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Abstract
Structural damage identification based on finite element (FE) model updating has been a research direction of increasing

interest over the last decade in the mechanical, civil, aerospace, etc., engineering fields. Various studies have addressed

direct, sensitivity-based, probabilistic, statistical, and iterative methods for updating FE models for structural damage

identification. In contrast, evolutionary algorithms (EAs) are a type of modern method for FE model updating. Structural

damage identification using FE model updating by evolutionary algorithms is an active research focus in progress but

lacking a comprehensive survey. In this situation, this study aims to present a review of critical aspects of structural

damage identification using evolutionary algorithm-based FE model updating. First, a theoretical background including the

structural damage detection problem and the various types of FE model updating approaches is illustrated. Second, the

various residuals between dynamic characteristics from FE model and the corresponding physical model, used for con-

structing the objective function for tracking damage, are summarized. Third, concerns regarding the selection of parameters

for FE model updating are investigated. Fourth, the use of evolutionary algorithms to update FE models for damage

detection is examined. Fifth, a case study comparing the applications of two single-objective EAs and one multi-objective

EA for FE model updating-based damage detection is presented. Finally, possible research directions for utilizing evo-

lutionary algorithm-based FE model updating to solve damage detection problems are recommended. This study should

help researchers find crucial points for further exploring theories, methods, and technologies of evolutionary algorithm-

based FE model updating for structural damage detection.

Keywords Evolutionary algorithms � Finite element model updating � Structural damage detection � Dynamic

characteristics � Residuals � Optimization

1 Introduction

Structural damage commonly occurs due to (a) various

internal factors such as structural design faults, construc-

tion imperfections, and material shortcomings, and (b) ex-

ternal conditions such as earthquakes, lack of compliance

with the terms of use, overloading, and environmental

influences [1]. Damage can cause changes in structural

dynamic properties that in turn degrade structural perfor-

mance as well as safety capacity [2–4]. Hence, early

damage detection to locate incipient damage provides a

chance for timely structural maintenance and can guarantee

structural reliability and continuing serviceability [5, 6].

Structural damage identification is usually conducted by

means of non-destructive vibrational experiments that

present structural dynamic characteristics such as fre-

quency response functions (FRFs) and modal properties.

These characteristics are functions of the structural physi-

cal properties and therefore can be used to portray damage

based on the premise that damage alters structural physical

properties, in turn causing changes in structural dynamic

characteristics [7, 8].

Finite element (FE) model updating has been the subject

of increasing interest in the last decade [9–12]. FE model

updating can be defined as a mathematical methodology

whereby a FE model is updated by gradually adjusting the

model’s parameters and assumptions in such a way that the

responses of the FE model progressively approach those of
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the counterpart real structure under investigation [13]. FE

model updating provides an effective manner of structural

damage detection. In an intact structure with its FE model,

occurrence of damage can locally alter the structure, so that

differences appear between the FE model and the structure

bearing damage. Such differences can be reflected by

deviations between the structural parameters of the FE

model and the structure incurring damage. The deviations

can be minimized by locally adjusting the FE model to

bring its parameters into good agreement with the param-

eters of the damaged structure. Once agreement is reached,

the local modification of the FE model indicates the

damage. In general, FE model updating can be imple-

mented by direct and trial-and-error methods in which the

comparison is made directly between the stiffness and mass

matrices of the FE model and the structure with damage

[14–17]. Noticeably, these methods are somewhat ineffi-

cient in reflecting damage because the updating of the FE

model might not give a reasonable physical explanation of

the changes in structural characteristics [18]. Alternatively,

solving FE model updating problem for structural damage

identification can resort to optimization algorithms that

minimize the residuals between the dynamic characteristics

of the FE model and those of the damaged structure, the

change in the FE model being related to structural damage.

Representative studies of damage detection based on FE

model updating are summarized as follows. Sensitivity-

based FE model updating for damage detection was

investigated in [19–26], with the efficiency of the methods

verified in various applications such as: in a simply sup-

ported beam and a concrete-filled steel tubular arch bridge

[21], in four simple structures [22], in a plane frame and a

12-story shear building [23], in composite structures [24],

in a reinforced concrete frame [25], and in bridge cables

[26]. However, the sensitivity-based FE model updating

method has some limitations: (1) it usually requires a

sensitivity matrix with respect to all updating parameters,

leading to expensive computation; (2) it may not be

applicable to structures which contain a considerable

amount of damage [27, 28]. Aside from sensitivity-based

methods, statistical and probability-based FE model

updating have been examined in various methods for dif-

ferent applications [29–40], such as Taguchi-based FE

model updating for damage detection [32, 41], Bayesian

framework-based FE model updating in various structures:

beams [33], 2D and 3D frame structures [34], a Dowling

Hall footbridge [35], aluminum hull structures [36], and

IASC–ASCE benchmark building [37–39]. Despite effec-

tiveness being addressed in these studies, statistical and

probability-based FE model updating approaches have

some disadvantages, such as the requirement to solve

complex integrals, the need to understand the distribution

of all variables, and the high computational cost [28].

