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A B S T R A C T

The contour of an arbitrary figure can be represented as a group of circles of curvature in contact with it, with
each curvature circle represented by its center OC and radius r. We propose a series of cell models for detecting
this circle, which is composed of a lateral geniculate nucleus (LGN) cell, nondirectionally selective (NDS) simple
cell, and curvature-circle detection cell (CDC). The LGN and NDS simple cells were previously modeled. The CDC
has been modeled as follows. Each tangent in contact with this circle is detected by an NDS simple cell that
performs the Hough transformation of LGN cell responses, and then this tangent is transformed to a three-
dimensional (3D) normal line in a CDC column. This transformation has been named a 3D normal-line trans-
form. Performing this transformation for all tangents causes a CDC at the intersection of these normal lines to fire
most intensively, and thus the OC and r of the circle is detected as the coordinates of this intersection. Therefore,
the CDC has been modeled as this 3D normal-line transform. Based on this CDC, we model two types of constancy
CDC: a position-invariant CDC and a curvature-invariant CDC. These three types of CDC reflect the response to
various stimuli in actual area V4 cells. In order to validate these CDC types neurophysiologically, we propose an
experimental method using microelectrodes. Cell models previously reported correspond to this hierarchy: the S1,
S2, and C2 cells correspond to the NDS simple cell, CDC, and position-invariant CDC, respectively.
1. Introduction

The purpose of this paper is to model a cell that detects each circle of
curvature in contact with the contour of an arbitrary figure (Figure 1(A))
to extract the information (i.e. the center and radius) of the circle. We
think that this information may play an important role in shape recog-
nition. To that end, the neurophysiological experiments and cell models
reported previously will be investigated and examined as follows.

Shape recognition is thought to be processed in the ventral pathway
in primate visual cortex (Felleman and Van Essen 1991; Ungerleider and
Mishkin, 1982). At early stages in this pathway, such as the primary vi-
sual cortex (V1), shape is processed by cells sensitive to simple features
like edge orientation (Hubel & Wiesel, 1959, 1965, 1968). Cells at the
end of the pathway in inferotemporal cortex (IT) process abstract object
categories like faces and hands (Perrett et al., 1982; Desimone et al.,
1984; Fujita et al., 1992; Tanaka et al., 1991; Tsao et al., 2006; Hung
kami).

4 July 2020; Accepted 28 Octobe
evier Ltd. This is an open access a
et al., 2005; Logothetis et al., 1995). In addition, cells in area IT exhibit
an invariance to the translation or size change of a figure (Ito et al., 1995;
Tanaka, 1996; Rust and DiCarlo, 2010; Zoccolan et al., 2007). Further,
cells in area IT respond in a coarse-to-fine order, specifically, respond
first to coarse (or global) components of stimuli and then respond to their
fine components with average delay of 51 ms (Sugase et al., 1999;
Tamura and Tanaka, 2001). However, the mechanisms of how these
abstract object category, invariance, and coarse-to-fine response in area
IT are processed by simple features such as edge orientation in area V1
have been not yet understood. In order to approach this issue, it is
necessary to elucidate the nature of shape representation at intermediate
stages in the ventral pathway such as area V4.

An overview of the various selectivities of area V4 cells to stimuli (i.e.
a curvature selectivity, binocular-disparity selectivity, motion-direction
selectivity, etc.) was reported (Roe et al., 2012). Since we believe that
r 2020
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Figure 1. Normal-line transform on a plane. (A) The contour of an arbitrary figure can be represented as a group of curvature circles in contact with the contour, with
each curvature circle represented by its center OC and radius r. (B) One of the curvature circles in (A) is shown. Each tangent in contact with this curvature circle is
detected by an NDS simple cell (Kawakami and Okamoto, 1996; Kawakami, 1996). Thus, this detection causes the circle to be converted into an envelope that is
composed of all tangents detected by the simple cells. (C) One of the tangents in (B) is shown. This tangent is transformed to a normal line that is perpendicular to it at
a contact Pt. This transformation has been named a normal-line transform. The center OC of every curvature circle (drawn as a dotted line) to should be detected is on
this normal line. (D) This normal-line transform converts all tangents of the curvature circle into a group of normal lines that intersect at one point OC. Thus, the center
of the curvature circle is detected as this intersection.
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shape recognition is strongly related to curvatures, the following focuses
on the curvature selectivity.

Area V4 cells prefer more complex stimuli than edges (Kobatake and
Tanaka, 1994) and also prefer curvilinear gratings than linear gratings
(Gallant et al., 1993, 1996). In addition, area V4 cells exhibit tuning in
both object shape and boundary blur (Oleskiw et al., 2018). Many cells in
area V4 respond selectively to the curvature of local contour in a figure.
These curvature selectivities can be classified into five types of cell. The
first type responds invariant to the position of the contour but selectively
to its curvature (Pasupathy & Conner, 1999, 2001, 2002). The second
type responds invariant to its size (i.e. its curvature) but selectively to its
positions (El-Shamayleh and Pasupathy, 2016). The third type responds
selectively to both curvature and position of the contour (El-Shamayleh
and Pasupathy, 2016). The fourth type does not respond selectively to a
specific curvature but prefers a concentric circle (Gallant et al., 1993,
1996; Dumoulin and Hess, 2007). The fifth type exhibits a trade-off be-
tween curvature preferences and position invariances, specifically, ex-
hibits that cells preferring high curvatures have low position invariances,
while cells preferring low curvatures have high position invariances
(Nandy et al., 2013; Sharpee et al., 2013; Pasupathy and Conner, 1999).

A hierarchy of cell models that respond selectively to the curvature of
the local contour was reported (Cadieu et al, 2004, 2007; Riesenhuber
and Poggio, 1999; Schneider and Riesenhuber, 2002; Serre et al., 2007).
This hierarchy was composed of S1, C1, S2, and C2 cells. The S1 and C1
cells correspond to the simple and complex cells in area V1, respectively.
The S2 and C2 cells correspond to the third and first cell types described
2

above, respectively. In addition, a cell model that respond selectively to a
very local curvature (i.e. a circular arc with very small central angle) was
reported (Rodriguez-Sanchez and Tsotsos, 2012). These cells were
combined to model a cell that corresponds to the third type.

Each local contour of a curved figure has been used as a stimulus for
the neurophysiological experiments and cell models that were described
above. This contour was represented by the parameters (i.e. the position
and curvature κ) of it, and the selectivity and invariance of a cell to the
contour were evaluated using these parameters. On the other hand, as
such parameters, we use the center OC and radius r of the circle of cur-
vature in contact with this contour (Figure 1(A)): this is because our
purpose is to model a cell that detects this circle. The former and latter
parameter representations have been respectively named a contour-
position representation (which is represented by the position and cur-
vature κ of the contour) and a curvature-center representation (which is
represented by the center OC and radius r of this curvature circle). From
the simplicity of the description, we will hereinafter refer to the circle of
curvature, the radius of curvature, and the center of curvature as the
curvature circle, the curvature radius, and the curvature center,
respectively.

Let us compare these parameter representations, in terms of the
selectivity evaluation of a cell to the parameters. Since there is a rela-
tionship of κ ¼ 1/r between the curvature κ and the curvature radius r,
they correspond to each other in terms of the selectivity evaluation to
them. Next, examine the other parameter, namely the position of the
contour, using Figure 1(A). Consider a circle in contact with the contour,
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whose center is OC. When this center OC changes, the contour position
changes correspondingly: that is, they change together. Thus, using
either the contour position or the center OC, the position selectivity of a
cell can be evaluated. Therefore, this position corresponds to the center
OC in terms of the selectivity evaluation to them.

To summarize the relationship between these parameters, the cur-
vature κ and position of the contour correspond to the radius r and center
OC of the curvature circle in contact with this contour, respectively. Thus,
we can use either of these two representations to evaluate the selectivity
of a cell to the parameters. For example, a cell that responds selectively to
the position (or curvature κ) of a contour also responds selectively to the
center OC (or radius r) of the curvature circle in contact with this contour,
respectively. These correspondences for selectivity are also valid for
invariance.

However, the accuracy of position determination differs between
these representations, as follows. In the contour-position representation,
we can not know which point on the local contour represents the contour
position (Figure 1(A)): that is, a reference point that represents the
contour position cannot be defined. Although it can be mathematically
considered to use themidpoint of the contour as this reference point, cells
that determine this midpoint have never been reported as far as we know.
Thus, it is physiologically difficult to accurately determine the contour
position, because the reference point can not be defined.

On the other hand, in the curvature-center representation, a reference
point that represents the contour position can be defined as the center OC
of the curvature circle in contact with the contour (Figure 1(A)), because
the position corresponds to this center OC. Thus, the contour position can
be accurately determined as the position of this center OC. This repre-
sentation allows the local contour to be defined exactly as one point
(OC,r) in a three-dimensional (3D) space, and thus its parameters (i.e. its
center OC and radius r) can be determined as the coordinates of this
point: an algorithm described later uses this 3D space.

Summarize the determination of the curvature and position by these
representations as follows. The contour-position representation can
determine the curvature κ of the local contour, but is difficult to accu-
rately determine its position. On the other hand, the curvature-center
representation allows both radius r and center OC of the curvature cir-
cle (which correspond to the curvature κ and position respectively) to be
accurately determined.

In order to achieve physiologically this curvature-center representa-
tion, it is necessary to model a cell that detects these parameters (i.e. the
center OC and radius r) of the curvature circle. The above S2 cell (which
responds selectively to both curvature κ and position and belongs to the
contour-position representation) detects the radius r corresponding to
the curvature κ, but is considered to be difficult to accurately detect the
center OC corresponding to the contour position, for the above reason. In
addition, an engineering method (Duda and Hart, 1972; Illingworth and
Kittler, 1987) for the detection of these parameters was reported, but this
method has not been modeled as a cell. In this way, as far as we know, no
cell model has been reported that can detect accurately these parameters
of the curvature circle.

Therefore, in order to achieve this representation, we proposed a
series of cell models that can detect accurately these parameters of the
circle. This series was composed of three types of cell model: a lateral
geniculate nucleus (LGN) cell, nondirectionally selective (NDS) simple
cell, and curvature-circle detection cell (CDC). The LGN and NDS simple
cells were previously modeled (Kawakami and Okamoto, 1996; Kawa-
kami, 1996). This CDC was modeled as a 3D normal-line transformation
of NDS simple cell responses to detect the parameters (i.e. the OC and r) of
the circle. Computer simulations confirm that this CDC can accurately
detect these parameters of any curvature circle.

Based on this CDC, we also modeled two types of constancy CDC that
have perceptual constancy: a position-invariant CDC and a curvature-
invariant (i.e. size-invariant) CDC. These three types of CDC reflect the
response to various stimuli in actual area V4 cells: specifically, these CDC
types allow the response of the five cell types in area V4 described above
3

to be explained neurophysiologically. In order to validate these CDC
types neurophysiologically, we proposed three types of experimental
method using microelectrodes.

Combining these two constancy CDC types with the above series of
cell models, we proposed a cell hierarchy that is composed of a series of
cell models: the LGN cell, NDS simple cell, CDC, position-invariant CDC,
and curvature-invariant CDC.

The previous hierarchy of cell models (Cadieu et al., 2007) described
above corresponds to our hierarchy, as follows: that is, the S1, S2, and C2
cells correspond to the NDS simple cell, CDC, and position-invariant CDC,
respectively.

Some parts of the material in this paper–the method and cell model
for detecting curvature circles, and some computer simulations–have
been presented previously (Ito, 2011; Hashimoto, 2009).

2. Algorithm

As shown Figure 1(A), a figure contour can be represented as a group
of curvature circles in contact with it: each curvature circle is represented
by its center OC and radius r. This representation, which belongs to the
curvature-center representation in Section 1, allows the contour
composed of points to be converted into a set of the centers OC and radii r
of these curvature circles: a curve constituted by this set is the evolute of
the contour (Bronshtein and Semendyayev, 1978), and this conversion is
similar to Fourier transform. To achieve this conversion, we will propose
an algorithm for detecting this curvature circle based on the following
neurophysiological reports.

An NDS simple cell in area V1 detects each line segment in a local
region on the eyeball (i.e. a receptive field (RF)) (Hubel & Wiesel, 1959,
1962; Schiller et al., 1976; W€org€otter and Eysel, 1989), and was modeled
as the Hough transformation of LGN cell responses (Kawakami and
Okamoto, 1996; Kawakami, 1996): these modeled cells reflect the
response to various stimuli in actual NDS simple cells (Kawakami and
Okamoto, 1996; Kawakami, 1996; Blasdel, 1992; Okamoto et al., 1999).
Based on this line-segment detection, the algorithm for detecting the
circles will be described below.
2.1. Detection on a plane

One of the curvature circles in Figure 1(A) is shown in Figure 1(B).
Each tangent (i.e. each line segment) in contact with this circle can be
detected by an NDS simple cell, as described above. Thus, this detection
causes the circle to be to converted into an envelope composed of all
tangents: an example of this conversion by modeled NDS simple cells was
shown in Figure 7(A)(ii) of Kawakami and Okamoto (1996). This con-
version of the circle into the envelope plays an important role in the circle
detection, as described below.

One of the tangents in Figure 1(B) is shown in Figure 1(C).
Transform this tangent to a normal line that is perpendicular to it at a
contact Pt. The transformation from the tangent to this normal line
has been named a normal-line transform: the center of every curva-
ture circle (drawn as a dotted line) in contact with this tangent is on
the normal line. As shown in Figure 1(D), performing this trans-
formation for all tangents of the circle causes these normal lines to
intersect at one point OC, and thus the center of the circle is detected
as this intersection. However, there are two problems as follows: (1)
its radius r can not be detected; (2) each of the circles that make up a
concentric circle results in the same intersection, and thus can not be
detected separately.

In order to solve these problems, we introduce a rectangular solid
(x,y,r) shown in Figure 2(A), whose height coordinate is equal to the
radius r of a curvature circle to should be detected. The tangent
(Figure 1(C)) is transformed to a straight line in this solid, which is
expressed by the following equation.

y–yt ¼ (x–xt) tanθ (1)



Figure 2. 3D normal-line transform in a rectangular solid. (A) We introduce a rectangular solid (x,y,r) whose height coordinate is equal to the radius r of a curvature
circle to should be detected. A tangent in Figure 1(C) is transformed to a 3D normal line in this solid, which is expressed by Eqs. (1) and (2). This transformation has
been named a 3D normal-line transform. The curvature circle and normal line corresponding to Figure 1(C) are drawn as dotted lines on the bottom, for reference. (B)
This 3D normal-line transform converts all tangents of the curvature circle (Figure 1(D)) into a group of 3D normal lines in the solid (x,y,r). These lines intersect at one
point OC, and thus the center (xC,yC) and radius rC of the circle are detected as the coordinates of this intersection. (C) The tangent in Figure 1(C) is shown which is in
contact with the curvature circle. The parameters (ρ,θ) of this tangent are detected by an NDS simple cell (Kawakami and Okamoto, 1996; Kawakami, 1996), where the
ρ and θ indicate its location and orientation, respectively.
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r ¼ ððx� xtÞ2 þ ðy� ytÞ2Þ (2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

The (xt,yt) and θ are the contact Pt and orientation of this tangent
(Figure 2(C)), respectively. This straight line has been named a 3D
normal line, and the transformation from the tangent to this normal line
has been named a 3D normal-line transform. This 3D normal line, which
is determined by the tangent's orientation θ and contact (xt,yt), is V-
shaped because r is a positive value. The bottom of this solid corresponds
to the plane shown in Figure 1(C), and a curvature circle and a normal
line are drawn on it as dotted lines for reference.

Let us explain how these equations were derived, as follows. A cur-
vature circle and its tangent are shown in Figure 2(C), which corresponds
to Figure 1(C). First, the parameters (ρ,θ) of this tangent are detected by
an NDS simple cell as described above, where the ρ and θ represent the
tangent's location and orientation respectively (Kawakami and Okamoto,
1996; Kawakami, 1996). Next, the normal line perpendicular to this
tangent at the contact Pt is expressed by Eq. (1), where (x,y) represents a
point on the line. Finally, since the radius r of a curvature circle (drawn as
a dotted line in Figure 2(C)) is the distance between (xt,yt) and (x,y), the
height coordinate r of the 3D normal line is expressed by Eq. (2).
Therefore, the 3D normal line has been expressed by Eqs. (1) and (2).

A curvature circle is detected as follows. Each tangent of this
circle (Figure 1(D)) is transformed to a 3D normal line in the solid
(x,y,r). Then, performing this transformation for all tangents causes
these normal lines to intersect at one point OC as shown in
Figure 2(B), and thus the center (xC,yC) and radius rC of the circle are
detected as the coordinates of this intersection: the r height axis is
exaggerated for ease of viewing.
4

Therefore, the above first problem of not being able to detect the
radius r has been resolved. In addition, the second problem is solved, as
follows: each of the circles that make up a concentric circle can be
detected separately, because this circle forms a different intersection at
the corresponding height; thus, this problem has been solved. Note that
the 3D normal lines outside the contacts are omitted to simplify drawing,
and this envelope of the 3D normal lines (Figure 2(B)) forms a right
circular cone in the solid.

The above description is summarized. An NDS simple cell detects
each tangent in contact with a curvature circle, and then this tangent is
transformed into a 3D normal line in the solid (x,y,r). Performing this
transformation for all tangents causes these normal lines to intersect at
one point, and thus the center and radius of the circle are detected as the
coordinates of this intersection.
2.2. Detection on the eyeball

Since the actual scene is projected to the eyeball, an algorithm for
detecting a curvature circle on it will be described below. An eyeball
viewed from directly above is shown in Figure 3(A): its radius is assumed
to be 1.

