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Regulatory T-cells (Treg cells), expressing the transcription factor Foxp3, have an essential

role in the control of immune homeostasis. In order to control diverse types of immune

responses Treg cells must themselves show functional heterogeneity to control different

types of immune responses. Recent advances have made it clear that Treg cells are able

tomirror the homing capabilities of known T-helper subtypes such as Th1, Th2, Th17, and

T-follicular helper cells (Tfh), allowing them to travel to the sites of inflammation and deliver

suppression in situ. One of the more recent discoveries in this category is the description

of T-follicular regulatory (Tfr) cells, a specialized subset of Treg cells that control Tfh

and resulting antibody responses. In this review we will discuss recent advances in our

understanding of Tfr biology and the role of both Tfr and activated extra-follicular Tregs

(eTreg) in the control of humoral immunity.

Keywords: regulatory T-cells (Tregs), T follicular helper (Tfh) cell, T follicular regulatory (Tfr) cell, germinal center

(GC), autoimmunity

THE HUMORAL IMMUNE RESPONSE

Antibody driven humoral immunity is essential for host protection from a range of pathogens.
This can be broadly separated into the T-independent response, in which B-cell subsets such as
B1 cells and marginal zone B cells produce low-affinity antibodies that allow a rapid response to
infection, and the T-dependent response in which T-cell help allows the generation of high-affinity
antibody and memory immunity over a longer period. Of key importance to T-dependent antibody
responses is the germinal center, a structure formed by follicular B-cells and dependent on T-cell
help. The germinal center itself is segregated into a dark zone, where centroblast B-cells undergo
rapid proliferation and somatic hypermutation (SHM), and the light zone, where higher affinity
B-cells are selectively helped by T-cells, allowing them to survive and either be selected as memory
or plasma cells, or be recycled back to the dark zone for further rounds of SMH (1). CD4+

T-follicular helper (Tfh) cells play a critical role in this process as they are responsible for the
majority of T-cell help given to follicular and germinal center B-cells, via delivery of CD40 and
IL-21 stimulation to B-cells (2). Tfh form through a multistage differentiation process initiated
by contact between dendritic cells (DCs) and pre-Tfh CD4+T-cells. This alone is insufficient to
stabilize the full Tfh program, and a second step of prolonged contact between antigen-specific
B-cells and the pre-Tfh cell is then required to allow progression to the mature Tfh phenotype.
Following this, the Tfh cell can then further differentiate into a highly-activated and germinal
center-resident GC-Tfh cell distinguished by high-level expression of CXCR5 and PD-1, in contrast
to intermediate levels of both markers expressed by Tfh (2). The chemokine receptor CXCR5 allows
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trafficking of the Tfh cell into the B-cell follicle as its ligand
CXCL13 is produced by follicular resident dendritic cells and,
in humans, by Tfh themselves, allowing further recruitment of
new Tfh. Due to their critical role in the generation of high-
affinity antibody responses, Tfh cells are vital for the generation
of effective humoral immunity. However, dysregulation and
unchecked activation of Tfh cells or germinal centers in both
humans and mice lead to the production of autoantibodies
and lupus-like symptoms, demonstrating the need to tightly
regulate the function of these cells (3–5). Additionally, due
to their highly mutational nature, germinal centers themselves
are a common source of tumorigenesis, meaning that even
foreign antigen-reactive germinal center cells require tight
regulation (6).

TREGS AND TFR CELLS

Regulatory T-cells (Tregs) expressing the transcription factor
Foxp3 are critical for the maintenance of immune homeostasis
(7). Signs of a link between certain T-cell populations and
the control of humoral immunity have been present since the
foundational work that first hinted at the presence of a T-cell
population that regulated immunity, demonstrated through the
inhibition of anti-sheep red blood cell antibody responses by
thymically-derived populations (8). Later, in work leading up
to the formal discovery of Tregs, we found that autoantibodies
were one of the most sensitive indicators of T-cell autoimmunity
(9). When we identified Tregs on the basis of their CD25
expression we found that anti-CD25 depletion of Tregs lead to
strong induction of autoantibodies against parietal cells in the
stomach epithelia, and against thyroglobulin proteins produced
by thyroid follicular cells (10). While CD25 is not entirely
exclusive to Tregs, specific depletion of Tregs via diphtheria toxin
in mouse models in which Tregs express the primate diphtheria
toxin receptor leads to strongly-enhanced GC formation, Tfh
cell expansion and antibody responses (11, 12). Loss of control
over humoral immunity is also characteristic of mutations of
Foxp3 in the scurfy mouse strain and in immune dysregulation,
polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome
patients, and leads to the production of autoantibodies, hyper IgE
and strongly-enhanced GC/Tfh responses (12–18)

Tregs themselves comprise a number of subpopulations,
with some functionally-specialized groups mirroring the
transcriptional programming of effector T-cell subsets, allowing
them to gain expression of the chemokine receptors responsible
for localization to the sites of inflammation in order to suppress
the mirrored effector population (19). Early work suggested that,
following activation, CD4+CD25+CD69− Tregs are capable of
gaining CXCR5 expression while losing CCR7, a chemokine
receptor that homes to the T-cell zone, allowing them to travel to
the B-cell follicle to suppress B-cell responses (20, 21). However
it was not until 2011 that three groups described Tfr in detail and
defined them as CXCR5+PD-1+BCL6+Foxp3+ cells (15, 22, 23).
While Tfr differentiation is not as well characterized as Tfh,
evidence thus far suggests that they have a similar developmental
path, with both undergoing a multistage differentiation process

dependent on signals such as CD28, ICOS, SAP and B-cell
contact and the Tfh transcription factor BCL6 (15, 22).

