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Frequent allelic losses at 11q24.1Ðq25 in young women
with breast cancer: association with poor survival

M Gentile 1, K Olsen 2, M Dufmats 1 and S Wingren 1

1Department of Biomedicine and Surgery, Division of Oncology and 2Department of Health and Environment, Division of Pathology and Forensic Medicine,
Faculty of Health Sciences, University Hospital, S-581 85 Linköping, Sweden

Summary Previous studies have demonstrated that the pathological features of breast cancer are more aggressive in younger women than
in their older counterparts, and that young age may be an independent marker for adverse prognosis. These findings have raised the question
whether these differences are also present at the molecular level. In order to characterize the genetic alterations associated with early-onset
breast cancer, 102 cases selected for age under 37 at diagnosis were examined for loss of heterozygosity (LOH) at nine different loci on
chromosomes 11, 13 and 17. Ninety cases (88%), exhibited LOH for at least one marker. The D17S855 marker, intragenic in the BRCA1
gene, showed a high proportion of LOH (63%), whereas the intragenic marker for the TP53 gene, HP53, exhibited LOH in 43% of the cases.
On chromosome 11, frequencies of LOH peaked at the D11S969 and D11S387 markers, which expressed LOH in 53% and 48% of the
informative cases, whereas D11S1818, which is proximate to the ATM gene, exhibited an LOH frequency of 24%. A statistically significant
correlation was found between LOH at the D11S387 marker and poor survival (P = 0.028). No such correlation was found for the adjacent
D11S969 marker, located approximately 500 kb centromeric to D11S387. We conclude that one or more as yet unidentified genes, situated in
chromosome bands 11q24.1–q25, could be involved in the initiation and/or progression of breast cancer in younger women.

Keywords : early onset breast cancer; young age; poor prognosis; LOH analysis; 11q24.1–q25
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Several investigators have reported that breast cancer in yo
women, when compared to their older counterparts, exhibits 
aggressive features including larger tumour size, presence of
tive lymph nodes, absence of steroid receptors and a high S 
fraction (Wenger et al, 1993; Albain et al, 1994; Walker et
1996). Furthermore, young age has been shown to be an ind
dent predictor of adverse prognosis (de la Rochefordiere e
1993; Albain et al, 1994; Bonnier et al, 1995), a finding that 
resulted in speculation that early-onset breast carcinomas m
of a biologically different origin and therefore should be regar
as a separate disease (Adami et al, 1986; Host and Lund, 
de la Rochefordiere et al, 1993; Chung et al, 1996).

To date, most studies concerning genetic characterizatio
breast cancer have not considered the age distribution o
studied patient population, hence, knowledge about possible
dependent differentials at the molecular level is still sca
Accordingly, the present study was undertaken with inten
investigate and characterize the genetic alterations associate
breast cancer in younger women. For this purpose, we perfo
loss of heterozygosity (LOH) analysis, using nine different hig
polymorphic microsatellite markers located on chromosomes
13 and 17. These were selected to determine the involveme
several putative tumour suppressor loci previously shown t
implicated in breast cancer.

On chromosome 11, markers mapping closely or telomer
the recently cloned ATM gene (Savitsky et al, 1995) we
ng
n
be
89;
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included. Individuals who are heterozygous for the ATM locus,
exhibit an increased sensitivity to ionizing radiation and predi
sition to breast cancer (Swift et al, 1987, 1991, 1994; San
et al, 1990). Easton et al (1994) estimated that 3.8% of all fe
breast cancer cases, and as many as 8% of early-onset
(i.e. afflicting women under the age of 40), could be due
heterozygous mutations in the ATM gene. The role of ATM in the
processes associated with cell cycle control is still unc
although Westphal et al (1997) recently suggested that the pro
expressed by ATM and TP53 might cooperate in apoptosis a
suppression of tumorigenesis.

