed from IBD
patients were characterized and also tested as a therapeutic
model to investigate intestinal healing (183). Going forward, a
similar approach to develop intestinal organoids from JD positive
cows can be considered to study host-pathogen interaction
and immunopathogenesis associated with MAP infection at
mucosal surface.

Single-Cell RNA-Seq
The macrophage response to MAP infection can be more
thoroughly studied in vitro using RNA-seq transcriptome
profiling (116); however, this also can come with challenges.
Post challenge for example, not all macrophages get infected
with MAP (63); these ‘by standers’ and cells in heterogeneous
physiological states (i.e., cells killing or tolerant to MAP, and
apoptotic cells) will lead to a diluted transcription profile that
can mask the detection of genes within MAP-infected cells. This
limitation, however, can be addressed using single-cell RNA-
seq (scRNA-seq) studies. Macrophages can be challenged with
florescent MAP followed by sorting infected and uninfected
macrophages by fluorescence-activated cell sorting (FACS). The
sorted single cells can then be further subjected to RNA-seq
transcriptome analysis to identify DEG and enriched biological
pathways. Using a similar approach, Saliba et al. studied the
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macrophage response to Salmonella infection and showed how
polarization state differed between uninfected (M1) and infected
macrophages (M2) (184). In the context of MAP infection,
such approach would enable researchers to discern potential
differences in the response to MAP challenge between infected
and uninfected cells. Understanding host-pathogen interaction
using scRNA-seq holds the potential to explore the dynamic
changes in host transcriptome profile due to infection at the
single-cell level and to further identify biomarkers and to develop
novel vaccines and therapeutic targets (185). scRNA-seq is a
powerful tool with a wide range applications in basic and medical
research fields including the study and control of infectious
diseases (186–188).

Gene Knock-in Studies
To date, functional validation of biological relevance of JD
candidate genes using CRISPR/cas9 has been limited to gene
knock-out studies using the non-homologous end-joining
(NHEJ) mechanism (101). However, through this approach, the
impact of a risk allele in the context of MAP infection cannot be
studied. By using a homology-directed (HDR) repair mechanism
that relies on addition of a donor template, CRISPR/cas9
gene editing can be further applied to create a mutational
homozygous/heterozygous knock-in at a specific SNP loci (189).
The selective introduction of mono/bi allelic variants will enable
the creation of allelic variant models to compare allele-specific
responses for MAP infection (190).

Integrating GWAS and
Transcriptomics—Systems Genetics
Approach
Several SNPs or gene mutations have been mapped in the bovine
genome for their association with JD through GWAS. However,
mapping these genetic variants to underlying molecular
biological pathways associated with disease pathogenesis has
been largely unsuccessful (191). Understanding this relationship
is critical since it could allow for identification and design of
therapeutic strategies (192). Integrating GWAS and RNA-seq
transcriptomics data using a systems genetics approach has
been extensively undertaken to identify loci/variants associated
with dysregulated biological network pathways that play a role
in complex traits. This integrative systemics genetics approach
has been used to identify causal genes and pathways associated
with obesity in pigs (193), and mastitis and milk production
in cattle (194), and buffaloes (195). As several GWAS and
RNA-seq transcriptomic studies are reported for JD, adapting an
integrative systems genetics approach will significantly benefit a
complex polygenic trait such as JD to identify causal genes and
biological pathways that influence disease progression in cattle.

Vitamin D and MAP Infection
The nutritional status of cattle immediately prior and during
the course of infection is likely to be an important determinant
not only of disease susceptibility but also on the ability of
cattle to control MAP infection. One micronutrient that has
attracted considerable attention in that regard is vitamin D.

Principally obtained from sunlight, but also from the diet,
the availability of vitamin D has increased relevance in terms
of housed cattle and deficiency may exacerbate mycobacterial
disease susceptibility (196). Additionally, serum vit D deficiency
status has been shown to predict tuberculosis (TB) risk in
humans in a dose-dependent manner (197). In bovine PBMC
studies, 1,25 dihydroxyvitamin D3 (1,25-(OH)2D3) inhibited
M. bovis-specific IFN-γ production, yet enhanced M. bovis-
specific nitric oxide (NO) production. Lymphocyte apoptosis
was also diminished by addition of 1,25-(OH)2D3 to PBMC
cultures (198). 1,25-(OH)2D3 was also shown to inhibit the T-
cell stimulatory capacity of bovine monocyte-derived dendritic
cells (MoDCs) (199). Studies in JD infected cattle are more
limited, but vitamin D concentration in cows with positive JD
serum ELISA status have been reported to be lower than in
cows with a negative status (200). A recent study performed
transcriptomic analysis in naturally infected cattle and showed
significant differential expression for genes in the vitamin D
pathway such as CYP27A1, CYP27B1, DBP, and IFNG in
JD+ cattle (201). Interestingly, upregulation of CYP27A1 was
observed for cows in subclinical status, whereas the CYP27B1
expression was enhanced for clinical status cows. Therefore,
decreased circulating 1,25-(OH)2D3 in animals with clinical
JD may suggest that these cows have reduced innate immune
responses, thereby influencing the ability of animals to fight
MAP infection.