Tfr present in the lymphoid organs are an induced subset
of effector Tregs. As a result, in a healthy mouse kept in
pathogen-free conditions, Tfr are present only in very small
numbers in the spleen and lymph nodes, although they can
be found in significant numbers in sites of ongoing humoral
immune responses, such as the Peyer’s patches. In significant
contrast to Tregs, Tfr downregulate the IL-2 receptor alpha
chain, CD25 (24–26). Downregulation of CD25 appears to
be a marker of Tfr development, with CD25+ Tfr forming
initially, before later formation of more highly-differentiated
CD25− Tfr. Microscopic analysis of Tfr in the spleens and
draining lymph nodes of vaccinated mice reveals that, while the
majority of Tfr resident in the follicle and near the T-B border
express CD25, almost all germinal center-resident Tfr lack CD25
expression (26). Accordingly, detailed analysis of chemokine
receptor and cell adhesion molecules demonstrates that, in
keeping with their germinal center localization, CD25− Tfr
express significantly increased levels of CXCR5, while reducing
expression of molecules, such as CCR7 and PSGL-1, responsible
for maintenance of localization in the T-cell zones. Further
detailed characterization by flow cytometry and RNA-sequencing
shows that while CD25+ Tfr are more similar to effector Tregs,
CD25− Tfr have shifted their gene expression signature to a
point equidistant between Tfh and effector Tregs, displaying a
high level of flexibility in their phenotype. Despite this, they
retain stable expression of Foxp3, maintain a characteristic Treg
epigenetic signature, and express key Treg suppressive molecules
such as CTLA-4, allowing them to suppress both T-cells and
B-cells during in vitro co-culture (26). Due to their relative
similarity to Tfh, it is reasonable to ask if Tfr are formed from
thymically-derived Tregs or peripheral Tregs, potentially due
to Tfh conversion into Tfr. However, following adoptive cell
transfer, both CD25+ Tfr and CD25− Tfr are formed from
naïve CD25+Foxp3+Tregs, and in agreement with earlier studies
showed little evidence that they can form from transferred
CD25− Foxp3− T-cells (15, 22–24, 26).

While CD25+ Tfr in the mouse appear to be at an earlier
stage in their differentiation, they are still identifiably Tfr due
to their expression of a range of markers at intermediate levels
such as CXCR5, PD-1, and BCL6, and localization in the B-cell
follicle. As a result of this, we propose amodel, in which following
initial stimulation, a naïve Tregs bifurcate into eTregs or CD25+

Tfr in the follicle, before receiving further activation which
allows them to become terminally-differentiated germinal center-
resident CD25−Tfr. This suggests that in the mouse, CD25+ Tfr
and CD25− Tfr may be the Treg equivalents of Tfh and GC-Tfh,
respectively (Figure 1).

A critical question raised by these findings is—why do
terminally differentiated Tfr lose CD25 expression? CD25 was the
molecule by which Tregs cells were first clearly identified, and is
considered both a canonical marker and a critical component for
normal Treg function (27). In contrast, IL-2 is known to inhibit
Tfh responses, due to STAT5-induced upregulation of BLIMP-1,
which inhibits expression of the critical Tfh transcription factor
BCL6 (28–30). A further factor to consider is that BLIMP-1 is
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FIGURE 1 | Tfr and Tfh differentiation. Upon activation naïve CD25+ Tregs differentiate into activated effector Tregs in the T-cell zone or non-lymphoid tissues or early

follicular resident CD25+Tfr. These CD25+Tfr can them downregulate CD25 expression causing the loss of BLIMP-1 expression and higher level BCL6 and CXCR5

expression, allowing these CD25− Tfr to travel to the germinal center itself. All cell depicted are CD3+CD4+. Corresponding development of Tfh is also shown for

contrast.

expressed by many effector Tregs and plays an important role in
their suppressive function by regulating expression of a range of
genes such as IL-10 (31, 32). Since Tfr are also a form of effector
Treg, this suggests they must maintain a fine balance of these
potentially conflicting factors to maintain their phenotype. We
and several other groups have demonstrated that addition of IL-2
alongside vaccination or infection in mice inhibits the formation
of CD25− Tfr cells while at the same time causing expansion of
Tregs (24–26). This is due to a BLIMP-1-dependent mechanism,
in which IL-2 causes increased expression of BLIMP-1, which
represses expression of BCL6, thus inhibiting Tfr formation (24).
As a result CD25− Tfr express only low levels of BLIMP-1 but
high BCL6, while CD25+Tfr express higher BLIMP-1 but have
only intermediate levels of BCL6 (24, 26). This changing role for
IL-2 marks a fundamental split in Treg identity, with the majority
of tissue-resident effector Tregs having a BLIMP-1- and IL-2-
dependent identity, while fully-differentiated CD25− Tfr depend
on BCL6 and are thus inhibited by IL-2. CD25− Tfr can instead
bemaintained by the presence of other cytokines and signals such
as IL-4, which is highly produced by Tfh (2, 26). It is also the
case that CD25−CXCR5−BCL6−Foxp3+ Tregs at tissue sites of

inflammation can be maintained in an IL-2 independent manner
(33).