The markers selected on chromosome 13 are found in 
proximity to the BRCA2 and the RB1 genes. The protein coded b
the BRCA2 gene, has been implied to have a protective role in
proliferation (Vaughn et al, 1996), and mutations in the g
sequence have been reported to be responsible for a large p
of hereditary breast cancer cases (Wooster et al, 1995; Phela
1996; Tavtigian et al, 1996). Numerous investigators have sh
that the RB1 gene is frequently heterozygously lost in bre
cancer (Devilee et al, 1991; Andersen et al, 1992; Borg e
1992). The RB protein has a significant role in cell prolifera
and is known to be involved in restriction-point control and G1/S
phase transition during the cell cycle (Sherr, 1996).

Various tumour suppressor genes located on chromosome 
involved in tumour development and/or progression of br
cancer. In the present study, LOH was assessed for a num
these genes, including TP53, BRCA1 and NME1. The protein
product of TP53 plays a central role in cell proliferation, arresti
the cell cycle in the G1 phase to allow repair of the DNA i
response to DNA damage. The TP53 gene has been shown to 
implicated in the majority of cancer forms (Nigro et al, 19
843
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Hollstein et al, 1991; Greenblatt et al, 1994), and the inciden
TP53 mutations in breast cancer has been found to be high
young patients (Caleffi et al, 1994). The role of BRCA1 in the cell
cycle has not yet been elucidated, although it has been pro
that the protein of this gene may be significant for the mainten
of the integrity of the genome and that it may interact with Ra
(Scully et al., 1997), which in turn is known to interact with p
(Stürzbecher et al, 1996). Recently, Jensen et al (1998) de
strated that physical interaction between BRCA1 and a n
ubiquitin hydrolase named BAP1, enhanced BRCA1-medi
cell growth suppression. Mutations in BRCA1 and BRCA2 are
presumed to underlie the majority of inherited breast cancer 
(Miki et al, 1994; Szabo et al, 1995). The protein coded by
NME1 gene has been reported to exhibit metastatic suppre
capabilities (Leone et al, 1991, 1993), and reduced NM
expression has been demonstrated to be significantly asso
with aggressive tumour behaviour (Bevilacqua et al, 19
Hennessy et al, 1991).

MATERIALS AND METHODS

Patients

The study included 102 young female breast cancer patients
nosed in the South-East Sweden Health Care Region, be
1980 and 1993. The patients were between 24 and 36 years 
at the time of diagnosis, with a median age of 34. Survival 
were available from the Cause of Death Register provided b
National Board of Health and Welfare. At the final follow-u
38 patients were reported to be deceased due to breast canc
median follow-up time was 67 months. Tissue samples f
archival material were obtained from the pathology departm
of hospitals in Linköping, Norrköping, Jönköping and Kalmar.

DNA isolation

Tumour sections were selected from routinely stained form
fixed and paraffin-embedded material. In a minority of cases
tumour sections also contained parts of normal breast parenc
which was removed before DNA extraction. Each case 
matched with normal cells from a lymph node that was fre
metastasis. A slightly modified standard procedure (Shibata 
British Journal of Cancer (1999) 80(5/6), 843–849

Table 1 Chromosomal localization, average size and frequency of heterozygosity
number of cycles used for PCR amplification are also included

Locus symbol Chromosomal localization a Size (bp) a Heterozy

D11S1818 11q22–23 140–170
D11S969 11q24.1–25 141–149
D11S387 11q25 168–196
D13S260 13q12.3 158–173
D13S267 13q12.3 148–162
D13S263 13q14.1–14.2 145–165
HP53 17p13.1 103–135
NM23-H1 17q21.3 ~ 106
D17S855 17q21 143–155

a Data was extracted from the GDBTM Human Genome Database. b For the D13S26
temperatures, i.e. 10 cycles at 62°C followed by 30 cycles at 58°C and 20 cycles a
using two-step cycles, i.e. the annealing and extension steps were combined to a s
of
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ed
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1989) was used for extracting the DNA. Paraffin was remove
repeated extractions with xylene, followed by washing w
decreasing concentrations of ethanol. The tissue was digeste
10 mg ml–1 proteinase K (Boehringer-Mannheim) in a digest
buffer containing 8 mM Tris–HCl (pH 8.0), 0.8 mM EDTA, 80 mM

