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Digital clinical measures based on data collected by wearable devices have seen rapid growth in both
clinical trials and healthcare. The widely-used measures based on wearables are epoch-based physical
activity counts using accelerometer data. Even though activity counts have been the backbone of
thousands of clinical and epidemiological studies, there are large variations of the algorithms that
compute counts and their associated parameters—many of which have often been kept proprietary
by device providers. This lack of transparency has hindered comparability between studies using
different devices and limited their broader clinical applicability. ActiGraph devices have been the
most-used wearable accelerometer devices for over two decades. Recognizing the importance of
data transparency, interpretability and interoperability to both research and clinical use, we here
describe the detailed counts algorithms of five generations of ActiGraph devices going back to the
first AM7164 model, and publish the current counts algorithm in ActiGraph’s ActiLife and CentrePoint
software as a standalone Python package for research use. We believe that this material will provide
a useful resource for the research community, accelerate digital health science and facilitate clinical
applications of wearable accelerometry.

The rapid advances in computing and micro-electromechanical systems (MEMS) technology have created new
opportunities for monitoring health in people’s free-living environment over extended time periods. In par-
ticular, as wearable devices are capable of quantifying patients’ behaviors continuously with minimal burden,
they can provide more comprehensive, ecological and objective health information than what is possible with
conventional in-clinic and questionnaire-based assessments!'~. For these reasons, the use of wearable devices
for clinical purposes has seen rapid expansion in recent years and is expected to grow further in the upcoming
years®. One of the most used outcomes provided by wearable devices is accelerometry-based physical activity
measures. Physical activity measures have been used in clinical trials and shown superiority in detecting treat-
ment related changes over conventional endpoints®. Progress has also been made in the qualification of digital
endpoints based on counts of physical activity with both US and EU in respiratory and cardiovascular diseases®”.

While the origin of the term “count” is not documented, it likely goes back to the modification and use of
watches for measuring activity, specifically hyperactivity in children where pedometers were too large®-'!. This
was achieved by a winding weight that was free to pivot about its axis and therefore sensitive to acceleration
while being connected to the hands of the watch via gears, causing the minutes and hours hands to tick when the
watch experienced acceleration and thus allowing for reading the accumulated “counts” of movements from the
watch the same way as one would read the time'". As electronics technology evolved, solid-state analog-to-digital
converters became widely available and allowed for enhanced acceleration measurements and storing the activity
data in a digital format inside the watch'?~'%. The first activity watch provided by ActiGraph was model AM7164
(ActiGraph, Pensacola (FL), USA) that used a uniaxial piezoelectrical accelerometer in the form of a mechani-
cal lever'. To remove artifacts unrelated to human movement, subsecond-level measurements of acceleration
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(expressed in g) were passed through an analog band-pass filter before it was sampled at 10 Hz and quantized
by an 8-bit analog-to-digital converter, thus yielding 256 distinct levels of acceleration. Each level beyond 128
is considered to be 1 count. These were then summed within given time intervals, or “epochs”, and the resulting
counts were stored on the device (hence, each epoch could contribute up to 128 x 10 x the duration of the epoch
counts to the total).

The counts unit is thus a measure that quantifies acceleration within a time interval, or “epoch”, with one
epoch typically being 10-60 s long. The reliance on epoch-based counts was a necessity in earlier models, due
to the limitation of on-board storage and battery capacity. While this limitation was overcome with hardware
improvements and ActiGraph has been able to provide multi-day raw data since 2010, digital clinical measures
and validation evidence continue to evolve around counts. Because the algorithms that transform the raw accel-
erometer data into counts vary across devices, many of which have also been held proprietary, digital measures
based on counts are device dependent, making it difficult to compare results across clinical studies and establish
reproducibility and validation evidence'>~"”. The obscurity of the count algorithms has also led to the common
misconception that “counts” is a universal unit of measurement that is the same across devices, where even with
an algorithm such as the one described below, variations in parameters such as the length of each epoch or the
precision of the quantization process can lead to vastly different counts. Therefore, the advances of digital health
science could be greatly facilitated with a higher level of algorithm transparency which would allow it to be used
across multiple devices.