While it is clear that a large proportion of Tfr downregulate
CD25 in mice, recent results examining human Tfr suggest that
downregulation of CD25 may be less characteristic of human
Tfr. Sayin et al. demonstrate via microscopy that the majority
of Tfr detectable in the follicles of human mesenteric lymph
nodes express CD25, and that the cells are highly concentrated
at the T-B border but not the GC itself (34). Interestingly, while
microscopy suggested that essentially all the Tfr in the B-cell
follicle and GC itself were CD25+, flow cytometry analysis in the
same report demonstrates that PD-1hi Tfr express significantly
less CD25 than PD-1int or negative Tfr (CD25 MFI 616 ± 96
vs. 1101 ± 121.4, p = 0.0074 unpaired t-test), and also display a
bimodal expression of CD25 with a significant fraction appearing
to be CD25lo/− (34). This is in keeping with two previous
reports that suggested that the most highly-differentiated PD-
1hiCXCR5hiBCL6+ Tfr in human tonsils also downregulate
CD25 (25, 26). Importantly, however, while PD-1hi Tfr do appear
to be enriched in the GC itself, they are extremely rare, with only
around 3% of Tregs in the mLN matching this description (34).
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Similarly we found around 5% in the tonsils (26). As a result
the ratio of Tfh/Tfr is skewed heavily to Tfh in the GC region,
which may indicate that Tfr outside the GC itself are most critical
in humans (34) and may also explain why human lymph node
resident-Tfr are resistant to rituximab induced depletion of GC
B-cells (35). In contrast, the mouse appears to have a greater
number of Tfr in the GC itself, and a correspondingly larger
fraction of CD25− Tfr.

IL-21, a characteristic Tfh cytokine, may play a role
in the maintenance and differentiation of Tfr. IL-21 has
been demonstrated to indirectly affect Tregs homeostasis by
suppressing IL-2 production by Tconv cells (36). However,
more recently, cell-intrinsic roles for IL-21 on the formation
of Tfr have been described (37, 38). Autoimmune-prone BXD2
mice lacking IL-21 production have their Tfh/Tfr ratio skewed
toward Tfh. This appears to be due to both direct effects on
Tfh STAT3 signaling, and possibly indirectly via Akt signaling
in Tfr (37). Jandl and colleagues found that Tregs lacking IL-
21R have an increased proportion of Tfr among total Tregs.
Further, the proportion of Tfr that express CD25 was increased
by a reduction in IL-21, which would otherwise induce BCL6-
mediated downregulation of CD25 expression. When IL-21R-
deficient or WT Tregs were transferred into Treg-depleted mice,
followed by vaccination, loss of IL-21R expression by Tregs was
associated with reduced antigen-specific antibody production.
Interestingly, this loss of antigen-specific antibody was marked
by a reduction in the percentage of antigen-specific B-cells
within the GC but no change in the total number of GC-B-
cells. While it was not examined in this case, this would imply
that there was a proportional gain in non-antigen-specific or
autoreactive B-cells in the same system (38). As a result it seems
that IL-21 can prevent BCL6-driven downregulation of CD25,
and thus enhance IL-2-driven Tfr proliferation. However, as
noted earlier, IL-2 itself inhibits Tfr differentiation via BLIMP-
1-dependent inhibition of BCL6 (24–26). These results may seem
contradictory, however a key point here is to indicate the split
between CD25+ and CD25− Tfr.We found that supplementation
with IL-2 results in an almost total loss of CD25− Tfr but
CD25+ Tfr are retained. Equally, CD25+ Tfr are preferentially
expanded in IL-21R-deficient Tregs. This suggests that IL-21 and
IL-2 may control the balance between CD25+ and CD25− Tfr,
since IL-2 enhances the proliferation of naïve and eTregs (which
are the precursors of Tfr) and CD25+ Tfr in the follicle, while
blocking full differentiation into germinal center-resident CD25−

Tfr. On the other hand, IL-21 may encourage CD25+ Tfr to fully
differentiate into CD25− Tfr via its effects on BCL6-mediated
downregulation of CD25, but this comes at the price of reduced
IL-2-dependent proliferation by CD25+Tfr.

THE IN VIVO ROLE OF TFR AND
CONTRIBUTION OF TREGS TO HUMORAL
IMMUNITY

Studies into the exact in vivo role of Tfr have yielded conflicting
results. Several initial studies used adoptive transfer systems to
study the function of Tfr. Here, they transferred CXCR5- or