sodium chloride and 2% sodium dodecyl sulphate (SD
Digestion was carried out at 55°C for 36 h. Remaining enzyme
were inactivated by heating the samples at 95°C for 10 min.
By-products of the enzymatic digestion were removed from
nucleic acids by extraction with phenol, phenol–chloroform (1
and chloroform. DNA was precipitated by adding 95% (v
ethanol to a final concentration of 65% (v/v) and sodium aceta
a final concentration of 0.1M, and then incubating at –70°C for
1 h. The DNA was pelleted by centrifugation at 12 000 g at 0°C
for 1 h and salt residues were subsequently removed by wa
with 70% ethanol. Nucleic acids were repelleted by centrifug
as above for 5 min and then vacuum-dried and resuspend
sterile double-distilled water.

LOH analysis

Nine highly polymorphic microsatellite markers were used, map
on chromosome arms 11q, 13q, 17p and 17q (Table 1). The esti
cytogenetic order of these markers was as follows: 11-
D11S1818-D115969-qtr, 13-cen-D13S260-D13S267-D13S26
and 17ptr-HP53-cen-NM23-H1-D17S855-qtr. Complete sequ
and chromosomal localization for the markers were obta
from the GDBTM Human Genome Database (online), Jo
Hopkins University, Baltimore, MD, USA, URL: http://gdbwww.
gdb.orgl.

Polymerase chain reaction (PCR) was performed in a 
reaction volume of 22µl, containing 25–50 ng of genomic DNA
2 mM magnesium chloride, 1 × Taq Polymerase buffer solutio
(20 mM (NH4)2SO4, 75 mM Tris–HCl (pH 8.5), 0.1% Tween 20
1 µM of each primer, 0.2 mM of each dNTP and 0.5 u Taq Poly-
merase (SDS/Promega). Annealing conditions were optim
specifically for each pair of primers (Table 1), but t
denaturation and extension steps were the same for all marke
were performed at 94°C for 30 s and 72°C for 45 s respectively
PCR products were confirmed by agarose (2%) gel separatio
ethidium bromide staining and subsequently subjected to ra
active labelling with PCR by incorporation of α-dATP32. Labelling
conditions were identical to those used for the primary P
© Cancer Research Campaign 1999

 of the nine different markers. Annealing temperatures and corresponding

gosity (%) a Annealing temperature ( °C) Number of cycles

70 55 35
76 55 40
85 53 35
78 55 35
69 62/58b 10/30b

84 55 35
90 68c 35c

NA 55 35
82 58/54b 20/20b

7 and D17S855 markers, PCR was performed at two different annealing
t 58°C followed by 20 cycles at 54°C respectively. c PCR was performed
ingle elongated step performed at 68°C. NA, not available.
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Table 2 Frequency of LOH and frequency of death in cases with LOH and ROH observed for the different markers. The association between LOH and poor
survival was evaluated using the Log-Rank Test

Locus symbol No. of cases with LOH/ No. of deaths with LOH/ No. of deaths with ROH/ Association between LOH 
no. of informative cases (%) no. of cases with LOH (%) no. of cases with ROH (%) and poor survival ( P-value)

D11S1818 13/55 (24) 3/13 (23) 22/42 (52) NSa

D11S969 29/55 (53) 12/29 (41) 12/26 (46) NS
D11S387 31/65 (48) 15/31 (48) 8/34 (24) 0.028
D13S260 21/48 (44) 7/21 (33) 6/27 (22) NS
D13S267 10/42 (24) 3/10 (30) 8/32 (25) NS
D13S263 27/79 (34) 12/27 (44) 17/52 (33) NS
HP53 20/47 (43) 7/20 (35) 8/27 (30) NS
NM23-H1 29/64 (45) 14/29 (48) 11/35 (31) NS
D17S855 26/41 (63) 10/26 (38) 7/15 (47) NS

a NS, not statistically significant, i.e. P > 0.05. LOH, loss of heterozygosity; ROH, retention of heterozygosity.