ActiGraph devices (ActiGraph, Pensacola, FL, USA) have been the most-used wearable accelerometry, or
actigraphy, devices for over two decades, with more than 20,000 papers published using ActiGraph devices by
the end of 2021. While the original methods for computing counts in the earlier models have been published!?,
the detailed algorithms and their evolution over the years have not been made public. Several studies have
attempted to reverse engineer the ActiGraph counts algorithms or relate them to the counts algorithms of other
devices'®"!?. While these studies have been critically important to gain further understanding of acceleration
counts and how it relates across devices, they have been limited by the lack of access to the ActiGraph firmware
and software code and device documentation. In this article, we address this gap by presenting an overview of
the counts algorithms of ActiGraph devices along with a detailed description of the counts algorithm in both the
ActiLife software (ActiGraph, Pensacola, FL, USA) and the CentrePoint cloud service (ActiGraph, Pensacola,
FL, USA). An open-source Python package is also made available for use by the research community. By doing
s0, we hope to facilitate reproducibility efforts and enhance transparency in the field of wearable accelerometry
and accelerate its clinical use.

Results

We first present here a flowchart overview of the processing pipelines to derive counts across five generations of
ActiGraph models (Fig. 1). It is important to note that all counts algorithms outlined here produce counts after
band pass filtering the raw signal around frequencies compatible with human activity. The analog band-pass
filter’s maximum gain is at 0.759 Hz, and goes down to — 6 dB at 0.212 Hz at 2.148 Hz. The digital version of this
filter (in devices other than AM7164) replicates the analog version'. The conversion of the raw data into counts
depends therefore not only on the amplitude of the raw data but also on its spectral content. In the CPIW model
(bottom row in Fig. 1), the accelerometer applies an anti-aliasing low-pass filter before the signal is sampled
to respect Nyquist’s theorem®, and both the low-pass — 3 dB cutoff frequency and the sampling frequency are
adjustable; the possible output data rates are 32, 64, 128, and 256 Hz and the associated low-pass cutoff frequen-
cies are 16, 16, 32, and 64 Hz, respectively. The process of converting raw data to counts (highlighted in bold in
Fig. 1) for the newer models wGT3X-BT, GT9X, and CPIW are further elucidated below (Fig. 2).

1. Only for CPIW; resample data to 30 Hz (from 32, 64, 128 or 256 Hz). Otherwise assert that sampling fre-
quency is between 30 and 100 Hz and a multiple of 10 Hz.

2. If sampling frequency is not a multiple of 30, then up-sample by a factor of 3 to make it a multiple of 30 and
low pass filter. This is achieved by the following steps:

v = array of size (3 x length of raw signal) filled with 0

w=v
V3% = raw signal; Vi € [0, ...,size(raw signal)]
3 + 3 + 2X3—m Vi
w; = Vi Vi w;_1Vi.
Tras3x2 T w+3x2 T ag2x3 !

3. Down-sample to 30 Hz. Since the signal is a multiple of 30 Hz, the down-sampling is straightforward by
keeping every mth sample, where m is the up-sampled frequency divided by 30;

__ up-sampled frequency
B 30

Xi = Wmxi Vi.

4. Band-pass filter the down-sampled signal. This is done by firstly defining the filter (a 7th order IIR filter),
which can be described by the rational transfer function in the z-transform domain as:
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Figure 1. Conceptual schematic of the computational pipeline for generating counts for five generations of
ActiGraph accelerometer models (rows). Raw data measures acceleration in free fall acceleration (g) units.
Functions performed by the microprocessor, the accelerometer and in the CentrePoint cloud are highlighted in
yellow, gray and orange, respectively. The analog band-pass filters in AM7146 are implemented using a series of
cascaded op amp circuits, the half magnitude points for the lower and upper cutoff frequencies are 0.21 and 2.28
Hz, respectively'*. For the analog low-pass filters the — 3 dB cutoff frequency is shown in parenthesis for each
block. A/D is the analog-to-digital converter (white blocks), shown together with the bit size of the quantizer.
The counts data blocks are highlighted in boldface.

21‘7:0 biz_i
21‘7:0 aiz

whereag = 1,a7 = —3.63,a, = 5.04,a3 = — 3.10,a4 = 0.506,a5 = 0.324,a6 = — 0.157,a7 = 0.0195, and
by = —0.00934, b; = —0.0255, b = — 0.00424, b3 = 0.0442, by = 0.0365, bs = — 0.0119, bg = — 0.0229,
b; = —0.00679"*. These coeflicients have been rounded to 3 significands—please refer to the public code
for the exact numbers. The initial condition that generates a steady state to a step response of this filter is
then found, and the down-sampled signal x; is filtered using this initial state and the filter described above,
resulting in the filtered signal x;.