BCL6-deficient Tregs into T-cell-deficient mice, alongside WT
CD4+Foxp3− cells, before vaccinating them. Loss of Tfr function
in this system caused an increase in the number of germinal
center B-cells while also increasing the amount of antigen-
specific antibody, albeit with reduced affinity (15, 23). Another
study used bone marrow chimeras of SAP-deficient and Foxp3-
deficient bone marrow. These mice lack Tfr, since the Foxp3-
sufficient cells lack SAP, which is critical for Tfr development. In
this system, GC and Tfh numbers were increased but antigen-
specific antibody production was reduced, presumably due
to increased expansion of self-reactive Tfh (22). Treg-specific
inhibition of TRAF3-dependent ICOS expression and a resulting
defect in Tfr formation caused an increase in the number of GC
B-cells, with no change in Tfh cell number but rather increased
cytokine production by these cells which in turn also resulted
in increased SHM (39). Reduced Tfr infiltration into the follicles
due to loss of NFAT2-dependent CXCR5 expression also resulted
in increased GC cell numbers and antigen-specific antibody
production (40). The transcription factor Helios is also expressed
by the majority of Tregs and Tfr. Mice with a Treg-specific loss of
Helios expression develop autoimmunity characterized primarily
by enhanced autoantibodies, GC size and Tfh cell number. This
appears to be primarily due to loss of Tfr cell function, although
some other abnormalities, such as an unstable phenotype and
gain of pro-inflammatory cytokine production by Tregs, suggests
that this phenotype may also be partly attributable to a wider loss
of Treg function (41).Further to this, recent work demonstrates
an essential role for mTOR complex 1 (mTORC1) signaling that
induces STAT3-TCF1-driven induction of BCL6 expression (42).
As a result, when essential components of the mTORC1 pathway
were genetically depleted, Tfr development and function were
impaired, leading to enhanced numbers of GC B-cells and Tfh
following vaccination.

Altogether, these results suggest that Tfr control GC cell
number and Tfh function but have varied effects on the quality
and antigen specificity of the response. Conditional knockout
of BCL6 in Tregs via the cre-lox (BCL6-flox: Foxp3-cre) system
promises the ability to analyse Tfr function in more detail than is
possible with cell transfer or bone marrow chimera approaches,
and without some of the caveats that come with loss of function
in genes that may also affect broader Treg functionality. Using
this system, the Dent group found that Tfr were, as expected,
significantly reduced, but this had no effect on either GC B-
cell or Tfh cell numbers. However, Tfh production of IFN-γ,
IL-10, and IL-21 were increased, resulting in increased IgA
production but a reduction of IgG in the context of vaccination
with sheep red blood cells or NP-KLH. In contrast, in pristine
induced lupus models, dsDNA autoantibody specific IgA was
increased in the absence of a clear effect on IgG. However,
when using the same mouse model with a DNA prime-protein
boost vaccination, the IgG titer was not affected but antibody
avidity was reduced, suggesting a role for Tfr in the control of
the quality of the antibody reaction (43). In contrast, another
group demonstrated that Tfr are critical to IgA selection in the
gut and that their presence increases the production of IgA-
positive plasma cells in the lamina propria. This in turn has a
critical role in the regulation of the microbiota via IgA (44).
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Further work in an influenza virus infection system demonstrates
that, in this situation, Treg-specific BCL6 deficiency induced no
change in GC and Tfh cell numbers, but caused a clear increase
in the number of antibody-secreting plasma cells. However, this
also coincided with a reduction in the proportion of antigen-
specific cells, while increased autoantibody production was also
observed when the infected mice were treated with IL-2 in
order to suppress Tfr function (24). These findings were recently
built on, with another group using BCL6-flox Foxp3-cre mice
to demonstrate that—again—loss of Tfr had no clear effect on
GC or Tfh cell number in influenza infection, but that influenza
specific IgG2c antibody production was slightly, but significantly,
increased (45). While these mice were healthy at a young age,
by 30 weeks they had developed immune infiltration of several
organs such as the lung, pancreas, and salivary gland, while also
developing autoantibodies. In contrast to influenza infection,
increased numbers of GC and Tfh were seen, suggesting that Tfr
may control self-reactive GCs to a larger extent than non-self-
reactive responses (45).

While it is clear that Tfr play an important role in the control
of antibody production, whether they primarily control GC B-
cell numbers or have a subtler role in the control of the quality
and specificity of the antibody response remains less clear. Recent
studies using conditional genetic deletion of BCL6 in Tregs do
not suggest a role for Tfr in the control of overall GC numbers
during the response to foreign antigens, but instead see a more
subtle role in modulating antibody production via plasma cells.
In contrast, in the context of a primarily self-antigen-driven
response, Tfr may play a more active role directly controlling GC
B-cell and Tfh cell numbers. This may be because Tfr have a more
self-skewed TCR repertoire, respond better to vaccination with
self-antigens rather than foreign antigens, and do not appear to
require recognition of the same antigen as a particular Tfh cell in
order to suppress it (25, 46, 47).We also previously demonstrated
that while short-term depletion of Tregs/Tfr is effective at
enhancing antigen-specific Tfh formation following vaccination
with a foreign antigen, longer-term depletion of Tregs further
increased the total number of Tfh but also reduced the absolute
number of antigen-specific Tfh (12). This indicates that while
partial or temporary disruption of Treg/Tfr function leads to
increased availability of co-stimulatory molecules, and a resulting
increase in the antigen-specific immune response, prolonged
or total disruption of Treg/Tfr function may lead to a more
profound loss of immune homeostasis resulting in aggressive
expansion of autoreactive cells, which outcompete antigen-
specific cells and cause skewing to self-reactive responses. As a
result it is possible that a more or less complete loss of function
in Tfr may have differing effects.