D11S1818
# 42

N T
D11S969

# 85
N T

D11S387
# 13

N T

D13S260
# 104
N T

D13S267
# 8

N T

D13S263
# 61

N T

HP53
# 21

N T
NM23-H1

# 66
N T D17S855

# 4
N T

Chromosome
17

Chromosome
13

Chromosome
11

Figure 1 Examples of autoradiographs showing allelic loss (LOH) for the
nine different markers. For each case, samples containing normal DNA (N)
were loaded adjacent to the matched sample with tumour DNA (T).
Arrowheads indicate alleles with reduced relative intensity
except that the number of cycles was decreased to 15.
different alleles were then separated on a denaturing polya
amide (6%) gel containing 8M urea, at 45 W for 2–3 h. Gels we
dried and exposed on X-ray film (Cronex 4, DuPont) us
intensifying screens, for 5–40 h at –70°C. The evaluation of LOH
was made by visual inspection by at least two independent inv
gators. LOH was considered to have occurred if the si
intensity of one allele in the tumour DNA was significan
reduced, in relation to the other allele, when compared to
signal intensity observed for the alleles in the correspon
normal DNA.

Statistical analysis

Correlation of allelic losses between pairs of markers was e
ated with the chi-square test. Survival curves were calcu
according to the method of Kaplan and Meier (1958). The log-
test was used to assess differences in patient survival be
cases with loss and retention of heterozygosity at the va
markers.

RESULTS

Of the 102 cases, 90 (88%) exhibited LOH for at least one ma
40 (39%), 48 (47%) and 58 (57%) showed LOH for markers
chromosomes 11, 13 and 17 respectively (Table 2). A
radiographs showing LOH for the different markers are illustra
in Figure 1. The intragenic BRCA1 marker D17S855 exhibited th
highest proportion of LOH (63%) on chromosome 17, where
lower incidence was observed at the HP53 and NM23-H1 loci
chromosome 13, the highest proportion of allelic losses was f
at the D13S260 marker, which expressed LOH in 44% of the in
mative cases. A lower incidence was observed for the D13S
and D13S267 markers. The frequency of LOH peaked at
D11S969 and D11S387 markers on chromosome 11, affe
53% and 48% of the informative cases, respectively, while LO
D11S1818 was only observed in 24% of the cases.

Figure 2 shows the pattern of LOH and survival among c
where data was available for all markers on each chromosom
overlapping region of LOH was found for markers on chrom
some 17, with only one case showing loss at all three ma
(Figure 2A). Two patients expressed LOH at all three marker
chromosome 13, whereas the remaining cases exhibited 
© Cancer Research Campaign 1999
he
yl-
partial loss with no significant overlap between markers (Fig
2B). An overlapping region of LOH was found on chromoso
British Journal of Cancer (1999) 80(5/6), 843–849
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NM23-H1:

D17S855:

Deceased:

A

13
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1 302010
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11.2
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D3S260:

D13S267:

D13S263:
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Deceased:

C
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14
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15

13

11.2

13

21

23

25

11.2

D11S1818:

D11S969:

D11S387:

1 10 20 30 40

Figure 2 Schematic representation of allelic loss in tumours where data was available for all three markers on each chromosome: (A) chromosome 17,
(B) chromosome 13 and (C) chromosome 11. Tumours exhibiting similar pattern of LOH are grouped together. Filled black and open circles represent loss and
retention of heterozygosity, respectively, whereas non-informative tumours are symbolized by filled grey circles. Cases deceased due to breast cancer are
marked with a cross
11, comprising the D11S969 and D11S387 markers but exclu
the D11S1818 locus (Figure 2C). Among the nine cases exhib
LOH at the D11S387 locus but retention of heterozygosity (R
at the D11S969 marker, six (67%) were deceased due to b
cancer. In cases with loss of one D11S969 allele but retenti
both D11S387 alleles, only two patients out of ten (20%) w
found to be deceased. However, the poorest outcome, eight d
in ten cases (80%), was observed among patients with LO
both D11S387 and D11S969.