A curvature circle, whose radius and center are r and OC respectively,
and a great circle, whose radius and center are π/2 (i.e. 90�) and OC,gr
respectively, are shown on the eyeball. The great circle is the largest
circle on the eyeball and is represented by equation (A1) in Appendix A:
this circle corresponds to a straight line in space, and can be obtained by
projecting this line onto the eyeball. On the other hand, on the plane



Figure 3. Normal-line transform on the
eyeball. (A) A curvature circle and its tangent
are shown on the eyeball. This tangent is
transformed to a normal line passing through
the contact Pt. This transformation is a
normal-line transform on the eyeball: the
center OC of every curvature circle to should
be detected is on this normal line. The largest
circle on the eyeball is a great circle whose
radius and center are π/2 and OC,gr respec-
tively. The radius of the eyeball is assumed
to be 1. (B) This normal-line transform con-
verts all tangents of the curvature circle into
a group of normal lines that intersect at one
point OC. Thus, the center of the circle is
detected as this intersection.

Figure 4. 3D normal-line transform in a
cylinder. (A) Instead of the rectangular solid
(x,y,r) in Figure 2(A), we introduce a cylin-
der (α,β,r) whose height coordinate is equal
to the radius r of a curvature circle to should
be detected. A cross section (α,β) of this
cylinder at each height r is obtained as the
equidistant projection of the eyeball surface
((C)(i)) onto a disk ((C)(ii)). The tangent on
the eyeball (Figure 3(A)) is transformed to a
3D normal line in this cylinder, which is
expressed by equations (B3 to B5) in Ap-
pendix B. This transformation is a 3D
normal-line transform in the cylinder. The
curvature circle and normal line corre-
sponding to Figure 3(A) are drawn as dotted
lines on the bottom, for reference. The defi-
nition of a polar coordinate (α,β) is illus-
trated in the cross section of r ¼ 90 deg: O
corresponds to the center of the visual field,
and x represents the x axis. (B) This 3D
normal-line transform converts all tangents
of the curvature circle (Figure 3(B)) into a
group of 3D normal lines in the cylinder
(α,β,r). These lines intersect at one point OC,
and thus the center (αC,βC) and radius rC of
the circle are detected as the coordinates of
this intersection. (C) The equidistant projec-
tion of the eyeball surface onto the disk is
described, as follows. On the eyeball ((i)),
consider a point with the coordinates (α,β)
which is represented in polar coordinates: O
is the center of the visual field. Then, this
point is projected to a point on the disk ((ii))
which has the same coordinates (α,β) as on
the eyeball. This projection is the equidistant
projection of the eyeball surface onto the
disk. Note that this projection was used in
the previous cell model for detecting a planar
surface in space with motion stereo (Kawa-
kami et al., 2000, 2003).
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(Section 2.1), the largest circle is a straight line that represents a circle
with an infinite radius.

The center of this curvature circle is detected as follows. First,
consider a tangent in contact with this circle at a contact Pt (Figure 3(A)).
This tangent (i.e. this line segment) is detected by an NDS simple cell
(Section 2.1). Next, transform this tangent to a normal line passing
through a contact Pt. This transformation is the normal-line transform on
the eyeball. Giving the contact Pt and the tangent's orientation θ, this
normal line is expressed by equation (B3) in Appendix B. Finally, as
shown in Figure 3(B), performing this transformation for all tangents of
the circle causes these normal lines to intersect at one point OC, and thus
the center of the circle is detected as this intersection OC.

However, there are two problems as follows: (1) its radius r can not be
detected; (2) each of the circles that make up a concentric circle results in
the same intersection, and thus can not be detected separately.
2.2.1. 3D normal-line transform in a cylinder
In order to solve these problems, we introduce a cylinder (α,β,r) in

Figure 4(A) instead of the solid (x,y,r) in Figure 2(A): a height coordinate
of the cylinder is equal to the radius r of a curvature circle to should be
detected. A cross section (α,β) of this cylinder at each height is obtained
by projecting the eyeball surface in Figure 3(A) onto a disk. This pro-
jection is performed as follows.

In Figure 4(C)(i), consider a point with the coordinates (α,β) on the
eyeball, which is represented in polar coordinates: O is the center of the
visual field; when O is assumed to be the north pole, α and β correspond
to a longitude and a 90� - latitude, respectively. This point is projected to
a point on the disk (Figure 4(C)(ii)) which has the same coordinates (α,β)
as on the eyeball: the radius of this disk is π/2 that is equal to the distance
between O and x on the eyeball ((i)). This projection has been named an
equidistant projection of the eyeball surface onto the disk: this equidis-
tant projection corresponds to one of the projections used to express the
characteristics of fisheye lenses. An example of this projection is as fol-
lows: a great circle on the eyeball (Figure 4(C)(i)) is projected to a curve
on the disk (Figure 4(C)(ii)), and this curve is expressed by equation (A1)
in Appendix A.

The cylinder (α,β,r) above has been obtained by stacking these disks
(α,β) in the r height direction: the maximum height of this cylinder is π/2
(i.e. 90�), because the largest curvature circle on the eyeball is a great
circle. The normal line shown on the bottom as the dotted line is an
equidistant projection of the normal line on the eyeball (Figure 3(A)),
and is expressed by equations (B3 to B5) in Appendix B.

By adding a height coordinate r to this normal line on the bottom, a
3D normal-line is formed within the cylinder (Figure 4(A)), as follows.
Since this height coordinate is equal to the radius r of a curvature circle
(shown on the bottom as the dotted line), increasing this radius causes a
straight line, which rises in a V shape from the contact Pt at an angle of
45�, to be formed in the cylinder. This V-shaped line is the 3D normal line
in the cylinder: the r height axis is exaggerated for ease of viewing.
Giving the θ orientation of a tangent and a contact Pt, this 3D normal line
is expressed by equations (B3 to B5) in Appendix B.

Thus, the tangent (Figure 3(A)) is transformed to this 3D normal line.
This transformation is a 3D normal-line transform in the cylinder, which
is one of the main points of this paper. Note that Figure 4(A) shows a case
where the Pt contact is at the O center of the visual field, but this
transform holds for Pt with any position.

A curvature circle is detected as follows. As shown in Figure 4(B),
performing this transformation for all tangents of the curvature circle
(Figure 3(B)) causes these normal lines to intersect at one point OC, and
thus the center (αC,βC) and radius rC of the circle are detected as the
coordinates of this intersection. Note that a 3D normal line outside each
tangent is omitted for ease of viewing.

Therefore, the above first problem of not being able to detect the
radius r has been resolved. In addition, the second problem is solved, as
follows: each of the circles that make up a concentric circle can be
6

detected separately, because this circle forms a different intersection at
the corresponding height; thus, this problem has been solved.

2.2.2. Numerical verification of the curvature-circle detection
In order to verify that the curvature-circle detection (Figure 4(B)) can

be correctly executed, each 3D normal line in the cylinder (α,β,r) was
numerically calculated using equations (B3 to B5) of Appendix B, giving a
curvature circle of radius r¼ 40 deg using eight tangents and contacts on
its circumference. Then, a cross section of this cylinder was cut at each
height r and arranged in Figure 5. In each cross section, intersections of
these lines and the cross section were plotted.

Various behaviors that occur during this verification process (or occur
at each cross section) will play an important role in the explanation of
Figures 11, 12, 13, 14, and 15 and Section 5.2.2. Thus, these behaviors
are described in detail below.

In (viii), the given eight contacts formed a circle with a radius of 40�

which corresponded to the given circle, and this circle was shown in each
cross section as dotted lines for reference: a normal line passing through
each contact was shown as an alternate long and short dash line.

As the height r increased, this reference circle was divided into two
circles composed of points, the inner circle became smaller, and the outer
circle became larger. As shown in (v) as an example, the distance be-
tween the reference circle and this inner (or outer) circle is equal to the
height coordinate r. This distance results from the V-shape representing
the 3D normal line (Figure 4(A)): this is because increasing the height by
r from the bottom causes the intersection of this V-shape with the cross
section to move away (or shift) by r from the contact symmetrically. This
shift from the contact along the normal line is a feature of this algorithm:
note that the shift will be described later in detail in Section 5.2.2.

The inner circle decreased in size as r increased and then converged to
one point at (iv). This convergence point corresponds to the intersection
OC of the 3D normal lines (Figure 4(B)). Thus, the center (αC,βC) and
radius rC of the curvature circle were detected as the coordinates of this
convergence point. Therefore, the curvature-circle detection
(Figure 4(B)) has been verified.

When the height r became higher than (iv), the inner circle was
reversed and became larger again. On the other hand, the outer circle
increased in size monotonically with height r.

2.2.3. Comparison with the detection on the plane
This circle detection on the eyeball is compared with that on the plane

(Section 2.1). First, on the plane, the largest curvature circle is a straight
line that represents a circle with an infinite radius, and thus this line can
not be detected. On the other hand, on the eyeball, the largest curvature
circle is a great circle whose radius is finite (i.e. π/2), and thus can be
detected. Next, on the plane, curvature circles whose centers OC protrude
from the rectangular solid (x,y,r) can not be detected. On the other hand,
on the eyeball, the center (α,β) of any curvature circle does not protrudes
from the cylinder (α,β,r) and exists inside it, so any curvature circle can
be detected. To summarize the above, this circle detection on the eyeball
has the ability to detect arbitrary curvature circles, including the largest
curvature circle (i.e. the great circle).

This ability allows to process an arbitrary figure in space composed of
straight lines and curves using only circles on the eyeball. This is due to
the following: (1) each straight line and curve in space can be trans-
formed into a great circle and curve, respectively, when projected onto
the eyeball; (2) these great circle and curve are a type of circle on the
eyeball, because this curve is constituted by a group of curvature circles
in contact with it; (3) therefore, this figure in space can be processed
using only circles on the eyeball, when projected onto it.

3. Cell model

Figure 6 shows a series of cell models for detecting a curvature circle
on the eyeball: the LGN cell, NDS simple cell, and CDC. The LGN and NDS
simple cells were previously modeled, and reflect the response to various



Figure 5. Numerical confirmation of the curvature-circle detection. In order to confirm that the curvature-circle detection in the cylinder (Figure 4(B)) is correctly
performed, we calculated the 3D normal lines in it using equations (B3 to B5) in Appendix B. This cylinder was cut at each height r, and then its cross section was
arranged in this figure. In each cross section, intersections of the 3D normal lines calculated above and this cross section were plotted. A curvature circle of radius r ¼
40 deg was given on the eyeball using eight contacts on its circumference. In (viii), the given eight contacts formed a circle with a radius of 40� which corresponds to
the given circle, and a normal line passing through each contact was shown as an alternate long and short dash line. This formed circle was shown in each cross section
as dotted lines for reference. As the height r increased, this reference circle was divided into two circles composed of points, the inner circle became smaller, and the
outer circle became larger. As shown in (v) as an example, the distance between the reference circle and this inner (or outer) circle is equal to the height coordinate r.
The inner circle decreased in size as r increased and then converged to one point at (iv). This indicates that the 3D normal lines intersected at this point, and thus the
curvature circle was correctly detected as the coordinates of this point.
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stimuli in actual LGN and NDS simple cells (Kawakami and Okamoto,
1996; Kawakami, 1996; Blasdel, 1992; Okamoto et al., 1999). The CDC
will be modeled in Section 3.1 based on the algorithm in Section 2.2.

As a first explanation of Figure 6, the arrays of the retinal, LGN, and
NDS simple cells and a pattern activated within each array are described,
as follows. First, in (A), the eyeball surface is divided into local regions
(i.e. receptive fields (RFs)), and the RFs superimposed on a curvature
circle are shown. Next, the (B) shows a series of cell models for detecting
each tangent of the circle. The (i) shows a circular array (x,y) composed
of retinal cells in each RF, in which about 1000 cells exist and cells on this
tangent are fired: dots (●) represent activated cells. The (ii) shows a
circular array (x,y) of LGN cells, in which also about 1000 cells exist and
the outline of the tangent in (i) is emphasized. This enhancement is done
by a neural network performing the convolution between the retinal cell
responses and the DOG filter: this convolution is hereinafter abbreviated
as a DOG convolution. The (iii) shows a rectangular array (ρ,θ) of NDS
simple cells, in which about 1000 cells are arranged. An NDS simple cell
with the (ρ,θ) coordinates performs the Hough transformation of the LGN
cell responses to detect the tangent in (ii), as follows. A network of Hough
transform shown in (iii) causes this simple cell to be connected with all
LGN cells on the tangent. By the network, this simple cell accumulates all
LGN cell responses on the tangent and thus fires to detect the tangent
corresponding to its coordinates (ρ,θ). Using this tangent detection, the
CDC will be modeled below.
3.1. Basic CDC model

Figure 6(C) shows an arrangement of CDCs in the cylinder
(Figure 4(A)), where this arrangement has been named a CDC col-
umn. Each cell in this column is expressed as CDC(α,β,r) that detects
a curvature circle whose center and radius are (α,β) and r
respectively.
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A network that performs the 3D normal-line transform (Section
2.2.1)–that is, a network that connects each NDS simple cell ((B)(iii)) to
all CDCs ((C)) on a 3D normal line within the CDC column–is modeled as
follows: (1) the tangent in a LGN cell array ((B)(ii)) corresponding to each
RF ((A)) is detected by an NDS simple cell ((B)(iii)) with the (ρ,θ) co-
ordinates, as describe above; (2) then, this tangent is transformed to a 3D
normal-line in the cylinder (Figure 4(A)), as described in Section 2.2.1;
(3) since this cylinder corresponds to the CDC column, this tangent is
transformed to a 3D normal-line in the column; (4) expressing the above
with a network, this simple cell ((B)(iii)) detecting the tangent is con-
nected to all CDCs ((C)) on the 3D normal line in the column. Thus, the
network performing the 3D normal-line transform has been modeled as
this connection.

A curvature circle is detected as follows. First, based on this network
belonging to an RF ((A)), each NDS simple cell ((B)(iii)) in the (ρ,θ) array
activates all CDCs ((C)) on the 3D normal line corresponding to this
simple cell, thus generating a V-shaped pattern composed of activated
CDCs in the column. Next, applying this network for all RFs super-
imposed on the curvature circle ((A)) causes a large number of these V-
shaped patterns to occur in the column, as shown in Figure 4(B): patterns
outside the contact were omitted for ease of viewing. Finally, a CDC at
the intersection OC of these patterns is fired most intensively, and thus
the center (αC,βC) and radius rC of the circle are detected as the co-
ordinates of this intersection.

Thus, the CDC has been modeled by this network performing the 3D
normal-line transform: in other words, the CDC has been modeled as the
3D normal-line transformation of NDS simple cell responses. This CDC
can be also modeled as a convolution between the NDS simple cell re-
sponses and a synaptic weight matrix that represents this network.

This CDC detects every curvature circle constituting the contour of an
arbitrary figure, and thus converts the contour composed of points into a
set of the centers (α,β) and radii r of these circles (Section 2). In other



Figure 6. A series of modeled cells for detecting a curvature circle. This series is composed of LGN cells, NDS simple cells, and CDCs, which performs the DOG
convolution, Hough transform, and 3D normal-line transform, respectively. The LGN and NDS simple cells were previously modeled (Kawakami and Okamoto, 1996;
Kawakami, 1996; Okamoto et al., 1999). (A) The eyeball is divided into local regions (i.e. receptive fields (RFs)), and the RFs superimposed on a curvature circle are
shown. (B) A series of cells for detecting each tangent in contact with the curvature circle is shown. The (i) shows a circular array (x,y) of retinal cells in each RF, in
which about 1000 cells exist and cells on the tangent are fired. Dots (●) indicate activated cells. The (ii) shows a circular array (x,y) of LGN cells, in which also about
1000 cells exist and the outline of the tangent in (i) is emphasized by the DOG convolution. The (iii) shows a rectangular array (ρ,θ) of NDS simple cells, in which about
1000 cells are arranged. A simple cell with the (ρ,θ) coordinates performs the Hough transformation of the LGN cell responses to detect the tangent in (ii): this simple
cell is connected to all LGN cells on the tangent, and this connection represents the network performing Hough transform. (C) An arrangement of CDCs in the cylinder
(Figure 4(A)) is shown, and has been named a CDC column. Each cell in this column is expressed as CDC(α,β,r), which detects a curvature circle with the center (α,β)
and radius r. The NDS simple cell at (ρ,θ) is connected to all CDCs on the corresponding 3D normal-line within the CDC column. This connection represents the
network performing the 3D normal-line transform. This network causes each NDS simple cell to fire all CDCs on the corresponding 3D normal line.
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words, the CDC allows the contour to be converted into a firing pattern,
within the (α,β,r) CDC column, which is generated by detecting these
circles. This CDC is, to our knowledge, the first cell model that detects the
center and radius of this circle, including the modeling of the network
performing the 3D normal-line transform.

Figure 6 is functionally composed of a series of transforms: the DOG
convolution, Hough transform, and 3D normal-line transform. These
transforms are performed by three types of operation: the addition,
subtraction, and multiplication with constant coefficients. These opera-
tions are implemented by three types of synaptic function of neurons
(Kuffler et al., 1984), respectively: the postsynaptic excitation, post-
synaptic inhibition, and synaptic transmission efficiency. Thus, these
three cell types have been modeled using the operations that can be
implemented with neuron's synaptic functions.

