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Abstract

Lipid droplets (LDs) are important cellular organelles due to their ability to

accumulate and store lipids. LD dynamics are associated with various cellular and

metabolic processes. Accurate monitoring of LD's size and shape is of prime

importance as it indicates the metabolic status of the cells. Unintrusive continuous

quantification techniques have a clear advantage in analyzing LDs as they measure

and monitor the cells' metabolic function and droplets over time. Here, we present a

novel machine‐learning‐based method for LDs analysis by segmentation of phase‐

contrast images of differentiated adipocytes (in vitro) and adipose tissue (in vivo).

We developed a new workflow based on the ImageJ waikato environment for

knowledge analysis segmentation plugin, which provides an accurate, label‐free,

live single‐cell, and organelle quantification of LD‐related parameters. By applying

the new method on differentiating 3T3‐L1 cells, the size of LDs was analyzed over

time in differentiated adipocytes and their correlation with other morphological

parameters. Moreover, we analyzed the LDs dynamics during catabolic changes such

as lipolysis and lipophagy and demonstrated its ability to identify different cellular

subpopulations based on their structural, numerical, and spatial variability. This

analysis was also implemented on unstained ex vivo adipose tissues to measure

adipocyte size, an important readout of the tissue's metabolism. The presented

approach can be applied in different LD‐related metabolic conditions to provide a

better understanding of LD biogenesis and function in vivo and in vitro while serving

as a new platform that enables rapid and accurate screening of data sets.
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1 | INTRODUCTION

Lipid droplets (LDs) are organelles that play an important role in

energy metabolism through their ability to accumulate and store

lipids. Although most mammalian cell types can store lipids in LDs,

the primary lipid pool resides in adipose tissue adipocytes (Farese &

Walther, 2009; Olzmann & Carvalho, 2019; Onal et al., 2017).

Adipocytes are specialized in their ability to store energy like

triglycerides in the form of LDs in a process termed lipogenesis. This

biogenesis process lies in the center of adipogenesis as
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differentiation of preadipocytes to adipocytes is characterized by the

accumulation of LDs (Tang & Lane, 2012). Upon stimulation, catalytic

lipolytic enzymes break the LD down to provide an energy substrate

in times of need, thus maintaining the needed balance in lipid

homeostasis (Ducharme & Bickel, 2008). The degradation of LDs

appears in the form of lipophagy or lipolysis. While neutral cytosolic

lipolysis relies on LD‐associated lipases, lipophagy is based on a

lysosomal‐autophagic pathway; they both play a crucial role in

adipocyte metabolism (Zechner et al., 2017). In vitro adipogenesis‐

based cell cultures are frequently utilized as a model system in LD

biogenesis and dynamics research, with 3T3‐L1 cells often being used

as a model for adipocytes function (Novikoff et al., 1980).

Tracking and quantifying intracellular LDs can be applied using

various techniques that differ in their approach. They include various

staining methods that utilize lipophilic probes such as Nile red, Oil‐

red O, and BODIPY to provide a snapshot of the LDs morphology.

Some staining techniques require fixation of the culture, thus

neutralizing the ability to monitor the LDs biogenesis over time,

which leads to the loss of valuable data (Listenberger & Brown, 2007).

Other methods use phase‐contrast image processing to identify,

measure and quantify LDs in the same culture over time. Our group

has previously developed several methods to pursue an accurate

monitoring technique of adipocyte function through morphological

analysis of their LDs parameters (Lustig et al., 2019; Shoham

et al., 2012). These methods were used to quantify both macro and

micro‐scale changes in LDs of adipocytes and correlate them with

adipogenesis. The primary advantage of a noninvasive imaging tool

lies in its ability to produce continuous and coordinated analyses on

the same cultures and integrate them with other assays and tools,

allowing us to follow metabolic processes in adipocytes under various

treatments and conditions.

LD dynamics are also associated with several metabolic condi-

tions, making them an important analysis target. Both excessive and

insufficient storage capacities of LDs are related to metabolic

pathologies such as atherosclerosis, fatty liver disease, lipodystrophy,

insulin resistance, diabetes, and obesity (Greenberg et al., 2011;

Krahmer et al., 2013; Onal et al., 2017). Adipose tissue dysfunction is

characterized by the expansion of adipocytes due to excessive caloric

intake (Guilherme et al., 2008). The measurement of individual

adipocytes is key in determining the adiposity of the tissue and its

metabolic health. Thus, accurate and dynamic measurements of the

morphological alteration in LDs in vivo are of great importance

(Laforest et al., 2015).