X@) = X(2),

—i

5. Rescale the filtered signal by a factor a (a = % X 237.5 & 17.127404), in order to replicate the range
of the AM7164.
Xi = ax;
6. Rectify the rescaled signal:
X = [xil.
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Figure 2. Flowchart showing the process of converting raw data into counts.

7. Threshold the rectified signal so that all entries greater than 128 is set to 128 and all entries smaller than 4
are set to 0:

floor(x;) (4 < Xx; <128) .

{ 128 (x; > 128)
—

X =

0 (J_C,' < 4).

8. Further down-sample the signal and low-pass filter to 10 Hz by a non-overlapping moving average:

v it Xin+Xin
Xj = 4 floor( .
3 i=0,3,6,...
9. Finally, find the counts by summing the down-sampled signal within the predefined epoch length 1 (s) for
each axis:
(i+1)-101
counts; = Z ;.
j=i-10-1

Figure 3 presents an example waveform along with the result of each processing step. The python code was
validated to the ActiLife software and CentrePoint service using synthetic raw data as described in the methods
section. Validation was performed on four cases with 1000 simulations each: corresponding to combinations of
raw data at 40 or 30 Hz sampling rate and epoch of 10 or 30 sec duration. We did not find any differences between
the values returned by any of the three implementations.

Discussion

Remote clinical assessments based on wearable devices have the potential to transform clinical development and
care®. This potential requires robust validation evidence and can be facilitated with a greater level of algorithm
transparency. Here we provided an overview of the counts algorithms of five generations of ActiGraph devices
(Fig. 1), released a Python package that replicates the counts algorithm in ActiGraph’s ActiLife software under
an open source license, validated the Python code to the output from ActiLife (Fig. 4) and detailed the numerical
steps of arriving at counts in pseudocode (Fig. 2). We believe that this material will be an important and useful
resource for the research community.
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Figure 3. Example waveform and the resulting waveforms after each processing step. (A) The original
waveform, at 40 Hz sampling rate. (B) The waveform down-sampled to 30 Hz. (C) The waveform after band-
pass filtering. (D) The waveform scaled and rectified. (E) The waveform down-sampled to 10 Hz.
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Figure 4. Comparison of counts generated by our python code and those generated by CenterPoint. Each
plot corresponds to a combination of data sampling rate and epoch length. From top to bottom, epoch length
goes from 10 to 60 s. From left to right, sampling frequency goes from 30 to 100 Hz. In all cases, the counts are
identical between the two implementations.
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Several kinds of counts algorithms have been used in the literature: Time above threshold, zero-crossing and
digital integration'®>. While the time above threshold and zero-crossing techniques have mostly been used in
older devices, all ActiGraph models have used the digital integration technique, which is thought to be superior
to the other counts techniques'? in terms of component size, power consumption, and accuracy in presence of
noise. The processing steps of this technique differed between devices, as successive generations of ActiGraph
devices made use of the latest advances in hardware and software technology. The computation processes have
gradually evolved to being done in the CentrePoint cloud, and less so in the device microprocessor. Care has been
taken in order to maintain comparability between counts extracted from different devices, so that the activity
counts computed from the same acceleration input would stay consistent across generations of hardware and
software platforms*'~?* although, due to the vastly different technologies involved, differences have been found
notably in minutes of vigorous activity per day?%. This attention to data compatibility due to platform upgrades
in clinical investigation has also been noted in the recent FDA draft guidelines on digital health technologies®.