We point out that equations (B3 to B5) in Appendix B rep-
resenting the 3D normal lines are complicated, but there is no
problem for the following reason. These equations are necessary
to determine the network that connects each NDS simple cell to
all CDCs on the 3D normal line, but once the network is
determined, this equation is not necessary: in other words, the
equations (B3 to B5) calculate the above network performing
the 3D normal-line transform. Therefore, these complicated
equations have no problem for CDC to work.
3.2. Cell arrangement in the CDC column

The CDCs in the column (Figure 6(C)) were assumed to be arranged at
equal intervals, but it is not clear why it is so arranged. Therefore, let us
determine the CDC arrangement based on the following two psycho-
logical considerations.
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First, the large circle looks the same even if its size changes some-
what, whereas the small circle looks different even if its size changes a
little. Assuming a discrimination threshold for the radius r of this circle
(i.e. a minimum distinguishable radius threshold) to be Δr, this psy-
chological consideration means that the larger the radius r, the larger Δr
becomes. This relationship is expressed by the following equation as a
first order approximation, where kr is a constant coefficient to should be
determined.

Δr ¼ kr r (3)

Second, let us apply the same consideration to a center position (α,β)
of circle. A large circle looks like the same position even if its center
moves somewhat, whereas a small circle looks like a different position
even if its center moves a little. Assuming a discrimination threshold for
the position (α,β) of this circle (i.e. a minimum distinguishable position
threshold) to be Δαβ, this psychological consideration means that the
larger the radius r, the larger Δαβ becomes. This relationship is expressed
by the following equation as a first order approximation, where kαβ is a
constant coefficient to should be determined.

Δαβ ¼ kαβ r (4)

This consideration on how the position of a circle with radius r looks
signifies that one can detect every circle with radius r that exists in a ring
whose radius andwidth are r andΔαβ respectively: thisΔαβ increases with
r due to this equation. Note that this signification is illustrated in Section
C.1 of Appendix C using Figure C1(B).

Based on these considerations, we have determined the two intervals
of the CDC arrangement in this column, as follow: (1) an interval of its
height arrangement is equal to the discrimination threshold Δr that is
expressed by Eq. (3): (2) an interval of the arrangement within each cross



Figure 7. Cell arrangement in the CDC column. In the column of Figure 6(C),
the CDCs were assumed to be arranged at equal intervals, but the basis of this
arrangement is not clear. In order to address this issue, we have determine the
intervals of this arrangement using Eqs. (6) and (7) that were derived based on
neurophysiological considerations. This figure shows how the CDCs are ar-
ranged in the column according to these equations. Since the interval Δr of the
height arrangement was determined by Eq. (7), the larger r is, the coarser the
CDC is arranged in the height direction. In addition, since the interval Δαβ
within each cross section of the column was determined by Eq. (6), the larger r
is, the coarser the CDC is arranged within the cross section corresponding to the
r. Thus, these equations cause the coarse-to-fine arrangement of CDC to be
formed along the r-axis. Each mini-column represents a range for dropout pre-
vention, as follows. Each dot (●) represents a CDC at the center of this mini-
column: note that this dot, which should be drawn at the center of the col-
umn, is drawn on its top for ease of viewing. This CDC with the height r detects
all curvature circles with the radius r whose centers are within this mini-column,
as their representative, and thus can prevent the dropouts of these circles.
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section is equal to the thresholdΔαβ that is expressed by Eq. (4). We point
out that these equations have the same form as the Weber–Fechner law
(Stanislas, 2003).

However, the neurophysiological basis for these equations is not
clear. In order to address this issue, focusing on the discrimination ΔθSC
in θ orientation of an NDS simple cell, we derived the equation (C4) in
Appendix C neurophysiologically. This equation (C4) is expressed as
follows:

Δαβ ¼ (ΔθSC/2) r (5)

The coefficient kαβ in Eq. (4) was also derived as ΔθSC/2, and the ΔθSC
is about 10� (Appendix B of Kawakami and Okamoto (1996) and
Kawakami (1996)).

There is still one problem to solve, as follows. This Eq. (5) was derived
for the curvature-circle detection on the plane, but the CDC detects the
curvature circle on the eyeball. In order to address this issue, we derived
in Appendix C the following equation suitable for the detection on the
eyeball.

Δαβ¼ (ΔθSC/2) sin r (6)

For Δr in Eq. (3), we assume that it is the same as the above Δαβ, and
thus the Δr is expressed as follows:

Δr ¼ Δαβ (7)

Let us describe concretely how the CDCs are arranged in the column
according to Eqs. (6) and (7). Since the interval Δr of the height
arrangement was determined by Eq. (7), the larger r is, the coarser the
CDC is arranged in the height direction. In addition, since the intervalΔαβ
within each cross section was determined by Eq. (6), the larger r is, the
coarser the CDC is arranged within the cross section corresponding to the
r. Thus, these equations cause the coarse-to-fine arrangement along the r-
axis to be formed in the CDC column, including the arrangement within
each cross section. This CDC arrangement is shown in Figure 7, where
each dot (●) represents a CDC.

A small pink circle (Figure 7) centered on each CDC within a cross
section of height r represents a range for dropout prevention, as follows.
This CDC detects all curvature circles with the radius r whose centers are
within this small circle. Therefore, this CDC, which detects these circles
as a representative, can prevent these circles from dropping out. Next, we
extend this small circle in the height direction to form a mini-column
with a height Δr. A CDC at the center of this mini-column detects all
curvature circles with the radius r whose centers are within this column,
as their representative, and thus can prevent these circles from dropping
out: note that this CDC, which should be in the center of the column, is
drawn on its top for ease of viewing.

We point out that this discrimination threshold Δαβ (Eq. (6)) will play
an important role in explaining the trade-off exhibited by actual cells in
area V4 (see Section 5.1.3 described later).
3.3. CDC model based on the coarse-to-fine arrangement

Based on the above considerations, we have replaced the CDC column
(Figure 6(C)) with the column in Figure 7 which has the coarse-to-fine
arrangement. Similar to Figure 6, we connect each NDS simple cell
(Figure 6(B)(iii)) to all CDCs on a 3D normal line in this replaced column.
This connection represents a network that performs the 3D normal-line
transform in this column. This network detects the curvature circle in
the same way as described in section 3.1. Thus, the CDC based on this
arrangement has been modeled.

This CDC column is constituted by discretely arranged CDCs (each of
which exist at the center of a mini-column), but no dropout of curvature-
circle detection occurs: this is because each CDC can detect all curvature
circles whose center are within this mini-column (Section 3.2). There-
fore, this discrete and coarse-to-fine arrangement greatly reduces the
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number of CDCs within the CDC column, because each mini-column has
only one CDC in its center.

We point out that this CDC can detect not only the entire curvature
circle but also a part of it (i.e. a circular arc) such as the local contour
(Figure 1(A)): these detections will be later confirmed in Section 4.4.

3.4. Features of the CDC model

This CDC has three features. The first feature is its ability to process an
arbitrary figure in space composed of straight lines and curves using only
circles on the eyeball (Section 2.2.3). This feature results from the pro-
jection onto the eyeball. This is because any straight line in space is
transformed to a great circle on the eyeball by this projection, and thus it
can be processed as a kind of circle: an example of this ability will be
shown later in the computer simulation (Figure 12).

The second feature is its ability for an arbitrary figure to be recon-
structed by CDCs that detect all curvature circles constituting this figure.
This reconstruction can be specifically described as follows. Each cur-
vature circle is detected by a CDC. Then, a circle that corresponds to the
center (α,β) and radius r of this detected circle is drawn on the eyeball,
with its intensity equal to this CDC response. Performing this drawing for
all detected circles causes the figure to be reconstructed as an envelope of
these circles: an example of this reconstruction will be described later in
the computer simulation (Figure 15(E)(iv); Section 4.4). We point out
that this reconstruction resembles that based on the Fourier transform.

The third feature is its ability to sort and extract various components
of the figure in the order of coarse-to-fine. This is due to the structure of
the CDC column that has the coarse-to-fine arrangement along its r height
axis (Figure 7). In a high cross section of the column, coarse components
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composed of large curvature circles are extracted. In a low cross section,
fine components composed of small curvature circles are extracted. Thus,
the components included in this figure are sorted and extracted in the
order of coarse-to-fine along the r axis: this extraction will be later
confirmed by the description in Sections 4.3 and 4.4.

It is described below that these three features results from the (α,β,r)
arrangement of the CDC column.

The first feature results from the (α,β) cross section of this arrange-
ment. This is because this cross section corresponds to the eyeball (Sec-
tion 2.2.1) onto which the figures in space are projected, as described
above, and thus this projection produces this feature.

The reconstruction characterizing the second feature can be derived
based on this (α,β,r) arrangement, as follows: (1) the 3D normal-line
transform causes an arbitrary figure on the eyeball to be converted into
a pattern of activated CDCs within this (α,β,r) arrangement (Section 3.1;
Figure 6(C)); (2) then, draw a circle (on the eyeball) that corresponds to
the (α,β,r) coordinates of each CDC in this pattern, with its intensity equal
to this CDC response; (3) finally, performing this drawing for all CDCs in
this pattern causes the figure to be reconstructed as an envelope of these
circles; (4) thus, the reconstruction described above has been derived.
This means that the essence of reconstruction lies in this (α,β,r)
arrangement and the 3D normal-line transform generating this activated
pattern. Therefore, the second feature has resulted from this (α,β,r)
arrangement.

The third feature results from the r axis of this (α,β,r) arrangement,
because the curvature circles constituting an arbitrary figure are
extracted along this r axis in the order of coarse-to-fine as described
above.

Based on these considerations, we think that this (α,β,r) arrangement
of the CDCs, as well as the above abilities of the first and third features,
plays an important role in shape recognition performed in area IT.
3.5. CDC model having perceptual constancy

In area IT at the end of the ventral pathway, cells having perceptual
constancy were reported (Ito et al., 1995; Tanaka, 1996; Rust and
DiCarlo, 2010; Zoccolan et al., 2007): these cells responded invariant to
the translation or size change of a figure.

In area V4 that provides an information to area IT, two types of
cell having perceptual constancy were reported: (1) the first type
exhibits an invariance to the translation of a local contour of the
figure, and is called a position-invariant cell (Pasupathy & Conner,
1999, 2001, 2002), which corresponds to the first cell type described
in Section 1; (2) the second type exhibits an invariance to the size
Figure 8. Response selectivities of three types of CDC. The ordinate represents the
projection of the eyeball surface (Figure 4(C)(ii)). The (A) shows the selective respons
circle. This cell responds selectively to a center (α0,β0) of the circle as shown in (i), an
selectively to both center (α0,β0) and radius r0 of the circle. The widths Δαβ and Δr of
small, less than 5�, but are drawn large for ease of viewing: note that the RF in (B)(ii)
cell CDCα,β(r0), which was modeled by Eq. (8), to the circle. This cell responds invar
responds to its radius r0 as shown in (ii). The (C) shows the selective response of a c
invariant to a radius r of the circle as shown in (ii), but selectively responds to its c
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change (i.e. the curvature change) of the contour, and is called a
size-invariant cell (i.e. a curvature-invariant cell) (El-Shamayleh and
Pasupathy, 2016), which corresponds to the second cell type
described in Section 1.

Based on these reports, in Sections 3.5.1 and 3.5.2, we will model two
types of CDC having the constancy, which will be named constancy CDCs:
(1) a position-invariant CDC that responds invariant to the center posi-
tion (α,β) of a stimulus circle; (2) a curvature-invariant (i.e. size-
invariant) CDC that responds invariant to its radius r (i.e. to its size).
Then, these constancy CDCs will be shown to correspond to the above
two types of area V4 cell, respectively.

Prior to modeling, the selectivity of the cell CDC(α0,β0,r0), which is
the basis for these constancy CDCs, is shown in Figure 8(A): the ordinate
represents the CDC response to a stimulus circle whose center and radius
are (α,β) and r, respectively, where the disk (α,β) is the equidistant pro-
jection of the eyeball surface (Figure 4(C)(ii)); the subscript "0" indicates
that the CDC responds selectively to the parameter having this subscript
(e.g. (α0,β0)). This CDC selectively responds to both center (α0,β0) and
radius r0 of the stimulus circle: in other words, the cell CDC(α0,β0,r0)
detects both center (α0,β0) and radius r0 of the circle. The widths Δαβ and
Δr of these selective responses are expressed by Eqs. (6) and (7), and
correspond to the diameter and height of the mini-column (Figure 7),
respectively.

3.5.1. Position-invariant CDC
This CDC denoted as CDCα,β(r0) is modeled as an operation composed

of two successive steps, as follows: in the first step, the positive compo-
nent of a cell response CDC(α,β,r0) is output, then in the second step this
output is accumulated over its (α,β) center coordinates within the RF, and
thus the cell response CDCα,β(r0) is obtained. This operation has been
named a positive-component accumulation. This response CDCα,β(r0) is
expressed as the following equation:

CDCα,β(r0) ¼ Σα Σβ Positive(CDC(α,β,r0)) (8)

The Σ and the Positive( ) represent an accumulation and a positive-
component output, respectively. This positive-component accumulation
is a type of pooling, and corresponds to the max-pooling of Cadieu et al.
(2007).

Thus, this cell CDCα,β(r0) has beenmodeled as the positive-component
accumulation of the cell responses CDC(α,β,r0) with the same r0 radius
selectivity but different (α,β) center selectivity, and the cell response is
expressed by Eq. (8). This equation represents a network that connects
each cell CDCα,β(r0) to all cells CDC(α,β,r0) having the same r0 radius
selectivity.
cell response to a stimulus circle, and the disk (α,β) represents the equidistant
e of a cell CDC(α0,β0,r0), which is the CDC and was modeled in Section 3.1, to this
d responds selectively to its radius r0 as shown in (ii). In other words, it responds
these responses are expressed by Eqs. (6) and (7), respectively. These widths are
is also drawn large for the same reason. The (B) shows the selective response of a
iant to a center (α,β) of the circle within the RF as shown in (i), but selectively
ell CDCr(α0,β0), which was modeled by Eq. (9), to the circle. This cell responds
enter (α0,β0) as shown in (i).
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Let us compare this cell CDCα,β(r0) with the above position-invariant
cell in area V4. The cell CDCα,β(r0) responds invariant to a center (α,β) of
a stimulus circle within an RF, but selectively responds to its radius r0
(Figure 8(B)). On the other hand, the position-invariant cell in area V4
responds invariant to the translation of the circle, but selectively re-
sponds to its radius r0 (Figure 9(A)). Since their invariance and selectivity
are the same, the position-invariant CDC denoted as CDCα,β(r0) corre-
sponds to this position-invariant cell.

This cell CDCα,β(r0) can detect every curvature circle with a radius r0
whose center is within RF.

We note that this positive-component output was also used in the 3D
normal-line transform (Section 3.1): specifically, a positive-component of
each NDS simple cell (Figure 6(B)(iii)) was output to all CDCs on the 3D
normal line (Figure 6(C)).

3.5.2. Curvature-invariant CDC
This CDC denoted as CDCr(α0,β0) has been modeled as the positive-

component accumulation of the cell responses CDC(α0,β0,r) with the
same (α0,β0) center selectivity but different r radius selectivity. This cell
response CDCr(α0,β0) is expressed by the following equation.

CDCr(α0,β0) ¼ Σr Positive(CDC(α0,β0,r)) (9)

This equation represents a network that connects each cell
CDCr(α0,β0) to all cells CDC(α0,β0,r) having the same (α0,β0) center
selectivity.

Let us compare this cell CDCr(α0,β0) with the above curvature-
invariant cell in area V4. The cell CDCr(α0,β0) responds invariant to a
radius r of a stimulus circle, but selectively responds to its center (α0,β0)
(Figure 8(C)). On the other hand, the curvature-invariant cell in area V4
responds invariant to a scaling of the circle (i.e. to its radius r), but
selectively responds to its center (α0,β0) (Figure 9(B)). Since their
invariance and selectivity are the same, the curvature-invariant CDC
denoted as CDCr(α0,β0) corresponds to this curvature-invariant cell.

This cell CDCr(α0,β0) can detect every curvature circle with a center
(α0,β0), independently of its radius r, and thus responds intensively to a
concentric circle, whose center is (α0,β0), to detect it. This response is
proportional to the number of circles constituting the concentric circle.

3.6. Cell hierarchy from LGN cell to constancy CDCs

Integrating these two types of constancy CDC with the series of cells
in Figure 6, we propose a cell hierarchy (Figure 10) that detects each
curvature circle constituting an arbitrary figure. These three types of CDC
possess the three features described in Section 3.4: the cell CDC(α,β,r)
possesses the 1st to 3rd features, the cell CDCα,β(r) possesses the 1st and
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3rd features, and the cell CDCr(α,β) possesses the 1st feature. These CDC
types can detect not only the entire circle but also the local contour (i.e. a
part of the circle).

This hierarchy is composed of the cells LGN(x,y), SCNDS(ρ,θ),
CDC(α,β,r), CDCα,β(r), and CDCr(α,β): these cells also represent their ar-
rays or their responses. The hierarchy is functionally composed of a series
of mathematical transforms: the DOG convolution, Hough transform, 3D
normal-line transform, and two types of positive-component accumula-
tion. Each transform represents a network that connects the front and
back adjacent cell arrays, and is performed by the operations of the
addition, subtraction, and multiplication with constant coefficients
(Section 3.1). The operations can be implemented with synaptic func-
tions of neurons (Section 3.1). Thus, this hierarchy has been modeled
using the operations that can be implemented with neuron's synaptic
functions.

The series of cells constituting this hierarchy, to our knowledge, has
been systematically modeled in the neurophysiological processes for the
first time, including the modeling of their networks performing these
transforms.

This hierarchy has the following interesting properties (see Section
5.4 described later for details): (1) the hierarchy performs a series of
conversions of cell array, specifically, each cell array is converted in the
order (x,y), (ρ,θ), (α,β,r), and r (or (α,β)); (2) each cell-array conversion
either creates new array parameters (i.e. new features) to acquire more
complex feature or annihilates an array parameter to acquire the
invariance to that parameter.