In this study, we have developed an advanced approach to

quantify LD dynamics using an ImageJ‐based supervised machine‐

learning segmentation tool based on the Trainable waikato

environment for knowledge analysis (WEKA) segmentation

(Arganda‐Carreras et al., 2017; Schindelin et al., 2012). This method

aims to create a robust analysis based on segmentation that allows

measuring large sets continuously with live imaging of single‐cell

dynamics. For this purpose, we used the plugin that segments phase‐

contrast images to different classes, including LDs, based on the

measured organelles' morphology. Once a satisfactory segmentation

product was built, it was applied to several sets of images, enabling us

to rapidly analyze large data sets, which can be useful for screening

analyses of therapeutic and pharmaceutical agents. After comparing a

thresholding technique to validate our method, we used it to study

the LDs dynamics and subpopulations in adipocytes in vitro and on

adipose tissue. Since LD morphology is strongly related to essential

metabolic processes, the ability to measure the dynamics of LDs

robustly and accurately makes the presented method of segmenta-

tion analysis a vital tool in investigating adipocyte differentiation and

function.

2 | MATERIALS AND METHODS

2.1 | In vitro cell culture analysis

Mouse embryonic 3T3‐L1 pre‐adipocytes (American Type Culture

Collection) were cultured and differentiated over a period of 3 weeks,

aswas previously described (Mor‐YossefMoldovan et al., 2019, 2020).

For the lipolysis induction, 10 μM of forskolin (Peprotech) was added

to the maintenance medium; the forskolin was kept for 2 h. For the

lysosomal‐autophagic pathway induction, 5 mM of metformin was

added to a Dulbecco's modified Eagle's medium without glucose for

1 h (Biological Industries) for a total of 8 h. To follow the acidic

compartments in the cells, 100 nM of LysoTracker Green (Life

Technologies) was added to the last hour of the experiment.

2.2 | Level of adipogenesis (LOA)

The LOA was calculated as previously described (Lustig et al., 2019).

Shortly, Stitched phase‐contrast ×40 images of differentiated

cultures were taken at different points throughout adipogenesis in

the EVOS FL Auto 2 microscope (Invitrogen). Based on the major

visual difference between fibroblasts and adipocytes, a visual

difference mapping was obtained. This map was used to calculate

the LOA in each culture.

2.3 | LD quantification

EVOS FL Auto 2 microscope (Invitrogen) was used to take phase‐

contrast and fluorescent images in ×200 magnification of cultured

3T3‐L1 cells throughout differentiation for all LD‐related analyses

(cell growth, morphology, and LDs accumulation). For the lipolysis

assay, time‐lapsed images were taken every 15min postinduction

for 2 h.

2.4 | Machine learning segmentation

To define the LDs accurately, we used the FIJI ImageJ (NIH)

plugin, named trainable WEKA segmentation (Arganda‐Carreras
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et al., 2017). Figure 1a shows a representative image that was

utilized to create the analysis classifier for all other images. Three

classes were defined and allocated to the different parts of

the picture, purple represents the surroundings, red represents

the LDs, and green is the outline of the droplet (Figure 1b).

Each time the classifier is “trained,” the parts that were not

recognized correctly were redefined, and this step was repeated

until the segmentation was satisfactory (Figure 1b). The classifier

can be applied to the same image to generate a binary image with

markable and quantifiable LDs (Figure 1c,d) and can be applied on

additional images (Figure 1e). The marked LDs were added to the

region of interest (ROI) with the analyze particles option. Non‐LD

particles can be filtered by applying circularity and size thresholds

to the images if needed. To generate a cell‐based analysis, the

perimeter of the cell was manually marked and then measured by

the analyze particles option. Thresholding: images were converted

into an 8‐bit grayscale thresholded and analyzed with “analyze

particles.”