The relatively subtle effects of specific Tfr depletion stand in
considerable contrast to the large effects seen when Tregs as
a whole are depleted (11, 12). Equally, while the most highly-
differentiated Tfr lack CD25 expression, anti-CD25 antibody is
capable of inducing substantial autoantibody production (10).
Given that it takes several days for Tfr to form following initial
stimulation it is reasonable to surmise that Tregs outside the
follicle are responsible for the control of the initiation stages
of Tfh formation, while Tfr may be more critical a later in the

process. We suggest a model in which CXCR5− Tregs, CD25+

Tfr present in the follicle and T-B border, and CD25− Tfr present
in the GC have distinct roles at different points following initial
stimulation of a GC reaction, essentially forming three rings of
protection for the prevention of autoreactive GCs (Figure 2).
Specifically, CXCR5− Tregs may control the initial formation of
Tfh via suppression of the contact between DCs and n naïve T-
cells, CD25+Tfr in the follicle may interfere with contact and
signaling between Tfh and B-cells at the T-B border or during
transit through the follicle, while CD25− Tfr resident in the
GC itself may interfere with the interactions between GC-Tfh
and centrocytes. This division is likely to be temporal as well
as spatial, with the key events in the extra-follicular region
occurring earlier than events in the GC. Even in the context of
an established GC reaction, the outer rings of defense may still be
critical to prevent new autoreactive cells infiltrating an existing
GC as given sufficient antigen naïve B-cells and newly formed
Tfh are capable of entering pre-existing GCs even at relatively
late stages of their life cycle (48, 49). The lines between these
rings of defense are likely to be blurred for several reasons: Tregs,
CD25+ Tfr and CD25− Tfr are developmentally related and a
single cell could potentially perform in all three areas over the
course of its differentiation, also, almost all Tfr in the GC lack
CD25 expression the follicle contains a mixture of CD25+ and
CD25−Tfr which may represent GC Tfr cells traveling back to
the follicle in a manner similar to Tfh (48). With these caveats
in mind, we believe this model may capture the essence of the
division of labor between these Treg subsets. While loss of CD25
appears to be a good marker of Tfr differentiation in mice, in
humans CD25− Tfr located in the GC seem to be rare, so it may
be the case that human Tfr are weighted to a greater role for
CD25+ Tfr in the B-cell follicle and T-B border (34). As a result
this model may be a good fit for the murine system while further
detailed experiments are required to better understand human
Tfr biology.

MECHANISMS OF TFR FUNCTION

A number of suppressive mechanisms have been proposed to
have a role in Tfr function. CTLA-4 is known to be critical to
Treg suppressive function to the extent that its specific deletion
in Tregs leads to severe autoimmunity similar to that seen in
Foxp3-deficient scurfy mice (50). We and others previously
demonstrated that loss of CTLA-4 function in Tregs had a severe
impact on the suppression of Tfh responses (12, 51, 52). CTLA-
4 primarily acts to deplete the CD28 ligands CD80 and CD86
from the surface of antigen-presenting cells, preventing them
from providing co-stimulation to T-cells (53). It is likely that this
mechanism is of primary significance in controlling the initial
stages of Tfh cell formation at the T-B border, since blockade
of CD80 and CD86 has little effect on already preformed Tfh
cells, while mice lacking CD80 and CD86 on B-cells but not
DCs were still able to form Tfh and GCs, suggesting that the
core function cell extrinsic function of CTLA-4 may be at the
early stage of GC formation during contact with DCs (54, 55).
However, several groups have also found that expression of CD80
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FIGURE 2 | Role of different Treg subsets in control of the GC response. Model of potential differing roles for Tfr and Tregs in the control of humoral immunity. Tregs

control the initial interaction of naïve T-cells with DCs, CD25+ Tfr control interactions at the T-B border and travel through the follicle, while CD25− Tfr are responsible

for direct suppression in the GC itself.

and CD86 by B-cells alone are sufficient to induce germinal
center reactions in mice otherwise lacking CD80 and CD86
(12, 56). In both cases, a cell-intrinsic role for B-cell CD80
and/or CD86 was described, since when transferred together
CD80/86 sufficient B-cells were better able to forms GC B-
cells than CD80/86 deficient B-cells (12, 56). Further to this,
a B-cell-intrinsic role for CD80 in controlling Tfh and plasma
cell formation was also observed (57). Together these results
would suggest that in specific circumstances, CD80 and CD86
expression on either DCs or B-cells may be dispensable but that
it is likely that optimal Tfh responses require both. Aside from
its ligand-depleting function, CTLA-4 has also been suggested
to mediate direct suppression of B-cell antibody production
by putative Tfr (CD25+CD69−), although the molecular events
underpinning this remain unclear (21). It is also possible that cell-
intrinsic functions of CTLA-4 that act on the Tfr itself may have
a role in the control of later-stage GC reactions (51) as at least
some of the effect of CTLA-4 appears to be independent of CD28
signaling (58).