We point out the followings. First, each transform in the hierarchy
represents a network that connects the adjacent cell arrays. For example,
Hough transform represents a network (Figure 6(B)(iii)) that connects an
NDS simple cell at (ρ,θ) to all LGN cells on the tangent. Second, this
network is represented by a sparse matrix with respect to synaptic
weights, except for the DOG convolution. For example, the above
network of Hough transform is represented by a sparse matrix whose
weights are determined by this transform: specifically, these weights
have the value 1 in the matrix elements that satisfy the relationship ρ - x
cosθ - y sinθ ¼ 0 in a four-dimensional (4D) space (x,y,ρ,θ), and the value
0 in all other elements; thus, the weights form the sparse matrix that
corresponds to a hyperplane within this 4D space (see Appendix D of
Kawakami (1996)).

4. Simulation results

Computer simulations in Figures 11, 12, 13, 14, and 15 confirmed
that the cells CDC(α,β,r) correctly detected curvature circles included in
various stimuli, where the CDC column in Figure 6(C) was replaced with
Figure 9. Two types of constancy cell in
area V4. The disk shows the equidistant
projection of the eyeball surface
(Figure 4(C)(ii)), where O corresponds to the
center of the visual field. The (A) shows the
invariance of a position-invariant cell in area
V4 to a center (α,β) of stimulus circle: spe-
cifically, even if this circle with radius r0
translates on the eyeball, this cell response to
it does not change. In other words, this cell
responds invariant to the circle's center (α,β),
but selectively responds to its radius r0. The
(B) shows the invariance of a curvature-
invariant (i.e. a size-invariant) cell in area
V4 to a radius r of stimulus circle: specif-
ically, even if this circle with center (α0,β0) is
scaled up, this cell response to it does not
change. In other words, this cell responds
invariant to the circle's radius r, but selec-
tively responds to its center (α0,β0).



Figure 10. A hierarchy from LGN cell to two types of constancy CDC (i.e. the position-invariant and curvature-invariant CDCs). This hierarchy that detects curvature
circles was obtained by integrating the series of cells (Figure 6) with the two types of constancy CDC (Section 3.5). It is composed of the cells LGN(x,y), SCNDS(ρ,θ),
CDC(α,β,r), CDCα,β(r), and CDCr(α,β). These cells perform the DOG convolution, Hough transform, 3D normal-line transform, positive-component accumulation (i.e. a
type of pooling) of the cell responses CDC(α,β,r) preferring the same r radius, and that preferring the same (α,β) center, respectively.

Figure 11. Responses of the CDCs to a circle. A circle on the eyeball was correctly detected by the corresponding CDC. (A) A circle, whose radius r and center (α,β) are
30� and (30�, 30�) respectively, was presented on the eyeball as a stimulus and is shown as the equidistant projection of it (Figure 4(C)). (B) The CDC column
(Figure 6(C)) to this circle was cut at each height r, and its cross section was arranged: each dot (●) in every cross section represents the response of a CDC, the size of
which is equal to a cross section of the mini-column (Figure 7); the latitude and longitude of the eyeball are also drawn; the scale bar (left) shows that the CDC
response ranged from 0 (light red) to 255 (dark red). On each cross section, the presented circle was drawn as black dotted lines for reference. As the height r
increased, this reference circle was divided into two circles, the inner circle became smaller, and the outer circle became larger: the distance between the reference
circle and these circles was equal to the height coordinate r (Section 2.2.2). The radius of this inner circle became zero in (ii) and it converged to one point. This
convergence point coincided with the center of the presented circle, and thus the circle was correctly detected as the coordinates of this point.
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that in Figure 7 having the coarse-to-fine arrangement. The parameters
used in these simulations are shown as follows: (1) those used in the
simulation of Figure 6(B) were shown in Appendix B of Kawakami and
Okamoto (1996); (2) those used in the simulation of Figure 6(C) were
described in Section 3.3.
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Brief overviews are provided below to highlight the content of the
following subsections.

In Section 4.1, we will present a circle to the eyeball to show that the
series of modeled cells in Figure 6 can detect the circle correctly.



Figure 12. Responses of the CDCs to a great and small circles. These circles on the eyeball, which correspond to a straight line and circle in space respectively, were
correctly detected by the corresponding CDCs. (A) These circles were presented on the eyeball (Figure 6(A)), which are shown as the equidistant projection of them.
The radius r and center (α,β) of the great circle are respectively 90� and (30�, 90�), and those of the small circle are respectively 30� and (30�, 30�). (B) Two cross
sections of the CDC column are shown. In (i), a CDC whose center (α,β) and radius r are (30 deg, 90 deg) and 90� was maximally fired, and thus the presented great
circle was correctly detected as the coordinates of this CDC. (Note the following: another CDC whose center exists the opposite position (i.e. (α ¼ 30 þ 180 deg, β ¼ 90
deg)) fired with the same intensity; this is singular to a great circle passing through the center of the visual field, because the center of this great circle belongs to both
(α ¼ 30 deg, β ¼ 90 deg) and (α ¼ 30 þ 180 deg, β ¼ 90 deg)). In (ii), a cell whose center (α,β) is (30�, 30�) was maximally fired, and thus the center of the presented
small circle was correctly detected as the coordinates of this CDC. On the other hand, there are two types of weakly firing patterns. These types can be explained by the
description on the numerical confirmation (Section 2.2.2), as follows. The first type is a weakly circular-firing pattern in (ii) whose radius and center were 60� and
(30�, 30�), respectively. This pattern corresponds to the outer circle composed of points in Figure 5(iv) that occurred at the moment when the inner circle converged to
one point. The second type is a weakly circular-firing pattern in (i) whose radius and center are 60� and (30�, 30�), respectively. This pattern corresponds to the inner
circle composed of points in Figure 5(i) that grew again after the above inner circle converged to one point. The same applies to two circles of (ii) passing through (α ¼
30 deg, β ¼ 30 deg) and (α ¼ 30 þ 180 deg, β ¼ 30 deg). (C) The eyeball images calculated reversely from the cross-sectional response of (B) using the network
(Figure 6) are shown (Section 4.2). These reverse-calculated images match with the presented images on the eyeball (A).
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In Section 4.2, we will present a great and small circles to the eyeball
to show that the corresponding CDCs can detect them correctly. Since
these great and small circles are the projection of a straight line and circle
in space onto the eyeball (Section 2.2.3), respectively, this detection al-
lows the first feature in Section 3.4 to be confirmed: this feature is the
ability to process an arbitrary figure in space composed of straight lines
and curves using only circles on the eyeball.

In addition, we will describe a reverse calculation method for calcu-
lating eyeball images reversely from the cross-sectional responses of the
CDC column using the network (Figure 6). This method makes it possible
to understand what kind of curvature circle each cross-sectional response
of CDC detects, and plays an important role in evaluation of the curvature
detection.

In Section 4.3, we will present a triangle to the eyeball, and will show
that three types of curvature circles included in it (i.e. the great circles
corresponding to its sides, the circle inscribed in the triangle, and the
circles inscribed in the two sides) can be correctly detected at the cor-
responding heights of the CDC column (Figure 6(C)). This detection al-
lows the third feature in Section 3.4 to be confirmed: this feature is the
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ability to sort and extract various components of a figure in the order of
coarse-to-fine along the height axis of the column.

In Section 4.4, we will present a figure composed of various curvature
circles to the eyeball, and will show that all curvature circles constituting
this figure can be detected separately along the height axis of the column.
These two types of detection allow the second and third features in
Section 3.4 to be confirmed, respectively. First, the detection along the
height axis allows the third feature to be confirmed as above. Second, the
detection of all curvature circles constituting it allows the second feature
to be confirmed: this second feature is the ability for an arbitrary figure to
be reconstructed by CDCs that detect all curvature circles constituting
this figure.
4.1. Circle

The simulation in Figure 11 confirmed that a circle on the eyeball was
correctly detected by the corresponding CDC.

The (A) shows the equidistant projection of the eyeball surface, on
which a circle whose radius r and center (α,β) are 30� and (30�, 30�)



Figure 13. Responses of the CDCs to a triangle. Each curvature circle included in a triangle was correctly detected by a CDC whose height coordinate is equal to the
circle's radius. (A) A triangle is shown on the plane. (B) It was projected onto the eyeball, and then was presented as a stimulus. (C) Cross-sectional responses of the
CDC column to the triangle of (B) are shown. Three types of curvature circle included in the triangle (i.e. the great circles, the circle inscribed in the triangle, and the
circles inscribed in the two sides) were respectively detected separately on heights r ¼ 90, 41.23, and 10.03 deg corresponding to their radii. The double triangle in
(iii) corresponds to the double circle composed of points (Figure 5(vii); Section 2.2.2): note that the double figure (Figures 14(C)(iii) and 15(C)(iv) shown later) also
corresponds to this double circle. (D) The eyeball images calculated reversely from the cross-sectional responses of (C) using the network (Figure 6) are shown. The
three types of curvature circle above were reverse-calculated as the great circles in (i), a circle inscribed in the three sides in (ii), and the circles inscribed in the two
sides in (iii), respectively. (E) The center of each three circle type is schematically shown. (F) Each image was obtained by accumulating the reverse-calculated images
of (D) in the order (i), (ii), and (iii). This accumulation progressed as the height r became smaller, and finally, in (iii), the presented triangle (B) was reconstructed.
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respectively was presented as a stimulus. This circle caused CDCs within
the column (Figure 6(C)) to be fired as shown in Figure 4(B). This column
was cut at each height r and its cross section was arranged in (B). For
reference, the presented circle was shown as black dotted lines on each
cross section.

As the height r increased, the reference circle was divided into two
circular activated patterns, the inner pattern became smaller, and the
outer pattern became larger: this behavior is the same as in Figure 5, and
can be explained by the description in Section 2.2.2. The radius of this
inner pattern became zero in (ii) and it converged to one point. This
convergence point coincided with the center of the presented circle.

There is an issue for the detection of radius r, that is, the cross section
corresponding to the presented radius r ¼ 30 deg did not exist in (B): this
is because the r height axis of the column is arranged discretely (Section
3.3). However, the mini-column in Figure 7 could solve this issue and
allowed the circle with r ¼ 30 deg to be correctly detected by a CDC with
r ¼ 29.35 deg: this is because the CDC at the center of this mini-column
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(i.e. the CDC with r¼ 29.35 deg) could detect all curvature circles whose
centers are within this column containing r ¼ 30 deg.

Therefore, this simulation confirmed that the presented circle was
correctly detected by the CDC whose radius and center are 29.35� and (α
¼ 30 deg, β ¼ 30 deg) respectively.

When height r exceeded 29.35 deg, this inner pattern was reversed
and its size increased. On the other hand, the outer pattern monotonously
increased in size with r. Why these behaviors occurred was described in
section 2.2.2.

Finally, the responses of the cells CDCα,β(r) and CDCr(α,β) to this
stimulus circle were confirmed, as follows. First, a cell CDCα,β(r) whose r
coordinate is 29.35� maximally responded to this circle, independently of
its circle's center (α,β). These maximal and independent responses are the
same as those shown in Figure 8(B)(ii) and Figure 8(B)(i), respectively.
Thus, the responses characteristic of this cell CDCα,β(r) were confirmed.
Second, a cell CDCr(α,β) whose (α,β) coordinates are (30�, 30�) maxi-
mally responded to this circle, independently of the circle's radius r.



Figure 14. Responses of CDCs to a triangle with fine unevennesses. (A) A triangle obtained by adding fine unevenness to each side of the triangle (Figure 13(A)) is
shown on the plane. (B) It was projected onto the eyeball, and then was presented as a stimulus. (C) Cross-sectional responses of the CDC column to the triangle of (B)
are shown. (D) The eyeball images calculated reversely from the cross-sectional responses of (C) using the network (Figure 6) are shown. (E) The center of each three
circle type is schematically shown. (F) Each image was obtained by accumulating the reverse-calculated images of (D) in the order (i), (ii), and (iii). This accumulation
progressed as the height r became smaller, and finally, in (iii), the presented triangle (B) was reconstructed.

S. Kawakami et al. Heliyon 6 (2020) e05397
These maximal and independent responses are the same as those shown
in Figure 8(C)(i) and (C)(ii), respectively. Thus, the responses charac-
teristic of the cell CDCr(α,β) were confirmed.

The computer simulations of these constancy CDCs were not shown.
The reason is as follows. In order for the above evaluation of the maximal
and independent responses, only the position of maximum response and
the independence of response are necessary respectively, and these po-
sition and independence have been described above. Thus, the simula-
tions were not shown.
4.2. Figure containing a great circle

The simulation in Figure 12 confirmed the first feature (Section 3.4)
using a great and small circles on the eyeball, which are the projection of
a straight line and circle in space onto the eyeball, respectively (Section
2.2.3).

The (A) shows the equidistant projection of the eyeball surface, on
which a small and great circles were presented as stimuli. These circles
caused CDCs within the column (Figure 6(C)) to be fired as shown in
Figure 4(B). This columnwas cut at each height r and its cross section was
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arranged in (B). In (i), the cell at the position of (α ¼ 30 deg, β ¼ 90 deg)
fired maximally to detect the radius and center of the presented great
circle. Also, in (ii), the cell at the position of (α¼ 30 deg,β¼ 30 deg) fired
maximally to detect the center of the presented small circle. The lack of
the cross section of r ¼ 30 deg is the same reason as described in section
4.1, and thus the presented circle was detected by this CDC with r ¼
29.35 deg.

Therefore, these great and small circles, which correspond to the
straight line and curve in space respectively, were correctly detected.
Thus, this detection have allowed the first feature above to be confirmed.

The (C) shows eyeball images that were calculated reversely from the
cross-sectional responses of (B) using the network (Figure 6). The image
of (C)(i) calculated from (B)(i) matches the great circle in (A), and the
image of (C)(ii) calculated from (B)(ii) matches the small circle in (A). In
this way, this reverse calculation makes it possible to understand what
kind of curvature circle each cross-sectional response ((B)) detects, and
plays an important role in evaluation of the curvature detection.

This calculation was performed, as follow. First, the image (C)(ii)
calculated reversely from the response (B)(ii) is described. From every
CDC activated in (B)(ii), the network of the 3D normal-line transform



Figure 15. Responses of the CDCs to a figure composed of various curvature circles. As such figure, the silhouette of Hokkaido in Japan was used. The various
curvature circles constituting this silhouette were detected separately along the r height axis of the CDC column. (A) This silhouette is shown on the plane. (B) It was
projected onto the eyeball, and then was presented as a stimulus. (C) Cross-sectional responses of the CDC column to the silhouette of (B) are shown. (D) The eyeball
images calculated reversely from the cross-sectional responses of (C) using the network (Figure 6) are shown. In (iii), a curvature circle inscribed in a quadrilateral that
represents the outline of the silhouette was reverse-calculated. (E) Each image was obtained by accumulating the reverse-calculated images of (D) in the order (i), (ii),
(iii), and (iv). This accumulation progressed as the height r became smaller, and finally, in (iv), the presented silhouette (B) was reconstructed.
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(Figure 6(C)) was traced back to determine the location (ρ,θ) of an NDS
simple cell. Then, from this simple cell, the network of Hough transform
(Figure 6(B)(iii)) was traced back to determine the group of LGN cells on
a tangent (Figure 6(B)(ii)). Since this tangent has the same position and
orientation as a tangent in the retinal cell array (Figure 6(B)(i)), the
tangent was drawn in the corresponding RF (Figure 6(A)). The intensity
of the drawn tangent was equal to the response of this CDC cell: if the
response is less than 10% of the maximum response within the CDC
column, the tangent was not drawn. Performing this drawing for all CDCs
in (B)(ii) causes a curve enveloped by these tangents to be formed on the
eyeball (Figure 6(A)). Thus, the eyeball image in (C)(ii) was reversely
calculated as this curve. Next, the eyeball image of (C)(i) was similarly
calculated reversely from the cross section of (B)(i).

Thus, the above matches between the reversely calculated images (C
(i and ii)) and the presented great and small circles ((A)) confirmed that
the network (Figure 6) were correctly performed to detect these great
and small circles.

4.3. Triangle

The simulation in Figure 13 confirmed that three types of curvature
circle included in a triangle were detected separately along the r height
axis of the CDC column. This detection allowed the third feature in
Section 3.4 to be confirmed.
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The (A) shows a triangle on a plane. The (B) shows a triangle on the
eyeball obtained by projecting the triangle in (A) onto it, which was
presented as a stimulus. The (C) shows the cross sections of the CDC
column to the triangle of (B), and the (D) shows the eyeball images that
were calculated reversely from (C) in the same way as in Figure 12(C).

The first type above is each side (i.e. each great circle) of the triangle.
In (C)(i), three CDCs corresponding to these sides were activated maxi-
mally and detected them. The centers of these great circles are sche-
matically shown on the cross section of r ¼ 90 deg in (E). In (D)(i), the
eyeball image calculated reversely from (C)(i) corresponds to the triangle
of (B). The second type is a circle with a radius r of 41.23� inscribed in the
triangle. In (C)(ii), a CDC corresponding to this circle was activated
maximally at the disk center and detected it. The image of (D)(ii)
calculated reversely from (C)(ii) corresponds to this inscribed circle. The
third type is each circle with a radius r of 10.03� inscribed in two sides
near each vertex. In (C)(iii), three CDCs corresponding to these circles
were activated maximally and detected them. The image of (D)(iii)
calculated reversely from (C)(iii) corresponds to these circles.