2.5 | 3D segmentation analysis

EVOS FL Auto 2 microscope (Invitrogen) was used to take Z‐stack

phase‐contrast images in ×200 magnification of differentiated

3T3‐L1 cells; a 3D trainable WEKA segmentation tool was then used

to segment the Z stack images to generate binary stacks (Arganda‐

Carreras et al., 2017). Supporting Information: Figure S1a shows a

representative set of Z stack images utilized to create the analysis

classifier for all other images. A 3D surface plot constructed from the

Z‐stack simulates the cell's structure. Since images in the stack have

different morphological attributes, only two classes were defined and

allocated to the different parts of the picture, red represents the LDs,

and green is the outline of the droplet. Each time the classifier is

“trained,” the parts that were not recognized correctly were

redefined, and this step was repeated until the segmentation was

satisfactory. The classifier can be applied to the same image to

generate a binary image with markable and quantifiable LDs and can

be applied to additional images (Supporting Information: Figure S1b).

F IGURE 1 Lipid droplet (LD) quantification workflow. (a) Input sample phase‐contrast image of differentiating 3T3‐L1 cells. (b) Segmentation
process using waikato environment for knowledge analysis (WEKA) trainable segmentation tool. Three classes were assigned (red—droplet
content, green—LD linings, purple—surroundings). The classifier was trained until a satisfactory product was produced. (c) LDs were obtained
from the binary segmented image using ImageJ's automatic analyze particles tool. (d) The droplets were analyzed for all available morphologic
variables (e) the classifier can be applied to other images to obtain batches of binarized LDs images.
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To generate a cell‐based analysis, the perimeter of the cell was

manually marked, and its surroundings were cleared. For the LDs 3D

quantification analysis, the 3D object counter tool was used as it

generates 3D‐related parameters (Bolte & Cordelières, 2006).

2.6 | Ex vivo adipose tissue analysis

Epididymal visceral adipose tissues (VAT) were taken from C57bl/6J

mice. The mice were kept in a conventional facility with 12 h light/

dark cycles and were fed with standard chow and provided water ad

libitum, according to guidelines of the IACUC Approval (01‐21‐044).

Whole‐mount images of VAT were taken by a confocal microscope

(Leica SP8; Leica) in ×200 magnification (Kislev et al., 2021). The

images were segmented using theWEKA trainable segmentation tool

with two classes (red = adipocytes, green = linings); after a satisfac-

tory product was achieved, a watershed filter was added to connect

missing adipocytes. The cells were quantified using the analyze

particles tool.

2.7 | Statistical analysis

Analysis was performed using GraphPad Prism v.9.1.1 and Rstudio.

The results are presented as means ± SD. All results were tested for

normal distribution by Kolmogorov–Smirnov test, and outliers were

identified using the ROUT method. Statistical differences comparing

the mean values were tested using two‐tailed, unpaired t‐tests,

one‐way analysis of variance (ANOVA), or two‐way ANOVA

where appropriate. Values that were not normally distributed were

tested using Mann–Whitney or Kruskal–Wallis (for three or more

groups) for multiple comparisons. Correlations were tested using

nonparametric Spearman's correlation.

3 | RESULTS

3.1 | LD analysis throughout adipogenesis

Differentiated 3T3‐L1 cells were monitored at 14‐ and 21‐day post

adipogenesis induction to examine their LD‐related morphological

attributes. The macro analysis was based on whole‐culture binary

images that displayed the progression of cellular differentiation

during the experiment. As shown in Figure 2a, the level of

adipogenesis, which summarizes the percentage of the culture filled

with adipocytes, was sixfold higher after 21 days compared to

14 days. We then evaluated the progression in LD accumulation of

the same cultures at the microscale using the novel segmentation

tool that generated analyzable binary images (Figure 2b). The mean

LD area increased more than threefold, from 8.65 μm2 on day 14 to

26.87 μm2 on day 21, with a change in the distribution of the LDs

area (Figure 2c). The results suggest that LDs are monitorable and

detectable through the segmentation analysis, with changes in the

LDs biogenesis accumulation.

3.2 | Segmentation validation

To validate the efficacy of the segmentation as an LD identifier, it

was set up against a thresholding approach. The analysis was

performed on the same cells and LDs, enabling us to compare the

results of the two methods accurately. As shown in Figure 2d, the

segmentation method generated a more accurate image and was able

to detect small LDs; even droplets with an incomplete or blurry

outline are detectable. The detection efficacy of both methods was

then assessed by comparing their LD discovery sensitivity. The

number of detectable LDs in each technique was extracted and

divided by a manual count of the LDs in the respective cell, which

generated a detection ratio for each method. As shown in Figure 2e,

the results suggested that the percentage of LDs per cell was fourfold

higher when using the segmentation method, suggesting that this

approach is more sensitive in detecting LDs.