Another recently proposed mechanism of Tfr function is
expression of the IL-1 decoy receptor IL-1R2 (25). Addition of
IL-1 to vaccinated mice enhances the Tfh response and resulting
antibody production, while blocking IL-1 has the opposite effect.
Tfr have enhanced IL-1R2 expression in comparison to other
Tregs and are able to inhibit IL-1 driven enhancement of Tfh
cytokine production in a similar manner to blocking IL-1 (25).
This suggests that Tfr may be able to engage IL-1 and prevent its
interaction with Tfh cells. RNA sequencing reveals that IL-1R2 is
expressed by both CD25+ and CD25− Tfr (26). Further work is
required to determine the in vivo importance of this proposed

mechanism. Additionally, IL-1R2 is also highly expressed by
both tumor-infiltrating and CXCR3+T-bet+ pancreatic Tregs,
suggesting that it may be a mechanism used by a range of
highly-activated Tregs subtypes, including Tfr (59, 60).

GARP, a Treg surface molecule that supports the anchoring
of latent TGFβ onto the surface of Tregs, has also recently been
shown to be enriched on the surface of human Tfr, although
again further work is required to determine its exact in vivo
contribution to Tfr function (34). TGFβ signaling has been shown
to control Tfh numbers, although the phenotype is much more
severe than loss of Tfr function alone, suggesting that it may be
involved at multiple stages of Tfr/Treg function (61).

Tregs have also been suggested to directly kill activated B-cells
via production of granzymes and perforin (62, 63). This work
was carried out before the full description of Tfr, but it seems
likely that these cells were primarily naïve/eTregs since they were
purified on the basis of CD25 expression from healthy wild-type
mice.

Surprisingly, recent work suggests that Tfr may also have some
positive role in the modulation of the GC response. Some earlier
results suggest that Tfr may support specific IgG production and
affinity maturation in at least some contexts (22, 43). Building on
this, recent results demonstrate that production of the cytokine
IL-10 by Tfr enhances germinal center responses by driving
germinal center B-cells into a proliferative dark zone phenotype
via induction of the transcription factor FOXO1. As a result,
specific knockout of IL-10 in Tfr results in reduced GC cell
numbers (64). In contrast, IL-10 receptor-deficient T-cells more
readily develop into Tfh cells, suggesting that IL-10 signaling into
B and T-cells may have differing effects on GC and Tfh formation
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(65). The finding that Tfr have at least some ability to support the
germinal center reaction differs from the results frommodels that
look at total loss or inhibition of Tfr function, and suggests that
while their overall contribution can probably be characterized as
suppressive, Tfr may have a complex role in the fine-tuning of
the germinal center response that includes the delivery of some
conflicting signals (66).

In short, a number of potential mechanisms of Treg/Tfr
control of humoral immunity have been identified. Further
analysis of RNA sequencing data obtained from Tregs, CD25+

Tfr and CD25− Tfr revealed that these cells have differing
expression of various Treg suppressive molecules (26) (Figure 3).
Importantly we use activated (CD44+CD62L−CXCR5−) but
not Naïve Tregs as a baseline comparison to Tfr. Since Tfr
themselves are all CD44+CD62L− their direct comparison to
total CXCR5- Tregs which contain a significant proportion of
naïve cells will lead to the identification of a range of effector
Treg markers being misidentified as Tfr enriched. Granzyme B
appears exclusive to eTregs, IL-10 is present in CD25+ Tfr and
eTregs, IL1-R2 is concentrated in the CD25+ Tfr, CD73 is slightly
increased in both Tfr subsets, CD39 and CTLA-4 appear to favor
eTregs. However only IL-10 and granzyme B were identified as
differentially expressed between these Treg groups, while CTLA-
4 protein was also confirmed to not be significantly different by
flow cytometry (26). In all cases Tfh themselves express lower
levels of these molecules. As a result, it seems Tfr may act
via a number of suppressive mechanisms and that all of these
functional molecules are shared with Tregs.

While the mechanisms of Tfr function are still under
investigation, it is of interest that Tfr induce sustained
suppression of Tfh and B-cells that outlasts the immediate contact
between these cells. B-cells that have been previously suppressed
by Tfr have altered metabolic and epigenetic programming that
impair their ability to respond to later stimulation by Tfh cells in
the absence of Tfr cells (67). This suggests that the effect of Tfr
suppression persists beyond the actual contact period between
the Tfr and B-cell/Tfh, and may be critical in the generation of a
large effect from a small number of cells, since Tfr are significantly
outnumbered by B-cells and Tfh in the follicular environment,
particularly in human GCs (34).

CIRCULATING TFR

While bona-fide Tfr are defined by their localization in the B-
cell zones of lymphoid organs, CXCR5+Foxp3+ circulating Tfr
(cTfr) can also be found in blood. Due to the relative difficulty
in obtaining samples of human lymphoid tissues, this population
has been the focus of investigations in humans.

cTfr inmice appear to be formed early in the Tfr differentiation
process since they are retained even in µMT B-cell deficient
mice, suggesting that they are dependent on the initial contact
with DCs but do not require the second contact with B-cells
that would normally finalize the differentiation process (46, 68).
Similarly in humans cTfr cells were generated in the peripheral
lymphoid tissue following the initial activation mediated by DCs,
but were similarly not affected by a lack of B-cells demonstrating

an early bifurcation of cTfr and tissue-resident Tfr (68). As a result
there are significant phenotypic differences between cTfr and
from Tfr isolated from tonsils and other lymphoid organs with
cTfr having much reduced expression of normally characteristic
markers such as PD-1, ICOS and BCL6 (26, 46, 68, 69). This
difference is further emphasized by the finding that Tfr from
human tonsils have a subset of CD25negative/lo BCl6+Foxp3+