Brind et al.’® tried to reverse engineer the ActiLife counts algorithm by reproducing the counts output from
raw data input. The ActiGraph digital band-pass filter was approximated using Matlab’s invfreqz function. The
reverse engineered counts algorithm was then applied to raw data from a different activity monitor; Axivity AX3
(Axivity, Newcastle UK). Fig. 1 in their paper'® outlines the steps in the derived counts algorithm which corre-
sponds rather well with Fig. 2 in the present paper which details the ActiLife counts algorithm, although many
of the computational steps happen in a different order. The ActiLife digital band-pass filter that was approxi-
mated in that paper'® is different from the one implemented in ActiLife; the ActiLife band-pass filter is a 7th
order IIR filter while the one estimated in their study is a 20-order filter. They found generally high concordance
between this output and the output from ActiLife applied to raw data from the GT3X+ monitor (not statistically
significant from zero for mechanical validation experiment and a 2.2% mean difference from free-living condi-
tions). However the 95% limits of agreement for the Brind counts vs the ActiLife counts ranged from [- 49, 41]
counts/10s, to [— 156, 140] counts/10s across participants. The errors found between their approximation and the
“true” counts also increased as the intensity of activity increased. Furthermore, there was a significant difference
between their intensity classification and the one based on ActiGraph counts. In any case, even if we assume the
Brind counts are comparable enough to the ActiLife counts to be used in studies with different monitors, those
counts have not been widely applied in other studies and their clinical implications have not been investigated.

With the many versions of activity counts and additional open source activity metrics, such as Euclidean
Norm Minus One (ENMO), Activity Index (AI)**%, it is important to apply the cut points developed for the
right type of activity counts. On the other hand, since there is generally high correlation between these activity
metrics, it is feasible to compare the findings using different metrics with relatively simple conversion factors.
In an experiment under free-living condition, Paul et al.'® showed that there was a significant difference in the
counts output between the ActiGraph AM7164 monitor and the ones of Actical (MM; Mini-Mitter Co.) and it
can be reduced significantly by the conversion equations they developed. Straker and Campbell'” also presented a
linear conversion equation relating the vertical component of the ActiGraph GT3X model with the Actical counts.

To further facilitate the use and comparability of ActiGraph counts, we here also publish the codes in an open
source Python package. The code validation showed perfect correspondence between ActiLife, CenterPoint, and
the published Python code (see Fig. 4). Although we expect and indeed observe small differences between the
intermediary results of different implementations due to the nature of working with floating point numbers,
these differences had no effect on the final results of these algorithms.

Quantifying acceleration in ‘counts’ started due to technical limitations in the earliest wearable devices but
has demonstrated its value for clinical research and is still omnipresent in the field of wearable accelerometry.
Counts is not a universal unit, and the relationship between raw acceleration data and counts is complicated and
varies between device models. Therefore, detailed understanding of the computation from raw accelerometer
data to counts is necessary for interpreting clinical outcomes across studies and advancing the clinical application
of wearable technology. In addition, proper demonstration and documentation of signal processing steps are
necessary in obtaining regulatory agreement in the use of digital health technologies tools in clinical trials and/
or medical devices. We hope that by publishing and detailing the counts algorithms of ActiGraph devices in this
study, we could help accelerate digital health science and facilitate clinical applications of wearable accelerometry.

Methods

Internal documentation of ActiGraph devices was reviewed to catalog the different processing steps to convert
from raw data to counts. The code for converting raw data into counts in the ActiLife software was inspected
along with the firmware documentation for ActiGraph models wGT3X-BT, GT9X, and CentrePoint Insight
Watch (CPIW). The ActiLife counts algorithm was translated into a standalone Python package which converts
raw data into counts at user-defined sampling frequencies and epoch lengths. The Python code was then con-
verted into pseudocode, i.e. human-understandable basic instructions that can easily be translated back into any
programming language. The code and pseudocode thus apply to wGT3X-BT, GT9X, and CPIW, although CPTW
requires a down-sampling step before the computational pipeline described in the pseudocode can be applied,
since the sampling rate is different in CPIW compared to the wGT3X-BT and GT9X models.

The Python code (Python 3.7.6) was validated to the counts algorithm in ActiLife (version 6.13.4) and in
CentrePoint (version 3.29.0) by comparing counts output from the Python code with that of the ActiLife software
and CentrePoint using the same raw input data, sampling frequency and epoch length. The raw input data were
simulated Gaussian white noise and therefore consisted of a broad range of frequencies. The code was tested for
all admissible sampling frequencies of these models (30, 40,..., 100 Hz) and varying epoch durations.
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Data availability

The count algorithm and the code to reproduce and plot the validation data presented in Fig. 4 are publicly
available at https://github.com/actigraph/agcounts. The code is also available as a python package. The parser
for GT3x files is available at https://github.com/actigraph/pygt3x.
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