Interestingly, the quantification of the mean LDs area showed

significant differences between the thresholded and segmented LDs,

with mean areas of 6.8 and 3.5 μm2, respectively. To examine the

discrepancies between the methods, we compared the distribution of

all detected LDs. It was apparent that the segmentation tool found

the same number of large LDs as the thresholding tool and noticeably

more smaller droplets (Figure 2f). From these findings, we concluded

that the new method detects the small droplets more effectively and

thus affecting the mean size and absolute quantity of the droplets

(Figure 2f). Overall, these results suggest that segmentation analysis

provided a more precise quantification of the droplets, with emphasis

on small droplets that were undetectable with thresholding, that is,

the presented method tracking is more defined, which is crucial in

determining the biogenesis of other lipogenic functions more

accurately.

Moreover, we then compared the results generated from our 3D

analysis to the regular 2D analysis. The 3D analysis is based on Z‐

stacked phase‐contrast images and can be used to measure the

volume of LDs, whereas the 2D measures only the area and is based

only on one z location. As shown in Supporting Information:

Figure S1c, the LDs area measured in 2D are highly correlated

(r = 0.96) with the LDs volume with a successful identification rate of

more than 90% LDs in a cell. The center of mass of each droplet was

also measured in every cell. On average, more than 80% of the LDs in

each cell share the same center of mass (Supporting Information:

Figure S1d), suggesting that a single image might effectively analyze

the majority of LDs accurately. We then focused on a group of cells

and evaluated their mean LDs area compared to other morpholog-

ical parameters. The cells were stratified into three groups based

on their average LD distribution pattern, with 35 μm2 < considered

large LDs cells and 10 μm2 > small; all the rest were considered

medium LDs sized cells (Figure 2g). The LDs average size
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correlated with the cell projected area, with large, averaged LD

cells exhibiting higher cell areas. The large LDs group had a lower

number per cell than the other group, demonstrating the

adipogenic propagation heterogeneity (Figure 2h). As shown in

Figure 2i, the number of LDs correlates with the average LD size,

with the large and small groups generating two distinct clusters

based on their number of droplets and the cell's projected area.

This single‐cell analysis demonstrated the relationship between

different morphological parameters and their importance in

understanding the heterogeneity of the cells.

F IGURE 2 Lipid droplet (LD) analysis through segmentation. (a) Representative stitched images of cultured adipocytes and level of
adipogenesis analysis (n = 3) after 14 (gray) and 21 (red) days post adipogenesis induction. (b) Phase‐contrast images and segmentation products of
adipocytes after 14 and 21 days post induction (magnification ×200, scale bar = 100 μm). (c) Single LD area distribution after 14 (gray,
n = 2847) and 21 days (red, n = 4528). (d) Representative thresholding and segmentation products of differentiating adipocytes (magnification ×200,
scale bar= 50 μm). (e) Percentage of detectable LDs in comparison to manual counting (n = 4), by thresholding (blue) and segmentation (green).
(f) Single LD area distribution by thresholding (blue, n = 445) and segmentation (green, n = 1264) tools (g) distribution of adipocytes based on their
average LD area (n = 40), the cells were divided into three groups, small (red, <10 μm2), large (blue, >35 μm2), and medium (green) (h) histograms of
the number of LDs, cell area, and average LD size of the small (red), medium (green), and large (blue) averaged LDs area, significance was calculated
using unpaired nonparametric Kruskal–Wallis test, followed by Dunn's posttest. (i) Scatter plot of the cell area, and the number of LDs of the small
(red), medium (green), and large (blue) groups, the dots' radius corresponds with the average LDs area, together with a distribution plot of the
number of LDs. Unless stated otherwise, significance was calculated using an unpaired nonparametric Mann–Whitney test.

KISLEV ET AL. | 4161



3.3 | LD analysis during neutral lipolysis

Next, we established a lipolysis detection workflow and employed

the segmentation method to generate an imaging analysis, as

presented in Figure 3a,e. Lipolysis was induced using 10 μM of

forskolin, a cAMP inducer known for its lipolytic induction in

adipocytes, for 2 h and images were captured using live imaging.