Summarizing the above, three types of curvature circle included in
the triangle (i.e. the great circles, the circle inscribed in the triangle, and
the circles inscribed in the two sides) were extracted in the order of
coarse-to-fine along the r axis of the CDC column. This extraction along
the height axis is consistent with the third feature in Section 3.4, and thus
this feature has been confirmed.
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Each image in (F) was obtained by accumulating the reverse-
calculated images in (D) in the order (i), (ii), and (iii). This accumula-
tion progressed as the height r became smaller, and finally, in (iii), the
presented triangle (B) was reconstructed. Unlike (B), only the contour
was reconstructed because the uniform luminance portion of (B) was lost
by the DOG convolution (Figure 6(B)(ii)).

Next, Figure 14(A) shows a triangle on a plane obtained by adding
fine unevenness to each side of the triangle in Figure 13(A). The (B)
shows a triangle on the eyeball obtained by projecting the triangle in (A)
onto it, which was presented as a stimulus. The (C) shows the cross
sections of the CDC column to the triangle of (B), and the (D) shows the
eyeball images that were calculated reversely from (C).

The reverse-calculated images in (D)(i and ii) are similar to those
without unevennesses in Figure 13(D)(i and ii). This is because the radii r
of these images (i.e. r ¼ 90 and 41.23 deg) is much larger than the un-
evenness size, and thus these radii were detected as they were. On the
other hand, in (D)(iii), these unevenness were detected, and many
reconstructed circles occurred: their centers are schematically shown on
the cross section of r ¼ 10.03 deg in (E).

Each image in (F) was obtained by accumulating the reverse-
calculated images of (D) in the order (i), (ii), and (iii). This accumula-
tion progressed as the height r became smaller, and finally, in (iii), the
presented triangle (B) was reconstructed including the features of the
almost details.

4.4. Figure composed of various curvature circles

As such a figure, the silhouette of Hokkaido in Japan was used. The
simulation in Figure 15 confirmed that the various curvature circles
constituting this silhouette were detected separately along the r height
axis of the CDC column. The simulation confirmed the second and third
features in Section 3.4.

The (A) shows this silhouette on a plane, and the (B) shows a figure
obtained by projecting it onto the eyeball, which was presented as a
stimulus. The (C) shows the cross sections of the CDC column to the (B),
and the (D) shows the eyeball images that were calculated reversely from
(C) in the same way as in Figure 12(C).

The (D)(i) shows that the largest curvature circles (i.e. the great cir-
cles) were detected and thus the coarsest components (i.e. a rough
outline) of the silhouette were extracted. As the height r decreased from
(D)(ii) to (D)(iv), smaller curvature circles were detected and thus the
finer components of the silhouette were extracted.

In this way, the various curvature circles constituting the silhouette
were extracted in the order of coarse-to-fine along the r axis of the col-
umn. This extraction along the height axis is consistent with the third
feature in Section 3.4, and thus this feature has been confirmed.

The (C) and (D) show that the CDCs detected not only the entire circle
shown in Figures 11(A) and 12(A), but also the various circular arcs (i.e.
the local contours) in (B). These have allowed the description in Section
3.3 i.e. "the CDC can detect even if the curvature circle is a circular arc" to
be confirmed.

Each image in (E) was obtained by accumulating the reverse-
calculated images of (D) in the order (i), (ii), (iii), and (iv). This accu-
mulation progressed as the height r became smaller, and finally, in (iv),
the presented figure (B) was reconstructed including the features of the
almost details. If reverse-calculated images of (D) with a radius r less than
10.03� can be added, a more detailed reconstruction will be possible.

We show below that the two types of reconstruction are equivalent:
the first type is the above reconstruction that was performed by the total
accumulation of the reverse-calculated images; the second type is the
reconstruction described as the second feature (Section 3.4). First, the
second type is summarized. A CDC detects the parameters (i.e. the center
and radius) of every curvature circle that constitutes a figure, and then a
circle corresponding to these parameters is drawn on the eyeball, with its
intensity equal to this CDC response. Performing this drawing for all
curvature circles causes the figure to be reconstructed as an envelope of
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these circles. Next, the first type is summarized based on Figure 6 (Sec-
tion 4.2 for details). From every CDC activated in the CDC column
(Figure 6(C)), the network representing the Hough and 3D normal-line
transforms (Figure 6(B(iii) and C)) is traced back to determine a
tangent in the LGN cell array (Figure 6(B)(ii)). This tangent is drawn in a
corresponding RF (Figure 6(A)), with its intensity equal to this CDC
response. Performing this drawing for all CDCs activated in the column
causes a curve enveloped by these tangents to be formed, and thus the
figure is reconstructed as this curve (Figure 15(E)(iv) as an example).
Compare these two reconstructions. The first type is obtained as the
envelope of tangents, whereas the second type is obtained as the enve-
lope of circles. Since each tangent is a part of the circle as shown in
Figure 6(A), the first and second types are equivalent.

The first reconstruction type was confirmed by the simulation in
(E)(iv), and thus based on this equivalence the second reconstruction
type, which characterizes the second feature in Section 3.4, has been also
confirmed.

5. Discussion

Brief overviews are provided below to highlight the content of the
following subsections.

In Section 5.1, we will compare the three types of CDC modeled in
Section 3 (i.e. the cells CDC(α,β,r), CDCα,β(r), and CDCr(α,β)) with the
actual cells in area V4. As a result, the following correspondence will be
described. First, the cells CDCα,β(r) and CDCr(α,β) exhibit the same
invariance and selectivity to stimuli as the position-invariant cells and
curvature-invariant cells, respectively. Next, the cell CDCr(α,β) exhibits
the same preference as the cell that prefers a concentric circle. Finally,
the cell CDC(α,β,r) corresponds to two types of cell: the first is the cell
that responds selectively to both curvature and position of a contour; the
second is the cell that exhibits a trade-off between curvature preference
and position invariance. Thus, it will be shown that these three CDC types
reflect the response to various stimuli in actual area V4 cells. In addition,
we will make the following explanations: (1) the selective-response
width Δαβ of cell CDC(α,β,r) allows the neurophysiological process why
this trade-off occurs to be explained; (2) the third feature (Section 3.4)
allows the coarse-to-fine response of area IT cells to be explained
neurophysiologically.

In Section 5.2, we will make the following three comparisons with
previous cell models and method.

First, we will compare the cell hierarchy (Figure 10) with cell models
previously reported. As a result, the following correspondence and dif-
ference will be described: (1) the NDS simple cell, CDC(α,β,r), and
CDCα,β(r) of the hierarchy correspond to the S1, S2, and C2 cells of the
above cell models, respectively; (2) this hierarchy differs most from these
cell models in that the hierarchy is represented by a series of mathe-
matical transformations that represent its networks (i.e. the Hough
transform, 3D normal-line transform, and two types of positive-
component accumulation).

Second, we will compare the cell CDC(α,β,r) with a cell model that
responds selectively to a very local curvature (i.e. a circular arc with very
small central angle) and has been named an endstopped cell. As a result,
we will find the following: (1) this endstopped cell can be modeled also
based on the network in Figure 6, and this modeling is equivalent to
performing the curvature-circle detection (Section 3.1) for this arc with
very small central angle; (2) increasing this angle until an entire circle is
formed allows the cell CDC(α,β,r) to be modeled.

Third, we will compare the algorithm (i.e. the 3D normal-line trans-
form), based on which the cell CDC(α,β,r) was modeled, with circle
Hough transform (CHT) that is an engineering method for detecting
circles. As a result, it will be shown that this algorithm allows the
problems of the CHT to be solved.

In Section 5.3, in order to validate these three CDC types neuro-
physiologically, we will propose three types of experimental method
using microelectrodes, where each method type uses a circle or dot or bar
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stimulus. The bar stimulus will allow not only the above validation, but
also the execution of the network (Figure 6) to be validated.

In Section 5.4, we will propose that the cell-array conversions, which
were found in Section 3.6 and played an important role in acquiring the
complex feature and the constancy, are performed commonly in the vi-
sual cortex. Making this proposal is another key point in our paper, and
will be done as follows:

First, combining the above hierarchy (Figure 10; Section 3.6) with
three hierarchies modeled previously, we will form four types of hier-
archy, which are composed of 16 types of cell model and process both
shape and space informations.

Next, we will find that these hierarchies have the following note-
worthy natures: (1) each hierarchy performs a series of the above cell-
array conversions; (2) each array conversion is performed by one of
convolution, correlation, and pooling; (3) the convolution and correla-
tion create new array parameters (i.e. new features) to acquire more
complex features, whereas the pooling annihilates an array parameter to
acquire the invariance to that parameter; (4) thus, this array conversion
allows every cell in the hierarchy to acquire either more complex feature
or the invariance (or the constancy).

Finally, thus, we will also find that these four hierarchies are
composed of 16 types of cell-array conversion across various areas of the
visual cortex, specifically, across areas LGN, V1, V2, V4, middle temporal
(MT), medial superior temporal (MST), frontal eye field (FEF), and
caudal intra-parietal (CIP). Based on this finding, we will propose a hy-
pothesis that such array conversions are one of the basic functions per-
formed across the cortex except for area IT, and are performed commonly
in the cortex to play an important role in acquiring the complex feature
and the constancy.

5.1. Comparison with neurophysiology

Many cells in area V4 were reported to respond selectively to the
curvature κ of local contours used as stimuli. The three types of CDC
modeled in Section 3 were compared below with these area V4 cells.

Before comparing, we point out that the parameter representation of
local contours differs between these area V4 cells and the CDC types. In
the area V4 cells, the contour was represented by its position and cur-
vature κ, and then the selectivity and invariance of the cells for the
contour were evaluated using these two parameters (Section 1). On the
other hand, in the CDC types, we used the center (α,β) and radius r of a
curvature circle in contact with this contour (Figure 1(A)), as the pa-
rameters: the (α,β) corresponds to the OC in Figure 1(A), and these (α,β)
and r are detected by the CDC.

The parameters of these two representations differ in this way.
However, as described in Section 1, these parameters correspond to each
other, in terms of the selectivity and invariance evaluations of cells to the
parameters: specifically, the parameters (i.e. the curvature κ and posi-
tion) of the contour correspond to those (i.e. the radius r and center (α,β))
of a curvature circle in contact with this contour, respectively. In other
words, the parameters (i.e. the curvature κ and position) for evaluating
area V4 cells correspond to those (i.e. the radius r and center (α,β)) for
evaluating CDC types, respectively. Therefore, we can use either of these
two representations to evaluate the selectivity and invariance of cells for
the parameters.

The above correspondence between the curvature κ and the radius r is
examined as follows. This correspondence was obtained on the plane and
has a relation of κ¼ 1/r (Section 1). On the other hand, the CDC detects a
radius r of curvature circle on the eyeball, and thus another relation
between the r and κ needs to be found on the eyeball. This relation is
expressed by following equation based on the geodesic curvature
(Bronshtein and Semendyayev, 1978).
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κ ¼ cot r (10)
This equation indicates that the curvature κ corresponds to the radius
r, in terms of the selectivity and invariance evaluations to the parameters.
Therefore, this correspondence on the eyeball is the same as that on the
plane.

5.1.1. Position-invariant cells in area V4
Position-invariant cells, specifically, cells that responded invariant to

the position of a local contour but selectively responded to its curvature κ
were reported in area V4 (Pasupathy & Conner, 1999, 2001, 2002).

We show below that this area V4 cell (i.e. the position-invariant cell)
corresponds to the position-invariant CDC denoted as CDCα,β(r0), which
was modeled in Section 3.5.1. This cell CDCα,β(r0) responds invariant to
the center (α,β) of the stimulus circle in the RF, but selectively responds
to its radius r0 (Figure 8(B)). As described above, the parameters (i.e. the
position and curvature κ) for evaluating the area V4 cell correspond to
those (i.e. the center (α,β) and radius r0) for evaluating the cell
CDCα,β(r0), respectively, because this CDCα,β(r0) belongs to the CDC
types. Thus, this area V4 cell corresponds to the cell CDCα,β(r0), in terms
of the selectivity and invariance to these parameters.

We propose that this area V4 cell is the cell CDCα,β(r0). In order to
validate this proposal neurophysiologically, an experimental method
using microelectrodes will be described in Section 5.3.1. We think that
this method enables to validate that this area V4 cell is the cell CDCα,β(r0).

5.1.2. Curvature-invariant cells in area V4
Size-invariant (i.e. curvature-invariant) cells, specifically, cells that

responded invariant to the size (i.e. the curvature κ) of a local contour but
selectively responded to its position were reported in area V4 (El-Sha-
mayleh and Pasupathy, 2016).

We show below that this area V4 cell (i.e. the curvature-invariant cell)
corresponds to the curvature-invariant CDC denoted as CDCr(α0,β0),
which was modeled in Section 3.5.2. This cell CDCr(α0,β0) responds
invariant to the radius r of the stimulus circle, but selectively responds to
its center (α0,β0) (Figure 8(C)). As described above, the parameters (i.e.
the curvature κ and position) for evaluating the area V4 cell correspond
to those (i.e. the radius r and center (α0,β0)) for evaluating the cell
CDCr(α0,β0), respectively. Thus, this area V4 cell corresponds to the cell
CDCr(α0,β0), in terms of the selectivity and invariance to these
parameters.

In addition, cells that responded intensively to concentric circles were
reported in area V4 (Gallant et al., 1993, 1996; Dumoulin and Hess,
2007). The cell CDCr(α0,β0) also responds intensively to this concentric
circle (Section 3.5.2). Thus, this area V4 cell corresponds to the cell
CDCr(α0,β0).

Based on these correspondences, we propose that the cell CDCr(α0,β0)
is both of these two types of area V4 cell: i.e. the curvature-invariant cell
and the cell responding to the concentric circle. In order to validate this
proposal neurophysiologically, an experimental method using micro-
electrodes will be described in Section 5.3.1. We think that this method
enables to validate that these two area V4 cells are the cell CDCr(α0,β0).

5.1.3. Trade-off cells in area V4
Cells that exhibited a trade-off between curvature preference and

position invariance were reported in area V4 (Nandy et al., 2013; Shar-
pee et al., 2013; Pasupathy and Conner, 1999): specifically, this trade-off
exhibits that a cell preferring high curvature has low position invariance,
while a cell preferring low curvature has high position invariance.

We show below that this trade-off cell corresponds to the cell
CDC(α0,β0,r0), which was modeled in Section 3.1. First, this cell
CDC(α0,β0,r0) responds selectively to both center (α0,β0) and radius r0 of a
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stimulus circle (Figure 8(A)). The width Δαβ of this selective response at
(α0,β0) is expressed asΔαβ¼ (ΔθSC/2) sin r by Eq. (6): theΔθSC represents
the discrimination in θ orientation of an NDS simple cell (Appendix C),
and the r represents the radius of the circle. Since the curvature κ is
expressed as κ ¼ cot r by Eq. (10), the following equation is obtained by
substituting these equations.

Δαβ ¼ (ΔθSC/2) sin (tan�1(1/κ)) (11)

Next, this width Δαβ corresponds to the above position invariance:
this is because, as shown in Figure 8(A)(i), the response of the cell
CDC(α0,β0,r0) does not change even if the center position (α0,β0) of
the circle translates within the width Δαβ. Thus, this equation repre-
sents the relationship between the position invariance Δαβ and the
curvature κ.

Thus, this equation means that a CDC with large κ (i.e. a CDC
preferring high curvature) has low position invariance Δαβ, while a CDC
with small κ (i.e. a CDC preferring low curvature) has high position
invariance Δαβ. This nature of the CDC is the same as that of the above
trade-off cell. Therefore, this cell CDC(α0,β0,r0) corresponds to the trade-
off cell.

In this way, the discrimination thresholdΔαβ expressed by Eq. (6) (i.e.
the selective-response width Δαβ of cell CDC(α,β,r)) allows the neuro-
physiological process of this trade-off to be explained, and thus this trade-
off has been clarified to result from the RF structure of NDS simple cell
(Figure C1(A) in Appendix C). We point out that the cell CDCr(α0,β0) also
exhibits this trade-off.

In addition, a cell type that responded selectively to both curvature κ
and position of a local contour and was named a absolute cell was re-
ported in area V4 (El-Shamayleh and Pasupathy, 2016). We show that
this absolute cell corresponds to the cell CDC(α0,β0,r0), as follows. The
cell CDC(α0,β0,r0) responds both center (α0,β0) and radius r0 of a stimulus
circle (Figure 8(A)). As described above, the parameters (i.e. the curva-
ture κ and position) for evaluating the absolute cell correspond to those
(i.e. the radius r0 and center (α0,β0)) for evaluating the cell CDC(α0,β0,r0),
respectively. Thus, this absolute cell corresponds to the cell CDC(α0,β0,
r0).

Based on these correspondences, we propose that the cell
CDC(α0,β0,r0) is both of the trade-off cell and the absolute cell. In order to
validate this proposal neurophysiologically, three types of experimental
method using microelectrodes will be described in Section 5.3. We think
that these method types enable to validate that these two area V4 cells
are the cell CDC(α0,β0,r0).
5.1.4. Cells exhibiting coarse-to-fine responses in area IT
Cells that exhibited the coarse-to-fine responses were reported in area

IT (Sugase et al., 1999; Tamura and Tanaka, 2001): specifically, these
cells responded first to coarse (or global) components of stimuli and then
responded to their fine components with average delay of 51 ms. These
cells were thought to process low spatial frequency components first and
then high spatial frequency components (Bar 2003; Hughes et al., 1996).