Gut Microbiota and MAP Infection
The composition of gut microbiota and its effect in predisposing
humans to IBD is well-documented (202). Chronic inflammation
seen in IBD at the gut mucosal level is attributed to
reduction in the levels of bacteria with anti-inflammatory
properties, as opposed to its pro-inflammatory counterparts (202,
203). This imbalance in gut microbiome diversity commonly
referred to as “dysbiosis” has unearthed the significance of
gut microbiota in promoting intestinal homeostasis (204).
Furthermore, remission of symptoms in CD patients post
fecal microbiota transplantation holds promise as a potential
alternative therapeutic strategy to immunosuppressive drugs
(205). Similar to CD in humans, marked dysbiosis in the fecal
microbiota community was observed in MAP-infected cattle
when compared toMAP-exposed andMAP-negative cattle (206).
Using a rabbit MAP infection model, Arrazuria et al. (207) also
noticed changes in gut microbiota composition due to MAP
infection and dietary changes. While changes in gut microbiota
content during MAP infection are evident, studies linking the
same to explain pathogenesis of MAP infection needs to be
undertaken. This further holds potential in classifying animals
as resistant or susceptible to MAP infection based on their
gut microbiota profile. Recent evidence in cattle suggests that
rumen microbiome content is heritable (208, 209). Similar
understanding of the influence of host genetics on intestinal
microbiota could pave the way to selectively manipulate gut
microbiota and in turn to breed for JD resistance. Going forward,
studies in this regard are highly warranted.
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Genomic Selection for JD Resistance
Genomic selection (GS) involves prediction of breeding values
based on whole-genome SNP marker information estimated
based on a training population comprising of genotyped animals
with measurements for a particular trait(s) (210). Genomic
selection is now a routine breeding practice in the dairy cattle
industry (as well as many other plant and livestock species).
In dairy cattle, the implementation of GS results in substantial
reduction of the generation interval, increased genetic progress
due to higher selection intensity and greater accuracy of breeding
values at an early age, and reduced costs associated with
phenotypic data collection on all selection candidates (211). GS
has been successfully implemented for various traits in dairy
cattle (212), and high genetic gain has been also achieved for
lowly-heritable traits (212). Indeed, this is promising for JD. To
our best knowledge, no studies have investigated the accuracies of
genomic predictions for JD resistance, but this is an area of great
importance for future studies.

The success of genomic selection is largely dependent on the
size and the design of the training population, which ultimately
influence the accuracies of the genomic estimated breeding values
(GEBV). However, unlike production traits, implementation of
GS for health traits such as JD resistance is complex and poses
many challenges (213). Before considering routine genomic
evaluations for JD resistance, concerted efforts should be focused
on creating a large training population (> 5,000 animals) with
accurate JD phenotypic information. As many indicator traits
have been used to assess MAP susceptibility in cattle and the
associated uncertainty with each trait, a consensus on a trait to
be employed in JD selection programs should be arrived first.
While measuringMAP load in tissues as an indicator of tolerance
projects to be a reliable trait, the need to slaughter animals limits
its employment (48, 137). If feasible, it would be worthwhile

estimating and comparing GEBV accuracies for each phenotype
using different training populations to assess their accuracy for
genomic selection for resistance to JD. Consequently, the effect
of genetic selection for JD resistance on other traits should also
be considered and evaluated.

CONCLUSION

The focus of this review was to provide comprehensive update
and to highlight recent advancements about JD in cattle from the
standpoint of host immune response and genetic regulation of
the same. While our focus was from the host perspective, studies
understanding the physiology of MAP and their pathogenicity
are also happening. Uncovering the role of key immune
regulators and genes in JD pathogenesis while also unearthing the
impact of host genetic make-up in influencing response to MAP
infection has shed immense light on the immunogenetic aspect of
JD. Additionally, prior knowledge of host immunogenetic aspects
related to an infection is critical in developing vaccines with
high immunogenicity as response to vaccines is also determined
by the host genetic make-up. With recent advancements in
research technologies, our understanding of JD has progressed
significantly and will continue to evolve. As we move forward,
concerted collaborative efforts will be required to limit the impact
of JD on the global livestock industry and on human health.
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