The images were analyzed at 0, 60, and 120min at a single‐cell

resolution for the LD number and size dynamics. Forskolin lipolysis

induction triggered a significant change in LDs per cell, with 50%

reduction in the mean LDs count after 2 h. In contrast, quantitative

analysis of the average LD area per cell showed no significant

differences over time (Figure 3b).

Separating the data to two distinct LD subpopulations based on

their size (10± μm2) revealed that the number of larger LDs over

10+ μm2 remained unchanged while the lower than 10 μm number

F IGURE 3 Lipid droplet (LD) analysis during lipolysis. (a) The experimental model, and phase contrast images and segmentation products at
0 and 120 min post lipolysis induction (magnification of ×200, scale bar = 100 μm). (b) Number of LDs and LD area per cell after 0 min (gray), 60
and 120min (orange), n = 38, significance was calculated using paired one‐way analysis of variance (ANOVA) with Friedman's posttest.
(c) Stacked bars of amount of 10− μm LDs (green) and 10+ μm2 LDs (gray) through lipolysis and the respective percentage of 10− and 10+ μm2

LDs after 120min (light orange) 60min (orange) and 0min (gray). (d) Paired normalized LD area analysis after 0, 60, and 120min, and normalized
relative (to time 0) LD area analysis after 60 and 120min, normalization was performed to the initial LD number of a cell, n = 38, significance was
calculated using paired one‐way ANOVA with Friedman's posttest and Wilcoxon signed rank test, respectively. (e) Illustration of a single cell and
organelle LDs dynamics during lipolysis. (f) Paired single organelle LD area analysis after 0, 60, and 120min, and relative (to time 0) LD area
analysis after 60 and 120min, n = 63, significance was calculated using paired one‐way ANOVA with Friedman's posttest and Wilcoxon signed
rank test, respectively.
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was cut in half, indicating that the reduction in LDs was solely due to

the shrinkage and depletion of the smaller size of the subpopulation.

To account for the changes in the LDs number, we normalized the

cellular data by the initial LDs count of each cell. The normalized data

revealed significant changes in the average LD area over time, with a

19% and 35% reduction after 1 and 2 h, respectively (Figure 3d). The

segmentation analysis enables us to track the dynamics of individual

LDs and study their tendencies over time and different treatments

(Figure 3e). The results obtained from the single organelle analysis

were in accordance with the normalized results, with significant

shrinkage of individual LDs after 2 h (Figure 3f). The lipolysis results

demonstrated the ability of the trainable segmentation to detect LDs

dynamics accurately and robustly.

3.4 | Stratification of lipolytic adipocytes based on
average cellular LD size

To further evaluate the dynamics of lipolysis in adipocytes, the cells

were divided into three subpopulations based on their average LD

size distribution in the initial time point (Figure 4a). Validation was

made with a principal component analysis of averaged morphological

parameters for each cell, exhibiting the different clusters based on

their average LD size (Figure 4b). The LD depletion rate of the small

LD population was substantially greater (Figure 4c), also demon-

strated by the significant difference between the small LD population

and the other in their relative number of LD (Figure 4d). The

normalized relative LD size analysis showed a reduction in LD size

only in the small LD subpopulation, indicating that this might be the

primary lipolytic adipocyte population in vitro, with the ability to

break down its fatty content rapidly. The data acquired from the

analysis can be used together with different methods to find novel

subpopulations regarding adipocytes and other lipids containing cells.