We show as follows that this coarse-to-fine response can be explained
by the third feature described in Section 3.4. First, this feature causes the
CDCs in area V4 to extract components of the stimuli in the order of
coarse-to-fine along the r height axis of the CDC column. Next, this causes
the following in area IT: (1) these CDCs deliver to area IT first the
extracted coarse components and then deliver the extracted fine com-
ponents; this can be done by first delivering an information of the higher
cross section of the column and then delivering that of its lower cross
section (Figure 7); (2) by this delivery, area IT cells exhibit the coarse-to-
fine response described above. Thus, the third feature performing this
extraction allows the coarse-to-fine response of area IT cells to be
explained. We point out that the cell CDCα,β(r) having the r height co-
ordinate also can perform this extraction as well as the cell CDC(α,β,r)
(Section 3.6), and thus causes area IT cells to also perform the coarse-to-
fine response.
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We think that this coarse-to-fine response in area IT enable the
following perception: the outline of a figure that is composed of the
coarse components is perceived first, and then its details that is composed
of the fine components is identified.

5.2. Comparison with previous models

5.2.1. Neurophysiological models
A hierarchy composed of S1, C1, S2, and C2 cells was reported

(Cadieu et al, 2004, 2007; Riesenhuber and Poggio, 1999; Schneider and
Riesenhuber, 2002; Serre et al., 2007). The S1 cell corresponds to a
simple cell in area V1, its RF was given as a Gabor function, and the cell
response was modeled as a convolution (or a dot product or a template
match) between responses of retinal cells and this Gabor function. The C1
cell corresponds to a complex cell in area V1, and the cell response was
modeled as a max-pooling of the S1 cell responses preferring the same
orientation. The S2 cell responds selectively to both curvature κ and the
position of a local contour, and the cell response was modeled as a
convolution between the C1 cell responses and a synaptic weight matrix
that was determined by training. The C2 cell responds invariant to the
position of the contour but selectively respond to its curvature, and the
cell response was modeled as a max-pooling of the S2 cell responses
preferring the same curvature.

This hierarchy is compared with that shown in Figure 10, as follows,
in which the LGN and NDS simple cells were modeled previously
(Kawakami and Okamoto, 1996; Kawakami, 1996) and the three types of
CDC were modeled in Section 3.

First, the S1 cell corresponds to the NDS simple cell denoted as
SCNDS(ρ,θ) that performs the Hough transformation of LGN cell re-
sponses. The differences between them are as follows. The RF of S1 cell
was given as the Gabor function, but it is considered to be not clear why
the cell has a Gabor-shaped RF. On the other hand, the cell SCNDS(ρ,θ)
possessed a Gabor-shaped RF (Figures 15 and 16 of Kawakami and
Okamoto (1996)): this is because the Hough transformation of the DOG
function, which represents the RF of the LGN cell, causes an RF very
similar to the Gabor function to be formed. Thus, it has been clarified that
this Gabor-shaped RF results from the Hough transformation of the DOG
function.

Second, we modeled a complex cell corresponding to the C1 cell as an
accumulation (i.e. a type of pooling) of the cell responses SCNDS(ρ,θ)
preferring the same θ orientation, but this complex cell was not shown in
Figure 10 because it was not used to model the CDC.

Third, the S2 cell corresponds to the cell CDC(α,β,r), as follows. The
S2 cell responds selectively to both curvature κ and position of a local
contour, whereas as shown in Figure 8(A) the cell CDC(α,β,r) responds
selectively to both radius r and center (α,β) of the curvature circle in
contact with this contour. As described in 5.1, the parameters (i.e. the
curvature κ and position) for evaluating the S2 cell correspond to those
(i.e. the radius r and center (α,β)) for evaluating the cell CDC(α,β,r),
respectively. Thus, this S2 cell corresponds to the cell CDC(α,β,r), in
terms of the selectivity and invariance to these parameters.

There are two differences between the S2 cell and the cell CDC(α,β,r).
The first difference is that the cell CDC(α,β,r) detects both an entire circle
and a local contour (i.e. a part of the circle) (Section 3.3), whereas the S2
cell detects (or responds to) the local contour. The second difference is
whether training is necessary or not. In the S2 cell, the synaptic weight
matrix is determined by training, as described above. On the other hand,
in the cell CDC(α,β,r), this matrix is determined by the 3D normal-line
transform (Section 3.1), and thus there is no need for training. This
matrix is considered to correspond to the matrix obtained after the above
training of the S2 cell has been performed for a circle and it has
converged.

Fourth, the C2 cell corresponds to the cell CDCα,β(r). The difference is
the way of pooling. The C2 cell uses the max-pooling, whereas the cell
CDCα,β(r) uses the positive-component accumulation (Eq. (8)) that is
considered to correspond to a global average pooling.
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The above is summarized. The cells SCNDS(ρ,θ), CDC(α,β,r), and
CDCα,β(r) correspond to the S1, S2, and C2 cells, respectively, with some
differences described above. This hierarchy differs most from the above
Cadieu et al.'s cell models in that the hierarchy is represented by a series
of mathematical transformations that represent its networks (Section
3.6): the Hough transform, 3D normal-line transform, and two types of
positive-component accumulation.

In addition, a cell that responds selectively to a very local curvature
(i.e. a circular arc with very small central angle) and was named an
endstopped cell was modeled by combining the simple and complex cells
(Rodriguez-Sanchez and Tsotsos, 2012). These endstopped cells were
further combined to model a cell that responds selectively to both posi-
tion and curvature of a local contour. This cell corresponds to the cell
CDC (α,β,r) for the same reason as above S2 cell.

This endstopped cell can be modeled also based on the network
(Figure 6), as follows. Assuming this arc of the curvature circle in
Figure 6(A), pick up RFs overlapping with the arc. In each RF, a tangent
(Figure 6(B)(i)) in contact with this arc is detected by an NDS simple cell
in Figure 6(B)(iii). Next, this simple cell is connected to all CDCs on a 3D
normal-line in the CDC column (Figure 6(C)), and then this connection
(i.e. this network) causes the simple cell to fire all CDCs on the 3D normal
line. Performing this connection for all RFs on the arc causes a CDC at the
intersection of these normal lines to fire most intensively (Figure 4(B)),
and thus this CDC can detect this arc as the coordinates of this inter-
section. This CDC detecting the arc corresponds to the endstopped cell,
and thus the endstopped cell has been modeled using the network
(Figure 6). This modeling is equivalent to performing the curvature-circle
detection (Section 3.1) for this arc with very small central angle.

Increasing the central angle of this arc allows the above cell, which
was obtained by combining these endstopped cell, to be modeled.
Further increasing this angle until an entire circle is formed allows the
cell CDC (α,β,r) to be modeled.
Figure 16. Comparison of our algorithm with CHT. CHT was proposed as an enginee
1987). This CHT was compared with our algorithm (Section 2). (A) The CHT uses the
¼ 60 using four points on its circumference, this solid was cut at each height r, and
section of any height r, a circle with a radius r centered at each given point is drawn. T
r and then intersect at one point in (ii). Thus, the center and radius of the given circle
the cylinder (α,β,r) in Figure 4(A). Giving on the eyeball a circle with a radius r ¼ 60 d
each height r, and its cross section (α,β) was arranged. As shown in (iii) as an exampl
normal line. This shift is a feature of our algorithm. This shift increases with r, and th
have been detected as the coordinates of this convergence point.
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5.2.2. Engineering method
Circle Hough transform (CHT) was proposed as an engineering

method for detecting a circle (Duda and Hart, 1972; Illingworth and
Kittler, 1987). After that, randomized Hough transform (RHT) has been
studied for speeding up and precision improvement (Xu et al., 1990;
Chen and Chung, 2001; De Marco et al., 2015). The CHT that is the origin
of RHT is compared below with our algorithm (Section 2).

The CHT uses the rectangular solid (x,y,r) in Figure 2(A). Giving
on a plane a circle with a radius r ¼ 60 using four points on its
circumference, this solid was cut at each height r and its cross section
(x,y) was arranged in Figure 16(A). In (iv), the given four points form
a circle with a radius of 60 which corresponds to the given circle, and
this circle is shown in each cross section as dotted lines for reference.
As shown in (iii) as an example, in a cross section of any height r, a
circle with the radius r centered at each given point is drawn. This
circle drawing is a feature of the CHT. These circles increase in size
with height r and then intersect at one point in (ii). The center and
radius of the given circle are detected as the coordinates of this
intersection.

Our algorithm uses the cylinder (α,β,r) in Figure 4(A). Giving on the
eyeball a circle with a radius r ¼ 60 deg using four tangents and contacts
on its circumference, this cylinder was cut at each height r and its cross
section (α,β) was arranged in Figure 16(B). In (iv), the given four contacts
form a circle with a radius of 60� which corresponds to the given circle,
and this circle is shown in each cross section as dotted lines for reference.
As shown in (iii) as an example, in a cross section of any height r, each
given contact shifts inward by r along a normal line. This shift is a feature
of our algorithm. The shift results from the V shape of the 3D normal line
(Figure 4(A)): this is because when the height increases by r from the
bottom, the intersection of this V-shape and the cross section shifts by r
from the contact (Section 2.2.2). This shift increases with r, and then the
shifted contacts converge to one point at (ii). The center and radius of the
ring method for detecting a circle (Duda and Hart, 1972; Illingworth and Kittler,
rectangular solid (x,y,r) in Figure 2(A). Giving on a plane a circle with a radius r
its cross section (x,y) was arranged. As shown in (iii) as an example, in a cross
his circle drawing is a feature of the CHT. This circle increases in size with height
have been detected as the coordinates of this intersection. (B) Our algorithm uses
eg using four tangents and contacts on its circumference, this cylinder was cut at
e, in a cross section of any height r, each given contact shifts inward by r along a
en converges to one point at (ii). Thus, the center and radius of the given circle
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given circle are detected as the coordinates of this convergence point.
Note that the shift to the outside is omitted for ease of viewing. This
figure is the same as Figure 5 except that the number of contacts and
tangents and the radius are different.

Our algorithm has two features compared to the CHT. The first
feature is the ability to process an arbitrary figure in space composed of
straight lines and curves using only circles on the eyeball (Section 3.4).
This feature results from the projection onto the eyeball: this is because
any straight line in space is transformed to a great circle on the eyeball by
this projection, and thus it can be processed as a kind of circle. On the
other hand, the CHT can not detect a straight line that represents a circle
with an infinite radius.

The second feature is the ability to perform the sharp circle detection,
as follows. The CHT has the following weaknesses that make it difficult to
perform a sharp circle detection. Focus on the (A)(ii) in which the
detection is performed. Although four circles intersect at one point, in the
actual circle detection, more than 100 circles intersect at this point. Thus,
a wide range around this intersection is covered by these overlapping
circles. This overlap causes the accumulative responses at the intersec-
tion to become broad, and thus a sharp circle detection is difficult to be
performed. On the other hand, in our algorithm, this accumulation is
performed only at one point ((B)(ii)), and thus no overlap like CHT oc-
curs. Therefore, a sharp circle detection can be performed. This differ-
ence between the CHT and our algorithm is due to the following: in the
CHT, each point on the circumference is converted to a circle, whereas in
our algorithm, as described above, each point shifts as it is.

In this way, this algorithm solves the above problem of CHT, and thus
the CDC modeled based on the algorithm can perform better curvature-
circle detection than CHT.

5.3. Proposal of experimental method for validating CDCs

In order to validate the three types of CDC (i.e. CDC(α,β,r), CDCα,β(r),
and CDCr(α,β)) neurophysiologically, we propose experimental methods
using a microelectrode. A microelectrode is inserted in the vicinity of a
cell in area V4 of a monkey and then its extracellular responses to three
types of visual stimulus (i.e. a circle, dot, and bar) are recorded. To
validate cell CDC(α,β,r), perform the above recording also for cells in area
V2 (Section 5.4.1.1 described later).

5.3.1. Circle stimuli
As a stimulus, a circle with its radius r and center (α,β) is presented on

the eyeball, and the cell response to it is recorded. Then, this response is
voted for a position (α,β,r) in the cylinder (Figure 17). Performing this
Figure 17. Experimental method for validating CDCs using circle stimuli. As a stimul
cell response to it is recorded. Then, this response is voted for a position (α,β,r) in th
pattern to occur in the cylinder. If a pattern (A) or (B) or (C) occurs, this recorded cel

21
vote for all r and (α,β) will causes one of three types of pattern to occur in
the cylinder, as follows.

If a pattern of (A) that has a selectivity to a position (α0,β0,r0) occurs in
the cylinder, this recorded cell is validated to be the cell CDC(α0,β0,r0)
that detects a circle with the center (α0,β0) and radius r0. This is because
the selectivity in (A) corresponds to that of the cell CDC(α0,β0,r0) shown
in Figure 8(A).

If a pattern of (B) that has a selectivity to a height r0 and an invariance
to every position (α,β) in the RF occurs in the cylinder, this recorded cell
is validated to be the cell CDCα,β(r0) that detects a circle with the radius r0
independently of its center (α,β). This is because the selectivity and
invariance in (B) correspond to those of the cell CDCα,β(r0) shown in
Figure 8(B).

If a pattern of (C) that has a selectivity to a position (α0,β0) and an
invariance to a height r occurs in the cylinder, this recorded cell is vali-
dated to be the cell CDCr(α0,β0) that detects a circle with the center
(α0,β0) independently of its radius r. This is because the selectivity and
invariance in (C) correspond to those of the cell CDCr(α0,β0) shown in
Figure 8(C). The width Δαβ of this selectivity corresponds to the width
Δαβ of cell response (Figure 8(C)(i)), and is expressed by Eq. (6).

We note that the presentation of stimuli and the recording of cell
responses, described above, can be efficiently performed using the
reverse correlation technique (Jones and Palmer, 1987).

5.3.2. Dot stimuli
The eyeball in Figure 18(A) shows the equidistant projection

(Figure 4(C)) of the eyeball surface onto the disk, where O corresponds to
the center of the visual field. A dot stimulus (●) is presented at a position
(α,β) on the eyeball, and the cell response to it is recorded. Then, this
response is voted for a position (α,β) on this disk. Performing this vote for
all positions (α,β) will generate a ring-like pattern, whose center and
radius are (α0,β0) and r0 respectively, only for the cell CDC(α,β,r): the
width of this ring is the Δαβ represented by Eq. (6). Thus, this recorded
cell is validated to be the cell CDC(α0,β0,r0) that detects the circle cor-
responding to this pattern.

5.3.3. Bar stimuli
A method for validating the network (Figure 6) is proposed in

Figure 18(B) using bar stimuli. This method is performed in two steps.
In the first step, a bar with the orientation θ and position (α,β) is

presented on the eyeball as a stimulus, and the cell response to it is
recorded. Then, this bar is drawn on the disk of (B), with its intensity
equal to the cell response. Performing this drawing for all θ and (α,β) will
generate a ring-like envelope composed of the bars, only for the cell
CDC(α,β,r): the center and radius of this ring are (α0,β0) and r0,
us, a circle with the radius r and center (α,β) is presented on the eyeball, and the
e cylinder. Performing this voting for all r and (α,β) causes one of three types of
l is validated to be a cell CDC(α0,β0,r0) or CDCα,β(r0) or CDCr(α0,β0), respectively.



Figure 18. Experimental methods for validating CDCs using dot and bar stimuli. The disk labeled “eyeball” shows the equidistant projection of the eyeball surface
(Figure 4(C)), where O corresponds to the center of the visual field. (A) The cell response to the dot stimulus with a position (α,β) on the eyeball is recorded and then
voted for the position (α,β) on the disk. Performing this voting by changing the (α,β) of this stimulus causes a ring-like pattern of cell responses, whose center and
radius are (α0,β0) and r0, to occurs only for the cell CDC(α0,β0,r0). This pattern validates this recorded cell to be the cell CDC (α0,β0,r0). (B) A method for validating the
network (Figure 6) that detects curvature circles is shown. This method is performed in two steps. In the first step, a bar with the orientation θ and position (α,β) is
presented on the eyeball as a stimulus, and the cell response to it is recorded. Then, this bar is drawn on the disk, with its intensity equal to the cell response.
Performing this drawing for all θ and (α,β) produces a ring-like envelope composed of the bars, only for the cell CDC (α0,β0,r0): the center and radius of this ring are
(α0,β0) and r0, respectively. Thus, this ring validates this recorded cell to be the cell CDC(α0,β0,r0) that detects the circle corresponding to this ring. In the second step,
this ring can be constructed by tracing back the network (Figure 6) from the cell CDC(α0,β0,r0) validated above, and thus confirming the coincidence between this
constructed ring and the ring in (B) allows the execution of this network to be validated.
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respectively, and its width is the Δαβ represented by Eq. (6). Thus, this
recorded cell is validated to be the cell CDC(α0,β0,r0) that detects the
circle corresponding to the ring.

In the second step, we clarify below that this ring can be constructed
by tracing back the network (Figure 6) from the cell CDC(α0,β0,r0) vali-
dated above, using a computer simulation. If we can confirm that this
constructed ring coincides with the ring in (B), the execution of this
network will be validated. This construction is done as follows.

First, let us determine each bar constituting this ring, as follows: (1)
Assume an RF on the eyeball (Figure 6(A)); (2) at first, by tracing back the
network of the 3D normal-line transform (Figure 6(C)) from this cell
CDC(α0,β0,r0), determine each NDS simple cell at a location (ρ,θ)
(Figure 6(B)(iii)); (3) then, by tracing back the network of Hough
transform (Figure 6(B)(iii)) from this simple cell, determine a tangent in
the LGN cell array (Figure 6(B)(ii)); (4) draw this tangent within the
above RF (Figure 6(A)); (5) this drawn tangent is each bar constituting
the ring in (B), and thus the above bar has been determined.

Next, drawing this tangent for all RFs on the eyeball causes a ring to
be constructed as an envelope of these tangents. Thus, confirming the
coincidence of this constructed ring with the ring in (B) allows the
execution of this network to be validated.