Log-rank test uncovered a statistically significant differe
(P = 0.028, Table 2) in patient survival between the cases with
and those with ROH at the D11S387 marker (Figure 3). No 
correlation was found at the adjacent marker D11S969 loc
approximately 500 kb centromeric of D11S387, nor at marker
chromosomes 13 and 17.
British Journal of Cancer (1999) 80(5/6), 843–849
g
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Chi-square analysis performed to examine the correlatio
LOH between markers at the different loci, did not unveil 
statistically significant association between any combinatio
markers (data not shown).

DISCUSSION

The genetic aetiology of cancer is complex and presum
proceeds through a series of alterations that affect genes at s
loci on different chromosomes. In breast cancer, a number of 
loci have been identified, including regions on chromosome 1
and 17. The frequencies of LOH observed in the present 
essentially agree with previous reports (Kerangueven et al, 1
Nagai et al, 1995; Beckmann et al, 1996; Schmutzler et al, 1
Kerangueven et al, 1997; Niederacher et al, 1997), and 
© Cancer Research Campaign 1999
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Figure 3 Survival in relation to loss of heterozygosity (LOH) and retention
of heterozygosity (ROH) at the D11S387 locus. Deaths due to other causes
than breast cancer were censored. The difference in survival between the
two groups was statistically significant (P = 0.028)
confirm that genes located in these regions may play an impo
role in the pathogenesis of breast cancer in young wom
However, we also obtained data suggesting that a previo
unidentified gene may be involved in the initiation and/or prog
sion of early-onset breast cancer.

In keeping with several recent investigations performed
breast cancer cases not selected for young age (Gudmun
et al, 1995; Kerangueven et al, 1997; Koreth et al, 1997), we f
a high proportion of allelic losses at the telomere of chromos
11 (Table 2). The D11S969 and D11S387 markers, located i
11q24.1–25 region, demonstrated a significant degree of ov
with a breakpoint towards the more centromeric marker D11S1
(Figure 2C). These findings provide support for the existence o
as yet unidentified tumour suppressor gene or genes, app
mately 20 Mb telomeric to ATM, that may be involved in th
tumorigenic process. Furthermore, log-rank analysis of our 
uncovered a statistically significant correlation between LOH
the D11S387 marker and poor survival, implying that inactiva
of this gene(s) may provoke more aggressive tumour behav
Recently, Montagna et al (1996) found evidence for the exist
of a gene exhibiting sequence homology to the h-PRL-1 gen
the 11q24–q25 region. Interestingly, the h-PRL-1 gene has 
suggested to play an important role in the control of basic cel
processes, such as cell growth and proliferation, making
h-PRL-1 homologue a possible candidate gene.

The proportion of LOH found at the marker for the ATM locus
was less than half that found at the D11S969 and D11S
markers. Moreover, as shown in Table 2, comparing the pro
tions of death among cases with LOH and cases with R
between the three markers, demonstrated a two- to fou
increase in breast cancer-specific death for the telomeric ma
These findings suggest a less important role for the ATM gene in
early-onset breast cancer than previously postulated. In fu
support for our results, Fitzgerald et al (1997) recently conduc
case-control study and found that ATM mutations were as commo
in the control population as in patients with early-onset br
cancer. In addition, Vorechovsky´ et al (1996a, 1996b) performed
© Cancer Research Campaign 1999
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screening of 38 consecutive breast cancer cases, and subseq
on a larger population comprising 88 cases, for ATM mutations
and concluded that there was no evidence for an increased nu
of heterozygous ATM carriers in the investigated population.