3.5 | LD analysis during acidic lipolysis

To complete the story focusing on adipocyte metabolism and cellular

triacylglycerol catabolism, we established an acidic lipolysis detection

workflow that tracks the lysosomal activity in the cells and integrates

it with the presented segmentation model. As shown in Figure 5a,

acidic lipolysis was induced by combining 5mM of metformin, an

antidiabetic drug that also triggers autophagy, and nutritional

restriction (NR) to the cells for 8 h. A fluorescently labeled lysosome

tracker (Lysotracker: LysoT) was added to account for the lysosomal

activity in the cytoplasm and, more specifically, around the LDs. The

metformin+ NR (MetF +NR) treatment triggered a significant change

in LysoT intensity compared to untreated cells, with differences in

F IGURE 4 Stratification of lipolytic adipocytes based on average cellular lipid droplet (LD) size. (a) Distribution of lipolytic adipocytes in 0min
based on their average LD area (n = 38), the cells were divided into three groups, small (red, <3.5 μm2), large (blue, >15 μm2), and medium (green),
and the averaged LD area after 60 and 120 min of the three groups. (b) Principal component analysis of all morphological parameters of each cell
for the small (red), medium(green), large (blue) cells. (c) Number of LDs over time in the small (red), medium(green), large (blue) groups, and the
relative number of LD. (d) Normalized relative (to time 0) LD area analysis after 60 and 120min for the small (red), medium(green), large (blue)
groups, normalization was performed to the initial LD number of a cell. Unless stated otherwise, significance was calculated using two‐way
analysis of variance with Sidak's posttest.
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both single cell and single LDs resolutions indicating that the

treatment impacted autophagy and lysosomal activity (Figure 5b,c).

Next, the LDs in the MetF + NR treated cultures were separated into

two groups based on the lysotracker intensity levels (40 ± AU) and

compared to their initial size.

The LD area analysis revealed significant changes in the average

LD area in the LysoThigh compared to both LysoTlow and the control

group, with a 50% reduction (Figure 5d,e). A scattered density plot

also demonstrated a negative correlation (r = −0.26) between the

lysotracker levels in the LD surface and the respective LD's area,

which indicates a possible relationship amid LD size and lysosomal

activity (Figure 5f). To examine the effect of lysosomal activity on

LDs dynamics, the cells were subdivided into two subpopulations

based on their average LD surface lysotracker intensity levels.

Interestingly, the relative number of LDs remained unchanged over

time and between the groups. In contrast, the shrinkage rate of the

lysoThigh cells was substantially higher than the lysoTlow cells, with a

reduction of 30% in LD size compared to 10% (Figure 5g). The higher

shrinkage rate in the LysoThigh cells demonstrates the ability of the

suggested model to effectively induce and track LDs dynamics in

acidic cytosolic lipolysis.

3.6 | In vivo adipocyte quantification

Based on the success of the trainable WEKA segmentation tool in

identifying LDs, we have established a modified version of this

workflow for in vivo whole‐mounts adipose tissues. The tissues used

were unstained and not fixated, thus making it a valuable tool for all

adipose tissue‐related experiments. In the whole mount adipose

tissue, the pictures were divided into LDs content (red) and lining

(green); the product was then processed several times until a

F IGURE 5 Lipid droplet (LD) analysis during acidic lipolysis. (a) Lipophagy induction experimental model and representative overlay phase‐
contrast images of untreated cells (Control) and metformin‐treated, nutrient‐starved cells (MetF+ NR) after 8 h postinduction, stained with green
fluoresce lysotracker dye (magnification ×200, scale bar = 100 μm). (b) Cytoplasmatic lysotracker intensity levels in Control (gray, n = 42) and
MetF + NR (pink, n = 37) treated cells after 8 h, significance was calculated using unpaired nonparametric Mann–Whitney test. (c) LD's linings
lysotracker intensity analysis in Control (gray, n = 770) and Metformin (pink, n = 770), significance was calculated using unpaired nonparametric
Mann–Whitney test. (d) Mean LD area after 0 (gray, n = 571) and 8 h of metformin and nutritional treatment in LysoTlow (pink, n = 394, LysoT
intensity>40 AU) and lysoThigh (green, n = 182, LysoT intensity<40 AU), significance was calculated using unpaired one‐way analysis of variance
with Friedman's posttest. (e) Representative fluorescent images of MetF + NR LysoTlow and lysoThigh cells after 8 h postinduction, stained with
green fluoresce lysotracker dye (magnification × 400, scale bar = 25 μm). (f) A comparison of LD's area and their respective lysotracker intensity
in metformin‐treated cells, the correlation was calculated using Spearman's R correlation coefficient. (g) LD area and LD number analysis after
8 h of metformin + NR relative to 0 h (n = 25), the cells divided to LysoTlow (pink) and lysoThigh (green) cells, significance was calculated using
Wilcoxon signed‐rank test and unpaired nonparametric Mann–Whitney test, respectively.
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satisfactory product was achieved (Figure 6a). The average cell area

was then calculated and is showcased in a histogram and a violin plot

(Figure 6b). This analysis is performed on unstained and unfixed

tissues, making it a valuable and robust tool for calculating adipocyte

size area in vivo that serves as a read‐out of the tissue metabolic

state from the mice.