5.4. Hierarchies of cell models

It is described below that 16 types of cell-array conversions are per-
formed in four hierarchies of cell models across various areas of the vi-
sual cortex.

5.4.1. Cell-array conversions
We found an interesting nature of the hierarchy in Figure 10, as

described in Section 3.6: specifically, this hierarchy performs a series of
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cell-array conversions to acquire complex features that belong to shape
information; this acquisition plays an important role in shape recogni-
tion. In addition, we also found that the other hierarchy, which was
modeled previously (Kawakami et al., 2000, 2003, 2010; Okamoto,
2006), performs such array conversions to acquire spatial information:
this acquisition plays an important role in space recognition.

Therefore, we have merged these hierarchies into a new hierarchy of
Figure 19 to generalize and describe these array conversions: this hier-
archy enables to handle both shape and space informations. Figure 19 is
composed of the following two sub-hierarchies. The first hierarchy
shown as the green and red rectangles represents the hierarchy in
Figure 10, and is related to shape recognition because it detects curvature
circles constituting an arbitrary figure: this hierarchy will be described in
Section 5.4.1.1. The second hierarchy shown as the blue rectangles in
Figure 19(B) is related to space recognition because it detects a planar
surface (or a plane) in space with motion stereo: this hierarchy will be
described in Section 5.4.1.2.

Based on these sub-hierarchies, the generalized description of the
array conversions above will be given in Section 5.4.1.3, where it will be
shown that these array conversions are performed commonly in the vi-
sual cortex.

The outline of Figure 19 is described as follows.
Figure 19 related to both shape and space recognitions consists of the

following groups of cells: (1) cells performing the preprocessings which
are shown as green rectangles; (2) three types of CDC related to shape
recognition which are shown as red rectangles; (3) cells related to space
recognition which are shown as blue rectangles.

The three CDC types in Figure 19(A) contribute for recognizing "what
we see ?": we call them the “what” cells. The two types of cell (i.e.
SDC(αS,βS,t) and SDC(αS,βS,d)) in Figure 19(B) contribute for our spatial
understanding of "where we are ? and how we guide movement in



Figure 19. A hierarchy composed of two types of sub-hierarchies. The first sub-hierarchy shown as the green and red rectangles is related to shape recognition, and
represents the hierarchy in Figure 10. The second sub-hierarchy shown as blue rectangles is related to space recognition. (A) The three types of CDC detect the
parameters of a curvature circle: specifically, a cell CDC(α,β,r) detects both center (α,β) and radius r of the circle, a cell CDCα,β(r) detects its radius r independently of its
center (α,β), and a cell CDCr(α,β) detects its center (α,β) independently of its radius r. These CDC types perform the 3D normal-line transform, the positive-component
accumulation (i.e. a type of pooling) of the cell responses CDC(α,β,r) preferring the same r radius, and that preferring the same (α,β) center, respectively. (B) This
second sub-hierarchy, which detects a spatial information of planes by motion stereo, was previously modeled (Kawakami et al., 2000, 2003, 2010; Okamoto, 2006),
as follows. First, a series of cells (i.e. the DS simple, DS complex, and motion-detection cells) was modeled using the spatio-temporal correlation, accumulation (i.e. a
type of pooling), and inverse Hough transform, respectively, to detect a local image motion (τX,τY) in each RF. Next, these motions are integrated over all RFs on the
eyeball to form an optical flow field. Finally, a planar-surface-detection cell denoted as SDC(αS,βS,t) (or SDC(αS,βS,d)) extracts this flow field to detect the spatial
information of a plane. This information is composed of three parameters of the time-to-contact t and shortest distance d to the plane and its 3D orientation (αS,βS): this
time t is normalized by the fixed time delay td of lagged LGN cells, and this distance d is normalized by a distance traveled during the time td. This cell SDC(αS,βS,t) (or
SDC(αS,βS,d)) was modeled as a combination of the cross-ratio and polar transformations (or as the small-circle transformation) of the cell responses MDC(τX,τY),
respectively: this cell can also be modeled as a convolution between the cell responses MDC(τX,τY) and a synaptic weight matrix that represents the above combination
(or the small-circle transform). Using this spatial information, we can land an airplane on the runway as follows. Predicting the time t and distance d to the runway
allows us to maneuver the attitude of the airplane so as to be orthogonal to the orientation (αS,βS) of the runway and then to land it. The cell SCDS(ρ,θ,τ) exists in area
V1, and the cells CCDS(θ,τ) and MDC(τX,τY) exist in both area V1 and the middle temporal area (MT) (Kawakami and Okamoto, 1996; Kawakami, 1996; Okamoto et al.,
1999). The cells SDC(αS,βS,t) and SDC(αS,βS,d) exist in the frontal eye field area (FEF) and medial superior temporal area (MST), respectively (Fujiwara et al., 2014).
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relation to our environment ?": we call them the "where" and "how" cells,
respectively. If a cell type that associates the "what" cell with the "where"
and "how" cells is found in the future, these five cell types may contribute
for allowing a high-order recognition such as "what is where ?" and “what
and how to avoid ?”: this recognition is performed by a combination of
the shape and space recognitions.

Note that the LGN(x,y), SCNDS(ρ,θ), and CDC(α,β,r) etc. respectively
represent not only the LGN cell, NDS simple cell, and CDC etc. but also
their arrays or their responses.

5.4.1.1. Cell hierarchy for detecting curvature circles.

This hierarchy is the first sub-hierarchy in Figure 19, and is shown
as the green and red rectangles: it represents the hierarchy in
Figure 10. The three types of CDC (Figure 19(A)) detect the param-
eters of each curvature circle constituting an arbitrary figure (Sections
3.1 and 3.5): specifically, a cell CDC(α,β,r) detects both center (α,β)
and radius r of this circle, a cell CDCα,β(r) detects its radius r
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independently of its center (α,β), and a cell CDCr(α,β) detects its
center (α,β) independently of its radius r.

These CDC types, which detect the information (i.e. the center and
radius) of this circle, deliver it to area IT cells for shape recognition.

These three CDC types exist in area V4 based on the above compar-
ison with the neurophysiological experiments (Section 5.1). We think
that the cell CDC(α,β,r) also exist in area V2 based on the neurophysio-
logical experiments (Ito and Komatsu, 2004; Ito and Goda, 2011; Hegde
and Van Essen, 2000).

5.4.1.2. Cell hierarchy for detecting planes in space with motion stereo.

This hierarchy is the second sub-hierarchy in Figure 19, and is shown
as the blue rectangles. The NDS simple cell shown as a green rectangle
delivers its information not only to the cell CDC(α,β,r) in Figure 19(A) but
also to this hierarchy. A series of cells in the hierarchy, which detects a
planar surface (or a plane) in space with motion stereo, were previously
modeled, as follows.
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First, a series of cells (i.e. the directionally selective (DS) simple,
DS complex, and motion-detection cells) was modeled using the
spatio-temporal correlation, accumulation, and inverse Hough trans-
form, respectively, to detect a local image motion in each RF
(Kawakami and Okamoto, 1996; Kawakami, 1996; Okamoto et al.,
1999): these three cell types reflect the response to various stimuli in
actual cells. Next, these local motions are integrated over all RFs on
the eyeball to form an optical flow field that was proposed by Gibson
(1950). Finally, a planar-surface-detection cell (SDC) denoted as
SDC(αS,βS,t) (or SDC(αS,βS,d)) extracts this flow field to detect the
spatial information of a plane (Kawakami et al., 2000, 2003, 2010;
Okamoto, 2006): note that in the above previous paper this SDC was
named the MST cell. This information is composed of three parame-
ters of the time-to-contact t and shortest distance d to the plane and
its 3D orientation (αS,βS), where these parameters are illustrated in
Figure 19(B). The arrangements in arrays of the above cell series were
concretely shown in Figure 10 of Kawakami et al. (2000, 2003),
including the network connecting the cells.

This hierarchy plays an important role in space recognition, as fol-
lows: specifically, using this spatial information, we can perform actions
to adapt to the environment and actions to avoid it. First, we can land an
airplane on the runway (see the picture of landing in Figure 19(B)):
predicting the time t and distance d to the runway allows us to maneuver
the attitude of the airplane so as to be orthogonal to the orientation
(αS,βS) of the runway and then to land it. This landing has allowed the
psychological finding of Gibson (1950, 1979) to be explained neuro-
physiologically: Gibson found that this landing is performed based on the
optical flow field. Next, in daily life, the obstacle avoidance using this
spatial information is important, and is performed as follows. Predicting
the time t to an obstacle such as a wall (which is a vertical plane) allows
us to avoid the wall to a direction orthogonal to its orientation (αS,βS) and
then to move parallel along the wall while perceiving the distance d to it:
this wall avoidance was concretely illustrated in Figure 7 in Kawakami
et al. (2002).

In this way, this hierarchy detects the spatial information related to
"where" and "how", where the t and d are related to "where", and the
(αS,βS) is related to "how".

This cell SDC(αS,βS,t), which detects the time-to-contact t, reflects the
response to various stimuli in actual cells in the frontal eye field area
(FEF) of monkeys (Fujiwara et al., 2014) and in the nucleus rotundus of
pigeons (Wang and Frost, 1992), and this cell response allows animal
ecologies of gannets and flies (Lee and Reddish, 1981; Wagner, 1982) to
be explained neurophysiologically. In addition, the cell SDC(αS,βS,d),
which detects the shortest distance d, reflects the response to various
stimuli in actual cells in the medial superior temporal area (MST) of
monkeys (Fujiwara et al., 2014) and in the thalamus of pigeons (Liu et al.,
2008).

We point out that this cell SDC(αS,βS,t) uses the same column as the
cell CDC(α,β,r) in Figure 6(C): this is because both are projecting on the
eyeball (Section 2.2.1). It is noteworthy that the cell SDC(αS,βS,t) related
to space recognition uses the same column as the cell CDC(α,β,r) related
to shape recognition. The difference between these cell types lies in the
parameters of the column and the transforms performed in the column, as
follows. First, the column parameters of SDC(αS,βS,t) are the 3D orien-
tation (αS,βS) and time-to-contact t of a plane, whereas those of
CDC(α,β,r) are the center (α,β) and radius r of a curvature circle. Next, the
transform performed in the column of SDC(αS,βS,t) is a combination of
the cross-ratio and polar transforms, whereas that of CDC(α,β,r) is the 3D
normal-line transform.

We also point out that a VLSI implementation research (Akima et al.,
2017) was reported to realize the series of cells from LGN cell to
motion-detection cell (Figure 19) using electric circuit and to detect a
local image motion in each RF.
24
5.4.1.3. Hypothesis of cell-array conversions across the visual cortex.

Based on the two sub-hierarchies in Figure 19 (which are shown as
the green and red rectangles (Section 5.4.1.1) and as the blue rectangles
(Section 5.4.1.2), respectively), we give below the generalized descrip-
tion of the cell-array conversions that was mentioned at the beginning of
Section 5.4.1.

As described preliminarily above (Section 5.4.1), each sub-hierarchy
performs a series of cell-array conversions: specifically, cell arrays are
being converted one after another within the hierarchy; for example, an
array (x,y) of LGN cells is converted to the array (ρ,θ) of NDS simple cells
(see Figure 6(B)(ii and iii)), and such array conversion continues within
the hierarchy. These array conversions are concretely described, as fol-
lows: in the first sub-hierarchy, each cell array is converted in the order
(x,y), (ρ,θ), (α,β,r), and r (or (α,β)); in the second sub-hierarchy, each cell
array is converted in the order (ρ,θ,τ), (θ,τ), (τX,τY), and (αS,βS,t) (or
(αS,βS,d)). In addition, cells more later within each sub-hierarchy acquire
more complex features. These array conversions are suggested to play an
important role in acquiring complex features: this suggestion will be
verified later in this section.

We have found that each array conversion is performed by one of
three types of operation that are convolution, correlation, and pooling (or
accumulation or positive-component accumulation), which is shown in
Figure 19. A representation of what array conversion each operation
performs is shown, as follows, independent of individual cell arrays. First,
the convolution converts an array (a,b) into the array (c,d) or (c,d,e) to
create all elements as new parameters: we note that only DOG convolu-
tion performed by the cell LGN(x,y) does not create new parameters
because its DOG filter has a local weight matrix (Kawakami and Oka-
moto, 1996; Kawakami, 1996). Second, the correlation converts an array
(a,b) into the array (a,b,c) to create a new parameter c that represents this
correlation. Third, the pooling converts an array (a,b,c) to the array (a,b)
to annihilate a parameter c: we note that only the positive-component
accumulation (i.e. a type of pooling), performed by the cell CDCα,β(r)
in Figure 19(A), converted the array (α,β,r) into the array (r) to annihilate
a parameter (α,β) that has two variables of α and β.

In this way, the convolution and correlation creates new parameters
(i.e. new features) to acquire more complex feature: this acquisition has
allowed the above suggestion of "these array conversions play an
important role in acquiring complex features" to be verified. On the other
hand, the pooling annihilates an array parameter to acquire the invari-
ance (or constancy) for this parameter. These are interesting features of
the array conversions (or the operations).

Examples of these creation and annihilation of parameters are
described as follows. First, the convolution, performed by the cell
CDC(α,β,r) in Figure 19(A), converts the array (ρ,θ) into the array (α,β,r)
to create new parameters (α,β,r). Next, the spatio-temporal correlation
(i.e. a type of correlation), performed by the cell SCDS(ρ,θ,τ) in
Figure 19(B), converts the array (ρ,θ) into the array (ρ,θ,τ) to create a new
parameter τ that represents this correlation. Finally, the positive-
component accumulation (i.e. a type of pooling), performed by the cell
CDCr(α,β) in Figure 19(A), converts the array (α,β,r) into the array (α,β)
to annihilate a parameter r.

The above is summarized as follows, and gives a generalized
description: (1) each sub-hierarchy performs a series of cell-array con-
versions; (2) each array conversion is performed by one of convolution,
correlation, and pooling; (3) the convolution and correlation create new
array parameters (i.e. new features) to acquire more complex feature,
whereas the pooling annihilates an array parameter to acquire the
invariance to that parameter; (4) thus, this array conversion allows every
cell in the hierarchy to acquire either more complex feature or the
invariance (or the constancy); (5) each of the 10 cell types in this hier-
archy performs a cell-array conversion inherent to it, and thus the hier-
archy is composed of 10 types of cell array-conversion.



Figure 20. Two types of cell hierarchy related to space recognition. The cell SCNDS(ρ,θ) shown as the green rectangle is the same as in Figure 19, and is also connected
with two types of cell hierarchy in (A) and (B). (A) This hierarchy, which detects a spatial information of straight lines by motion stereo, was previously modeled
(Sugie et al., 2006; Sugie, 2007), as follows, where the cells SCNDS(ρ,θ), SCDS(ρ,θ,τ), and CCDS(θ,τ) are the same as in Figure 19. The line-detection cell denoted as
LDC(αL,βL,t) (or LDC(αL,βL,d)) integrates responses of the cells CCDS(θ,τ) over all RFs on the eyeball to detect the spatial information of a straight line. This information
is composed of the time-to-passage t (or the shortest distance d) to the line and its 3D orientation (αL,βL), respectively: specifically, this time t (or distance d) represents
the time until the line will reach just right beside (or the shortest distance when the line will come just right beside). This cell was modeled as the cross-ratio
transformation (or as a combination of the cross-ratio and t-d transformations) of the cell responses CCDS(θ,τ), respectively: this cell can also be modeled as a
convolution between the cell responses CCDS(θ,τ) and a synaptic weight matrix that represents the cross-ratio transform (or the above combination). Using this spatial
information, we can do a slalom of ski as follows: predicting the time t and distance d to the pole (i.e. the vertical straight line) allows us to ski so as to pass very close
to the pole without hitting it. (B) This hierarchy, which detects a spatial information of planes by binocular stereo, was previously modeled (Kawakami, 1996;
Kawakami et al., 1999, 2010), as follows. First, a series of cells (i.e. the BDS simple, BDS complex, and disparity-detection cells) was modeled using the binocular
correlation, accumulation, and inverse Hough transform, respectively, to detect a 2D disparity (σX,σY) in each RF. Next, a binocular planar-surface-detection cell
denoted as SDCBino(αS,βS,d) integrates these disparities (σX,σY) over all RFs on the eyeball to detect the spatial information of a plane. This information is composed of
the 3D orientation (αS,βS) of the plane and the shortest distance d to it; this distance d is normalized by the distance between the left and right eyes (Kawakami et al.,
2010). This cell SDCBino(αS,βS,d) was modeled as the small-circle transformation of the cell responses DDC(σX,σY): this cell can also be modeled as a convolution
between the cell responses DDC(σX,σY) and a synaptic weight matrix that represents the small-circle transform. We point out that this series of transforms above is the
same as that in Figure 19(B) that are based on motion stereo: this is because the binocular disparity is mathematically equivalent to the motion disparity, which was
shown in Figures. 19 and 22 of Kawakami et al. (2010) and Figure 6.2-1 of Kawakami (1996). We also point out that based on this mathematical equivalence between
the binocular and motion parallaxes, binocular stereo allows the spatial information (i.e., the 3D orientation (αL,βL) and the shortest distance d) of a straight line to be
detected: specifically, the motion stereo algorithm of Figure 20(A) (i.e. the spatio-temporal correlation, the accumulation, and the combination of the cross-ratio and
t-d transforms) can be used to detect that information. Thus, based on this algorithm, we can model the cells that detect this information by binocular stereo.
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This nature of the sub-hierarchies suggest that such array con-
version is commonly performed by various cell types in the visual
cortex to acquire either the complex feature or the invariance.
Therefore, we propose a hypothesis that this array conversion is one
of the basic functions across this cortex. This array-conversion hy-
pothesis is supported not only by the two sub-hierarchies in
Figure 19, but also by the following two hierarchies of cell models
shown in Figure 20: the first is the cell hierarchy for detecting
straight lines in space with motion stereo, and the second is the cell
hierarchy for detecting planes in space with binocular stereo.