Tfr while CD45RA− effector Tfr in blood are CD25int. In
contrast CXCR5− effector Tregs in blood upregulate CD25 in
comparison to naïve Tregs, again demonstrating the significant
difference in IL-2 metabolism between Tfr and other effector
Tregs (26). Interestingly due to their CD25int nature CD45RA−

cTfr find themselves in the fraction (FRIII) of blood Tregs that
we previously identified as primarily Foxp3intCD25int non-Tregs
(70). However, since we and others have confirmed that cTfr
retain stable expression of Foxp3, a Treg-type demethylation
signature, and suppressive function, it seems that FRIII may
contain a mixture of Tregs and non-Tregs (26, 68, 71). This
mixed nature of FRIII was recently confirmed by the finding that
CD127−CD25intCD45RA− FRIII Tregs can be further divided
into CD49d+CCR4−, CCR4−CD49d−, and CCR4+CD49d−

cells, with the CD49d fraction expressing inflammatory cytokines
(72). In our hands CD45RA−CD127−CXCR5+CD25Int cTfr lack
CCR4 and CD49d expression and, as a result, cTfr make up the
majority of CCR4−CD49d− cells in FRIII (26). This suggests that
FRIII can be stratified into CD49d+CXCR5−CCR4− non-Tregs,
CD49d−CXCR5+CCR4− cTfr and CD49d−CXCR5−CCR4+

Tregs.
Surprisingly, given that CXCR5 is normally considered

an activation/memory marker in T-cells, some Tfr found
in peripheral blood appear to have a naïve phenotype
(CD45RA+CXCR5+) (68, 69, 73). Similar to Tfr themselves, the
first indication of the presence of these cells can be found in
the work of Lim et al. in 2006 who found that, in contrast to
a range of other chemokine receptors normally associated with
effector/memory cells, such as CCR2, CCR4, and CCR6, CXCR5
expression by Tregs was increased on CD45RA+ cells in a similar
manner to CCR7 (73). Expression of markers such as CD45RA
would normally be considered an indication of naïve status.
However, these cells are absent in cord blood and the thymus,
suggesting that they are induced from truly naïve Tregs by stimuli
that occur after birth (68, 73). Given that CD45RA+ Tregs are
now considered a promising target for in vitro expansion and
clinical use, this phenomenon may require further investigation
(74).

While it is clear that cTfr retain the ability to suppress T-
cells in vitro, there are conflicting reports of their ability to block
B-cell antibody production. One group found that these cells
were unable to suppress antibody production (68) while several
groups found the opposite (26, 35, 71). Interestingly, Liu et al.,
found that cTfr suppressive activity increased in correlation with
the sequential shift of cTfr from FRIII Foxp3int into a highly-
activated Foxp3hi phenotype from healthy donors > active RA
patients > patients in remission.

One unifying feature of these studies is that CXCR5− Tregs in
circulation are capable of suppressing antibody responses in vitro
at least as well as, and sometimes better than, cTfr (26, 68). This
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FIGURE 3 | Expression of suppressive genes by Tfh, Tregs, CD25+ Tfr, and CD25− Tfr. RNA expression of murine Tfr cells measured as Fragments Per Kilobase

Million (FPKM) taken from RNAseq dataset in Wing et al. (26). n = 2 ±SEM. Mice were vaccinated with NP-Ova in alum and cells sorted from peripheral lymph nodes

7 days later. CD4+B220– cells from Foxp3 reporter were sorted as CD62L−CXCR5+PD1+Foxp3−GITR− Tfh, CD62L−CXCR5−Foxp3+GITR+CD25+ eTreg,

CD62L−CXCR5+PD1+GITR+CD25+ CD25+ Tfr, and CD62L−CXCR5+PD1+Foxp3+GITR+CD25− CD25− Tfr.

might be considered an indication that these cells may not be
bona fide Tfr. However, whether the ability to suppress humoral
responses in vitro should be considered a defining property
of Tfr is questionable. CXCR5− Treg from the tissues of both
humans andmice are fully capable of suppressing B-cell antibody
production in vitro (12, 26, 34). While certain suppressive
mechanisms may skew toward Tfr or eTregs (Figure 3), and may
have different roles at different points of the humoral response,
it seems likely that none of them are entirely exclusive. This
is emphasized by the finding that CTLA-4, IL-10, and IL1-R2
all have roles in both Tfr and Treg suppressive function. This
current lack of evidence for a suppressive mechanism which is
unique to Tfr, and which might explain any specific ability to
suppress humoral immunity by Tfr, suggests that the capacity to
suppress B-cells in vitro may not be a defining characteristic of
Tfr. Instead we favor a model in which the key in vivo difference
between Tregs and Tfr is not their mechanism of suppression,
but rather their localization. Simply, we suggest that both CD25−

and CD25+ Tfr are able to act at different points of the humoral
response from Tregs, because they are in the right place to do so,
a distinction that is lost during an in vitro assay.