4 | DISCUSSION

In the study, we described a method for quantifyingLDs size and

other morphological characteristics using a machine learning seg-

mentation tool. We present a novel workflow that allows for rapid,

robust, and accurate detection and quantification of LDs in unstained

images both in vitro and in vivo. This is particularly important as it

enables us to track and monitor the LDs size in all cells at a single cell

level and correlate it with other parameters from the same cultures,

enabling us to unravel the morphological‐based diversification. The

method can accurately identify biogenesis, lipogenic and lipolytic

dynamics over time, and hence, is instrumental in understanding how

LDs respond to different molecular and chemical signals and

conditions.

Image segmentation has shown great potential in processing cell

images, enabling us to distinguish between our ROI from the

background and other objects (Uchida, 2013). Many segmentation‐

based tools were developed to analyze various targets both in vitro

and in vivo. In our analysis, we used the open‐source program ImageJ

and its plugin, named WEKA trainable segmentation. This tool is a

rapid and easy‐to‐use plugin that combines several parameters to

produce a pixel‐based segmentation of images. It was used to analyze

different subcellular components and compartments, including

extracellular ecDNA within a glomerulus, isolating and detecting liver

cells and analyzing the lipid‐droplet bound mitochondria in brown

adipose tissues (Ghobadi et al., 2017; Miller et al., 2021; O'sullivan

et al., 2020; Ramachandran et al., 2019). While trainable WEKA

segmentation was used in various systems and models, to our

knowledge, a LD quantification segmentation workflow has never

been described. This novel method enables us to rapidly detect LDs

in high and even low‐resolution images from unstained cells that are

maintained in the same culture or tissue over time while yielding a

more accurate result than other imaging tools.

Understanding LD dynamics through analysis of morphological

attributes is of great importance as it is associated with LD dynamics

evaluation and several pathological conditions (Zhang et al., 2016).

Therefore, various methods have been developed over the years with

the objective of quantifying LDs (Campos et al., 2018; Dejgaard &

Presley, 2014; Deutsch et al., 2014; Exner et al., 2019). While some

of the tools detect intracellular lipids by using lipogenic dyes that

stain neutral TG and lipids, some have focused on unbiased image‐

processing tools for quantifying LDs in unstained images, and our

group has previously presented several algorithms that detect LD in

phase‐contrast images (Lustig et al., 2019; Shoham et al., 2012). The

significant improvement of measuring LDs using the segmentation

method compared to other live‐image‐based tools is that it is a

trainable process based on an adjustable classifier that can suit

specific images with different accusation parameters. It also

considers multiple parameters as a part of its analysis, which

improves the accuracy and resolution for better identification of

metabolic processes.

The continuous tracking of LDs allows for image‐based analysis

of lipogenesis and LDs catabolism in a single‐cell and droplet

resolution. Several pathways regulate neutral lipolysis in adipocytes.

Hormonal and extracellular activation includes the β‐adrenergic

stimulation that triggers a cAMP‐dependent cascade or the

F IGURE 6 In vivo adipocyte quantification workflow. (a) Input of adipose tissue unstained whole‐mount image segmentation process using
waikato environment for knowledge analysis (WEKA) trainable segmentation tool. Two classes were assigned (red‐cell content, green‐cell
linings. The classifier was trained until a satisfactory product was produced, a probability map was generated and processed using ImageJ's
watershed tool. (b) A histogram and a violin plot of adipocyte cell area in whole‐mount sections (n = 152).
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natriuretic peptide that induces a cGMP activation pathway. These

pathways trigger a set of specific and well‐coordinated enzymes,

named lipases, that perform triglyceride hydrolysis (Duncan

et al., 2007; Yang & Mottillo, 2020). Analysis of neutral lipolysis

can be performed using several different methods. Direct analysis of

lipolytic activity usually measures the concentration of lipolysis

products (glycerol and free fatty acids), or the triglyceride hydrolase

activity. While specific, these methods do not account for the

heterogenicity of LD distribution in individual cells and cannot detect

multiple sub processes during the lipolysis phase (Schweiger

et al., 2014). Live imaging‐based methods allow for single‐cell or

droplet analysis that can detect the formation of micro‐LD, LD

fission, and LD fusion events during lipolysis (Mottillo et al., 2014;