Compared with previous investigations of sporadic bre
cancer cases not selected for age (Nagai et al, 1995; Beckm
al, 1996; Kerangueven et al, 1997; Koreth et al, 1997),
observed a higher incidence of LOH at the D17S855 ma
which is located intragenic to BRCA1. This could, in part, reflec
the age-dependent distribution of hereditary and non-hered
cases, which was likely shifted towards a higher proportion
hereditary cases in the studied patient population. Marcus 
(1994) estimated that approximately half of the breast cancer 
in women under the age of 30 are of hereditary origin. It is ge
ally recognized that BRCA1 germ-line mutations account fo
almost half of the hereditary breast cancer cases (Miki et al, 1
Easton et al, 1995), suggesting that the number of hereditary 
in the present study is probably not sufficient to satisfacto
explain the high incidence of LOH at this locus. Assumin
sequence of genetic events following Knudson’s (1971) ‘two-
hypothesis and since somatic mutations in the BRCA1 gene appea
to be an infrequent event (Futreal et al, 1994; Merajver et al, 1
Krainer et al, 1997), a plausible interpretation of our findin
could be that the surroundings of the D17S855 marker 
harbour additional gene(s) that could contribute to the deve
ment and/or progression of early-onset breast cancer. It is im
tant to note, however, that the apparent discordance observ
previous studies between BRCA1 mutations and LOH at the corre
sponding locus, could imply that BRCA1 may lose its tumour
suppressor function by down-regulation caused by mechan
other than structural mutations (Bièche et al, 1997). A recent s
by Sourvinos and Spandidos (1998) confirmed this by dem
strating a two- to fivefold reduced BRCA1 expression in tum
specimen as compared to normal tissue. They proposed th
reduction in mRNA levels could be due to loss of gene co
(allelic loss), deletion of regulatory elements in the promo
region of BRCA1 or failure in the transcriptional regulation b
oestrogen receptors.

Considering the findings of several previous studies sugge
an association between TP53 status and age (Caleffi et al, 199
Walker et al, 1996), we anticipated the frequency of LOH at 
locus to be higher than what is usually found in consecu
sporadic cases. However, the proportion of cases exhibiting 
in the present study falls within the range of what has been p
ously reported for cases not selected for age (Andersen et al, 
Cornelis et al, 1994; Schmutzler et al, 1996; Kerangueven e
1997; Niederacher et al, 1997). Furthermore, we found no ass
tion between LOH and poor survival, which is somew
surprising since Elledge and Allred (1994), in a review of 
related literature, concluded that overexpression of p53 prote
well as mutations in the TP53 gene, are independent markers 
adverse prognosis in breast cancer. It is important to note th
that these studies analysed TP53 mutations or p53 protein expre
sion, and not LOH at this locus. Although there are a few studi
which loss of TP53 has been investigated for prognostic sign
cance (Andersen et al, 1992; Nagai et al, 1994; Lizard-Nacol 
1997), the small number of cases included in these studies ma
hazardous to draw any definitive conclusions. It is thus unc
whether the lack of association between LOH at the TP53 marker
and poor survival noted in these and the present study is o
underlying biological significance, or if it merely reflects t
British Journal of Cancer (1999) 80(5/6), 843–849
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848 M Gentile et al
limited number of observations assessed by the statistical 
Alternatively, the discordance between the present report an
review by Elledge and Allred could be explained by the obse
LOH occurring due to alterations in gene(s) other than TP53
residing in the 17p13.1 region.

In conclusion, it appears that one or more previously unid
tified genes located in chromosomal band 11q24.1–q25
implicated in early-onset breast cancer. Further refinement o
deleted region and eventually cloning these genes, thus ena
mutation analysis, may contribute to the understanding 
elucidation of the molecular mechanisms that underlie 
aetiology of breast cancer in young women.
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