TFR IN HUMAN DISEASE

Due to their relatively recent discovery, the role of Tfr in human
disease is not well understood at this time. The proportion of
cTfr in human blood may be a direct indicator of the extent
of ongoing antibody responses. The total number of cTfr in

blood increases after vaccination, while the proportion of them
that are CD45RA+ drops (68, 69). cTfr are also increased
as a proportion of Tregs in patients with ongoing Sjögren’s
syndrome (SS), and the Tfr/Tfh ratio strongly correlates with
both autoantibody production and activated (PD-1+ICOS+) T-
cell infiltration into the minor salivary glands of patients (68,
75). In the context of infection, cTfr expand during chronic
viral and parasitic infections such as human immunodeficiency
virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV),
and Schistosoma japonica (76–78) The increase of cTfr cell
frequency in patients chronically infected with either HBV or
HCV showed strong correlation with serum viral load in both
infections. In rheumatoid arthritis, increased percentages of cTfr,
decreased percentages of Tfh and a corresponding drop in the
ratio of Tfh/Tfr was associated with stable disease and reduced
levels of autoantibodies, while active disease was correlated to
increased cTfr but no change in the Tfh/Tfr ratio (71). However,
treatment may cause cTfr numbers to drop resulting in a high
Tfh/Tfr ratio but no clear relationship between cTfr numbers
and autoantibodies (79). Similarly to untreated RA patients, the
Tfh/Tfr ratio was correlated with autoantibody production in SLE
patients, although in this case this was due to a loss of Tfr while
the proportion of Tfh remained stable (80). cTfr cell frequency
was also reduced in the blood of multiple sclerosis patients and
these cells were found to be less suppressive compared to those
of healthy controls (69). Together these results suggest that an
increased proportion of cTfr in the blood is a marker of ongoing
humoral activity and that the Tfh/Tfr ratio may give an indication
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of autoantibody production. However in the cases of SLE andMS
this correlation seems less clear. Whether, as seems possible, this
is an indication that autoantibody production in these settings is
due to a proliferative defect in cTfr is unclear at this time.

The frequency of cTfr cells in primary immunodeficiency
disorders also displays variability. Cunill et al. reported that the
smB− (switched memory phenotype B-cell deficient) subset of
common variable immunodeficiency (CVID) patients showed
remarkable reduction in their blood CXCR5+CD25hiCD127low

Tfr cell numbers (81). Store-operated Ca2+ entry (SOCE) via
Ca2+ release-activated Ca2+ (CRAC) channels mediated
by STIM and ORAI proteins is an essential signaling
pathway in T cells, and it controls both Tfh and Tfr cell
differentiation (82). Vaeth et al. demonstrated that frequency
of CD45RO+Foxp3+Helios+Tfr-like effector Treg cells is
significantly diminished in patients with severe combined
immunodeficiency-like disease, characterized by inherited
loss-of-function mutations in STIM1 or ORAI1 genes
(82) Meanwhile, Jandl et al. found that the percentages of
CD4+CXCR5hiPD-1hiCD127low Foxp3+ cTfr cells were elevated
in the peripheral blood of IL-21R-deficient patients compared
to healthy controls (38). Despite this the total frequency of cTfr
seem surprisingly resistant to a range of mutations that affect
Tfh formation, such as STAT1 and STAT3, IL21R, IL10R, and
ICOS (83).

TFR IN TUMORS

Increased numbers of activated ICOS+CXCR5+ Tfr are seen in
the blood of non-small cell lung cancer patients although this
did not correlated with disease stage (84). Tfr are also enriched
in the lymph nodes of diffuse large B cell lymphoma (DLBCL)
patients and the proportion of Tfr was reduced in patients
with more advanced stage disease (85). It is unclear what the
role of Tfr may be in the tumor environment but Tfh like cell
infiltration has been demonstrated to be predictive of survival
in breast cancer and may drive ectopic germinal centers (86).
Although in this case these were CXCR5−PD-1hiCXCL13 T-
helper identified in inflamed joints and breast cancer (described
as TfhX13) (87). TfhX13 and Tfh appear closely related, sharing
most of the transcriptional programming related to B-cell help
but with differing homing capabilities as Tph primarily infiltrate
inflamed tissue in a CXCR5 independent manner. It is unclear if

Tregs have a direct equivalent for these cells but in breast cancer
PD-1intICOShiCXCR5− Tregs are seen infiltrating the same areas
suggesting that these may be non-Tfr effector Tregs (87).

CONCLUSION

Due to their recent discovery the Tfr field is still young and
many important questions about the formation and function of
Tfr and their role in a range of antibody driven autoimmune
diseases remain unanswered. Recent work examining specific
knockout of Tfr suggests that Tfr may be biased to the control
of autoantibody responses while having a more subtle role on
the production of non-self-antibodies. It seems clear that in
mice Tfr readily lose expression of CD25 and this correlates
with a germinal center localization a CXCR5hiBCL6hiPD-1hi

phenotype. In humans these cells appear to be less common
suggesting that CD25+Tfr may have a more dominant role in this
setting. However the relative contributions and exact suppressive
mechanisms used by CD25−Tfr, CD25+Tfr and Tregs at different
points in the regulation of the humoral immune response remain
unclear and may prove hard to separate due to their highly
interrelated nature. New tools may be needed to separate these
populations, particularly in humans in which our understanding
of Tfr biology is limited, making further human Tfr studies an
ongoing priority.
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