Paar et al., 2012). In our experimental conditions, the lipolytic activity

was not entirely bound to a specific subpopulation as all LDs were

affected, though the smaller LDs had higher lipolytic activity as they

shrank at a significantly faster pace. It can be due to the subcellular

position, altered dynamics, differential mechanisms, or increased

surface/volume ratio that affects the distribution and density of

lipolytic enzymes (Paar et al., 2012; Schott et al., 2019).

In our work, we also established a workflow based on the work

of Lettieri Barbato et al. (2013) that enabled us to follow LDs

dynamics during acidic lipolysis. This process is essential for

maintaining LDs homeostasis; thus, tracking it is highly important in

adipocytes. In contrast to neutral lipolysis, it is challenging to induce

and isolate lipophagic LDs, as the droplets are morphologically

identical. To account for this, we used a lysosome tracker that can

follow the lysosomal activity in the cytoplasm and, more specifically,

on the LDs surface (Luo et al., 2020). By combining it with metformin,

which stimulates lipophagy through the activation of the AMPK

pathway, and nutrient restriction, we managed to induce lysosomal‐

mediated LD catabolism that resulted in a differential shrinkage rate

of LDs (Lettieri Barbato et al., 2013). It would be interesting to

examine the changes in LD under other conditions and time durations

and correlate the obtained data with different markers and labels for

a more targeted single organelle analysis.

Our study supports the previous observations that showed the

heterogenicity of LD diversification in individual cells. It was

previously demonstrated that adipocytes could be divided into

subpopulations based on their morphological appearance and their

differential reaction to various stimuli (Loo et al., 2009). Recent

studies also showed that adipocytes have subpopulations with

distinct transcriptional signatures associated with their function in

vivo and in vitro (Bäckdahl et al., 2021; Lee et al., 2019; Min

et al., 2019). The single‐cell resolution nature of our analysis enables

us to uncover the spatial and numeric heterogeneity of the

adipogenic capacity and other lipogenic functions of cells in the

cultures and their relationship to other morphological characteristics.

In differentiating adipocytes, cells with fewer LDs tend to have a

larger average LD size, presumably through a fusion mechanism that

fuses small LDs to other LD to obtain mature adipocytes eventually

(Lustig et al., 2019). Indeed, in single‐cell analysis, we found a strong

correlation between the number of LDs in a cell and the size of the

mean droplet. In the lipolytic adipocytes, the cells were divided into

groups based on their initial average mean LD area. The small LD

subpopulation had higher depletion and shrinkage rates compared to

the other cells, with a differential lipolytic behavior. The plasticity of

cellular LD storage and function stems from their size, spatial

organization, associated proteins, fatty content, and intra organelles

interactions (Thiam & Beller, 2017). Hence, combining our method

with other image‐based content‐dependent techniques can elucidate

LDs diversification and function.

The segmentation tool proved to be efficient in quantifying

adipocyte size in vivo. Adipocyte size is a key parameter as adipose

tissue dysfunction is characterized by hypertrophic adipocytes. It is

also correlated with other pathophysiological conditions and is a

marker for adiposity as a whole (Stenkula & Erlanson‐

Albertsson, 2018). Many studies have described different methods

for quantitative histomorphometry of adipocytes. Fixed tissues can

be stained with hematoxylin, eosin, or other markers, while the

individual cells can be quantified in digested tissues (Björnheden

et al., 2004; Parlee et al., 2014). We suggested a method for

quantification that does not involve fixation nor digestion or other

interventions that can estimate adipocytes' size using a confocal

microscope. This analysis can be useful in scanning and analyzing

multiple samples rapidly and accurately and correlating them with

additional tools and techniques.

In conclusion, this study reveals a novel approach for quantifying

LDs through supervised machine learning. The presented workflow

portrays the spatial and numerical plasticity of LDs in adipose cells

unbiasedly. We believe that the tool and results presented here can

be implemented in different LD‐related model systems that will shed

light on LD diverse functions and lead to a more profound

comprehension of LDs' nature and function in systemic metabolism.
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