5.4.2. Hierarchies supporting the array-conversion hypothesis

5.4.2.1. Cell hierarchy for detecting straight lines in space with motion
stereo.

This hierarchy (Figure 20(A)) is the first hierarchy supporting the
above array-conversion hypothesis: it allows the spatial information of
straight lines to be detected with motion stereo.

This hierarchy was previously modeled (Sugie et al., 2006; Sugie,
2007), where the cells SCNDS(ρ,θ), SCDS(ρ,θ,τ), and CCDS(θ,τ) are the
same as in Figure 19. A line-detection cell denoted as LDC(αL,βL,t) (or
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LDC(αL,βL,d)) detects the spatial information of a straight line. This in-
formation is composed of three types of line parameter: the
time-to-passage t and shortest distance d to the line and its 3D orientation
(αL,βL), where the details of the time t and distance d are described in the
caption of Figure 20(A).

This hierarchy has the following same two properties as those
described in Section 5.4.1.3, thus supporting the array-conversion hy-
pothesis above: (1) this hierarchy performs a series of cell-array con-
versions, specifically, each cell array is converted in the order (ρ,θ,τ),
(θ,τ), and (αL,βL,t) (or (αL,βL,d)), thus being converted one after another
within the hierarchy; (2) each array conversion is performed by one of
convolution, correlation, and pooling.

This hierarchy plays an important role in space recognition, specif-
ically, using the spatial information above, we, including animals, can
perform actions to avoid the environment and actions to adapt to it. First,
we can do a slalom of ski as follows (see the picture of doing slalom in
Figure 20 (A)): predicting the time t and distance d to the pole (i.e. the
vertical straight line) allows us to ski so as to pass very close to the pole
without hitting it. Next, in daily life, the obstacle avoidance using this
spatial information is performed as follows: this prediction to an obstacle
such as a pillar (which is also a vertical line) allows us to avoid the pillar
to the direction orthogonal to its orientation (αL,βL); also, this prediction
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to the step of stair (which is a horizontal line) allows us to go up the stairs
by straddling the step to a direction orthogonal to its orientation (αL,βL).
Finally, animals also use this prediction as follows: in the jumping of an
equestrian competition, this prediction to the obstacle bar allows a horse
to jump over it; also, this prediction to branches (i.e. straight lines) in the
forest, which are crowded in various orientations in space, allows wild
birds to fly around while avoiding these branches quickly.

This cell LDC(αL,βL,t) uses the same column as the cell CDC(α,β,r) in
Figure 6 (C), which is similar to in Section 5.4.1.2. The difference be-
tween them lies in the column parameters (in this case, the 3D orienta-
tion (αL,βL) and time-to-passage t of the line) and the transform
performed in the column (in this case, the cross-ratio transform).

Neither neurophysiological nor psychological reports on these cells
LDC(αL,βL,t) and LDC(αL,βL,d) has yet been made. Since these cell types
detect the same types of spatial information (i.e. the time, shortest dis-
tance, and 3D orientation) as the SDC, they are assumed to be in area
MST as well as the SDC.

5.4.2.2. Cell hierarchy for detecting planes in space with binocular stereo.

This hierarchy (Figure 20(B)) is the second hierarchy supporting the
above array-conversion hypothesis: it allows the spatial information of
planes to be detected with binocular stereo. This hierarchy were previ-
ously modeled, as follows.

A series of cells from the binocular-disparity selective (BDS) simple
cell to the disparity-detection cell detects a two-dimensional (2D)
disparity (σX, σY) in each RF (Kawakami, 1996; Kawakami et al, 1992,
1999; Okamoto and Kawakami, 1992; Kawakami and Okamoto, 1992).
Then, by integrating this disparity (σX, σY) for all RFs on the eyeball, a
binocular planar-surface-detection cell denoted as SDCBino(αS,βS,d) de-
tects the spatial information of a plane (Kawakami et al., 2010; Okamoto,
2006). This information is composed of two types of plane parameter: the
shortest distance d to the plane and its 3D orientation (αS,βS).

This hierarchy has the following same two properties as those
described in Section 5.4.1.3, thus supporting the array-conversion hy-
pothesis above: (1) this hierarchy performs a series of cell-array con-
versions, specifically, each cell array is converted in the order (ρ,θ,σ),
(θ,σ), (σX,σY), and (αS,βS,d), thus being converted one after another
within the hierarchy; (2) each array conversion is performed by one of
convolution, correlation, and pooling.

This hierarchy plays important roles in space recognition, as follows.
First, the above spatial information allows us to perceive the distance d to
a plane and its 3D orientation (αS,βS) without moving (or without moving
the head): on the other hand, the cell SDC(αS,βS,d) based on motion
stereo (Figure 19(B)) does not enable this information to be detected
because it is stationary. Second, the spatial information of planes that
were hidden in a random dot stereogram (RDS) was detected by this cell
SDCBino(αS,βS,d) (Okamoto, 2006; Kawakami et al., 2010). This detection
has allowed the psychological finding of Julesz (1960, 1971) to be
explained neurophysiologically: Julesz found that one can detect the
information hidden in the RDS with binocular stereo.

This cell SDCBino(αS,βS,d) uses the same column as the cell CDC(α,β,r)
in Figure 6 (C), which is similar to in Section 5.4.1.2. The difference
between them lies in the column parameters (in this case, the 3D
orientation (αS,βS) and shortest distance d) and the transform performed
in the column (in this case, the small-circle transform).

This hierarchy reflects the response to various stimuli in actual cells,
as follows: (1) responses of the cells SCBino(ρ,θ,σ) and CCBino(θ,σ) are
consistent with those of BDS simple cells (Poggio and Ficsher, 1977;
Ohzawa et al., 1990: Freeman and Ohzawa, 1990) and BDS complex cells
(Ohzawa et al., 1990) in area V1, respectively; (2) responses of the cells
DDC(σX, σY) and SDCBino(αS,βS,d) are consistent with those of
disparity-detection cells in area V2 (Hubel & Livingston, 1987, 1990;
Poggio et al., 1988) and cells in the caudal intra-parietal area (CIP) of
monkeys (Tsutsui et al., 2002), respectively.
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5.4.3. Summary of the cell-array conversions

The four types of cell hierarchy, in which the cell-array conversions
are performed, were described in Figures 19 and 20: the first is the hi-
erarchy from the LGN cell to the cell CDCα,β(r) (or CDCr(α,β)) in
Figure 19; the second, third, and fourth are shown in Figures 19(B),
20(A), and (B), respectively.

These hierarchies are composed of 16 types of cell, each of which was
modeled by an inherent network that was implemented by neuron's
synaptic functions, specifically, by the postsynaptic excitation, post-
synaptic inhibition, and synaptic transmission efficiency. In these hier-
archies, the following eight types of cell detect the shape and space
informations: (1) the three types of CDC (i.e. CDC(α,β,r), CDCα,β(r), and
CDCr(α,β)), which detect shape information and are shown as red rect-
angles; (2) five types of cell (i.e. SDC(αS,βS,t), SDC(αS,βS,d), LDC(αL,βL,t),
LDC(αL,βL,d), and SDCBino(αS,βS,d)), which detect space information and
are shown as blue rectangles.

We found that these hierarchies had the following noteworthy na-
tures. First, each hierarchy performs a series of cell-array conversions.
Second, each array conversion is performed in one of three types of
operation that are convolution, correlation, and pooling. Classifying
these operation types of them, the largest number is 10 for convolution,
followed by 4 for pooling, and the lowest for 2 for correlation. Third, the
convolution and correlation create new array parameters (i.e. new fea-
tures) to acquire more complex feature, whereas the pooling annihilates
an array parameter to acquire the invariance to that parameter. Fourth,
thus, this array conversion allows every cell in the hierarchy to acquire
either more complex feature or the invariance (or the constancy).

Therefore, we also found that these four hierarchies are composed of
16 types of cell-array conversion across various areas of the visual cortex,
specifically, across areas LGN, V1, V2, V4, MT, MST, FEF, and CIP. It is
surprising that these areas performing the array conversions occupy the
majority of the visual cortex. This supports the array-conversion hy-
pothesis that was proposed in Section 5.4.1.3 as "this array conversion is
one of the basic functions across the visual cortex". We believe that a
higher-order recognition that integrates shape and space recognitions,
which are essential to our daily life, is performed based on these array
conversions.

Riesenhuber and Poggio (1999) described the function of convolution
(i.e. template match) as "a template match is a neural transfer function
suitable for increasing feature complexity". This function is consistent
with that described above as "the convolution creates new array pa-
rameters (i.e. new features) to acquire more complex features".

We think that the area IT cells at the end of the ventral pathway are
not regularly arranged unlike these 16 cell types, and thus can not
perform these cell-array conversions. This is because if area IT has the
cell array as described above, this array requires a huge number of cells
(or array parameters or array dimensions) in order to represent abstract
object categories like faces and hands. Thus, another representation
different from this cell array is required in area IT. Instead of this array
representation where each cell represents a feature, we propose a new
representation where each closed loop composed of some cells represents
a feature. This representation may allow the above abstract categories to
be represented. This is because each cell is used in common for many
loops, so that a relatively small number of cells can form a large number
of loops; thus, many loops that are required for representing the abstract
categories can be formed using so not many cells.

Further, each hierarchy in Figures 19 and 20 consists of the feedfor-
ward systems, in which the cell arrays and the networks connecting the
cells are fixed. With these fixed feedforward systems, it is difficult to
recognize complex features, including an increased complexity due to
environmental changes. We think that area IT may perform a feedback
system that can adapt to changes in the environment and update itself:
the above closed loop, composed of some cells, may implement a kind of
feedback system.
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6. Conclusion

The contour of an arbitrary figure can be represented as a group of
curvature circles in contact with the contour (Figure 1(A)), with each
curvature circle represented by its center OC and radius r. This repre-
sentation allows the contour composed of points to be converted into a
set of the centers OC and radii r of these curvature circles. To achieve this
conversion, we found an algorithm for detecting each curvature circle
(Section 2), specifically, we found the algorithm performing a 3D normal-
line transform for detecting the circle: this transform is one of the main
points of this paper.

Based on this algorithm, we modeled a series of cells that detected the
OC and r of the circle (Figure 6; Section 3). This series was composed of
an LGN cell, NDS simple cell, and CDC. The LGN and NDS simple cells
were previously modeled using the DOG convolution and Hough trans-
form, respectively.

This CDC was modeled using the above 3D normal-line transform
(Figure 6), as follows. Each tangent in contact with this circle was
detected by an NDS simple cell that performed the Hough transformation
of LGN cell responses. Then, this normal-line transform causes the NDS
simple cell to activate all CDCs on a 3D normal line within the CDC
column. Finally, performing this normal-line transform for all tangents
caused a CDC at the intersection of these normal lines to fire most
intensively (Figure 4(B)), and thus the center OC and radius r of the circle
were detected as the coordinates of this intersection.

Therefore, this CDC was modeled as the 3D normal-line trans-
formation of NDS simple cell responses to detect the circle. The CDC can
be also modeled as a convolution between the NDS simple cell responses
and a synaptic weight matrix that represents the network performing this
transform.

This CDC detects every curvature circle constituting the above con-
tour, and thus allows the contour to be converted into a set of the centers
OC and radii r of these circles (Section 3.1). In other words, the CDCs
detecting all curvature circles allow the contour to be converted into the
evolute of it that is constituted by this set (Section 2): this conversion is
similar to Fourier transform. No cell model that detects the center and
radius of this circle has been reported except for this CDC, as far as we
know. The CDC can detect both the entire circle and its part (i.e. its
circular arc).

This CDC has three features (Section 3.4). The first feature is its ability
to process an arbitrary figure in space composed of straight lines and
curves using only circles on the eyeball. The second feature is its ability
for an arbitrary figure to be reconstructed by CDCs that detect all cur-
vature circles constituting this figure. The third feature is its ability to
sort and extract various components of this figure in the order of coarse-
to-fine. It was clarified that these three features results from the cell
arrangement of the CDC column.

Computer simulations verified the following (Section 4): (1) the CDCs
correctly detected various curvature circles that constitute figures; (2) the
three features described above were confirmed; (3) the network linking
retinal cells and CDCs (Figure 6) functioned correctly to detect the
circles.

Based on this CDC, we modeled two types of constancy CDC that have
perceptual constancy (Section 3.5): a position-invariant CDC denoted as
CDCα,β(r) and a curvature-invariant (i.e. size-invariant) CDC denoted as
CDCr(α,β). The cell CDCα,β(r) was modeled as a positive-component
accumulation (i.e. a type of pooling) of the cell responses CDC(α,β,r)
preferring the same r radius, and the cell CDCr(α,β) was modeled as that
preferring the same (α,β) center: note that the cell CDC(α,β,r) denotes the
above CDC, and the center (α,β) of the curvature circle detected by this
cell is the same as the center OC in Figure 1(A).

Combining these two constancy CDC types with the above series of
cell models (Figure 6), we formed a cell hierarchy (Figure 10; Section
27
3.6). This hierarchy is composed of the LGN cell, NDS simple cell,
CDC(α,β,r), CDCα,β(r), and CDCr(α,β), and is functionally composed of a
series of mathematical transforms: the DOG convolution, Hough trans-
form, 3D normal-line transform, and two types of positive-component
accumulation. Each transform represents a network that connects the
front and back adjacent cell arrays, and is implemented by synaptic
functions of neurons. Thus, this hierarchy was modeled using the oper-
ations that can be implemented with neuron's synaptic functions.

The series of cells constituting this hierarchy, to our knowledge, has
been systematically modeled in the neurophysiological processes for the
first time, including the modeling of their networks performing these
transforms.

These three CDC types were compared with actual cells in area V4
(Section 5.1). As a result, the following correspondences were found.
First, the cells CDCα,β(r) and CDCr(α,β) exhibited the same invariance and
selectivity to stimuli as the position-invariant cells and curvature-
invariant cells, respectively. Next, the cell CDCr(α,β) exhibited the
same preference as the cell that preferred a concentric circle. Finally, the
cell CDC(α,β,r) corresponded to two types of cell: the first is the cell that
responded selectively to both curvature and position of a contour; the
second is the cell that exhibited a trade-off between curvature preference
and position invariance. Thus, it was shown that these three CDC types
reflected the response to various stimuli in actual area V4 cells.

In addition, we made the following explanations: (1) the selective-
response width Δαβ of cell CDC(α,β,r) allowed the neurophysiological
process why this trade-off occurs to be explained; (2) the third feature
(Section 3.4) allowed the coarse-to-fine response of area IT cells to be
explained neurophysiologically.

In order to validate these three CDC types neurophysiologically, we
proposed three types of experimental method using microelectrodes
(Section 5.3), where each method type uses a circle or dot or bar
stimulus.

We made the following two comparisons with previous models
(Section 5.2).

First, we compared the cell hierarchy (Figure 10) with cell models
previously reported. As a result, the following correspondence and dif-
ference were found: (1) the NDS simple cell, CDC(α,β,r), and CDCα,β(r) of
the hierarchy corresponded to the S1, S2, and C2 cells of the above cell
models, respectively; (2) this hierarchy differed most from these cell
models in that the hierarchy is represented by a series of mathematical
transformations that represent its networks (i.e. the Hough transform, 3D
normal-line transform, and two types of positive-component
accumulation).

Second, the cell CDC(α,β,r) was compared with a cell model that re-
sponds selectively to a very local curvature (i.e. a circular arc with very
small central angle) and has been named an endstopped cell. As a result,
the followings were found: (1) this endstopped cell can be modeled also
based on the network in Figure 6, and this modeling is equivalent to
performing the curvature-circle detection (Section 3.1) for this arc with
very small central angle; (2) increasing this angle until an entire circle is
formed allows the cell CDC (α,β,r) to be modeled.

We proposed that the cell-array conversions, which were found in
Section 3.6 and played an important role in acquiring the complex
feature and the constancy, are performed commonly in the visual cortex
(Section 5.4). Making this proposal is another key point in our paper, and
was done as follows:

First, combining the above hierarchy (Figure 10; Section 3.6) with
three hierarchies modeled previously, we formed four types of hierarchy
(Figures 19 and 20), which are composed of 16 types of cell model and
process both shape and space informations.

Next, we found that these hierarchies had the following noteworthy
natures (Section 5.4): (1) each hierarchy performs a series of cell-array
conversions; (2) each array conversion is performed by one of
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convolution, correlation, and pooling; (3) the convolution and correla-
tion create new array parameters (i.e. new features) to acquire more
complex feature, whereas the pooling annihilates an array parameter to
acquire the invariance to that parameter; (4) thus, this array conversion
allows every cell in the hierarchy to acquire either more complex feature
or the invariance (or the constancy).

Finally, thus, we also found that these four hierarchies are composed
of 16 types of cell-array conversion across various areas of the visual
cortex, specifically, across areas LGN, V1, V2, V4, MT, MST, FEF, and
CIP. It is surprising that these areas performing the array conversions
occupy the majority of the visual cortex. Based on this finding, we
proposed a hypothesis that such array conversions are one of the basic
functions performed across the visual cortex except for area IT, and are
performed commonly in the cortex to play an important role in
acquiring the complex feature and the constancy. We believe that a
higher-order recognition that integrates shape and space recognitions,
which are essential to our daily life, is performed based on these array
conversions.
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