Under a conventional paradigm, damage detection using

FE model updating is solved as an optimization problem

either directly or combined with the sensitivity-based

method. This type of method depends on the strength of the

optimization algorithm in handling complex and highly

nonlinear FE model updating. Different optimization

algorithms have been carried out to perform FE model

updating for damage detection in various structures. For

instance, the Nelder–Mead (NM) simplex method was

employed to detect damage based on FE model updating in

a simply supported beam and an asymmetrical H-shaped

structure [28]; coupled local minimizers (CLM) method

was utilized to detect damage based on FE model updating

in a damaged reinforced concrete beam [40], a cracked

beam [42], a damaged frame structure [43], and a damaged

highway bridge [44]. A trust region Newton method was

implemented for FE model updating of a damaged rein-

forced concrete frame [45], a damaged simply supported

beam and a full-size precast continuous box girder bridge

(Hongtang Bridge) [46], and a damaged Z24 Bridge [47].

Wang et al. [48] applied a penalty function method and a

random search algorithm for damage detection based on FE

model updating in a curvilinear steel box girder bridge.

Other optimization methods have been used for FE model

updating purposes, such as the affine scaling interior

algorithm for updating a planar truss model [49], the

Douglas–Reid method and Rosenbrock optimization algo-

rithm for FE model updating of the Canonica Bridge [50],

and sequential quadratic programming for the same pur-

pose in the Bill Emerson Memorial Bridge [51].

Despite increasing uses of conventional optimization

approaches in FE model updating for damage detection,

they exhibit some drawbacks: (1) the gradient of the

objective function is sometimes utilized to direct the

optimization, entailing a process that is inefficient from the

computational point of view, especially in large-scale

damaged structures; (2) a solution-to-solution framework is

often employed to solve the optimization problem, where a

single solution is changed in each evaluation into another

solution that may be better or worse. This leads to lower

ability of the optimization process to detect damage, par-

ticularly when the damage patterns are distributed along

the structure; (3) when solving highly nonlinear and mul-

timodal FE model updating for damage identification

problems with many local optima, there is a high proba-

bility of being stuck in local optima as well as converging

to inferior solutions, that is, failure to reveal damage,

especially local damage. These drawbacks easily result in

low efficiency and even failure to solve optimization

problems [52, 53].

Recently, EAs have been applied in various engineering

disciplines such as communications engineering and

informatics [54, 55], electrical engineering [56],
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mechanical engineering [57, 58]. Also, the use of compu-

tational intelligence for structural damage tracking [59–63]

and evolutionary algorithms (EAs) as modern optimization

tools to update FE models for damage detection has

become a research focus [64–70]. EAs are powerful

mathematical techniques that can be utilized for solving

complex optimization problems of high nonlinearity,

multimodal interactions, etc. Researchers have used single-

objective EAs alone [71–74] or combined them with the

weighted sum method to solve FE model updating prob-

lems [27, 28, 75–79]. Nevertheless, a single-objective

evolutionary algorithm requires sufficient information

about the problem; even so, proper distribution of solutions

along the Pareto optimal front that is essential to determine

the quality of the achieved solution may not be guaranteed.

Moreover, selection of the combination of optimum

weights is a difficult task. For this task, the commonly used

trial and error is inefficient for complex FE model updating

problems. For such reasons, a few researchers have applied

FE model updating based on multi-objective EAs for

damage detection [65–70]. Their studies have effectively

demonstrated the advantage of multi-objective functions

rather than conversion into single-objective functions using

the weighted sum method. In contrast, the application of

EAs to structural damage detection based on FE model

updating is not yet well resolved.

After the introduction, the outline of this paper can be

listed as: Sect. 2 defines the basic structural damage

detection problem and the main FE model updating

approaches. In Sect. 3, the different definitions of residuals

between dynamic characteristics of FE model and the

corresponding structure, used for constructing the objective

function for tracking damage are presented. Section 4

details the concerns involved in selecting the FE model’s

updating parameters, emphasizing the parameterization

strategy for damage detection. Section 5 surveys EAs used

in FE model updating for damage detection with applica-

tions. Section 6 presents a case study that evaluates the

utilization of two single-objective EAs and one multi-ob-

jective EA for model updating-based structural damage

identification. Section 7 summarizes future trends in the

application of FE model updating based on EAs to solve

damage detection problems.

2 Theoretical background

2.1 Structural damage detection problem

The simplest damage detection problem can be explained

by the linear equation of motion describing the undamped

free vibration paradigm as [28, 80, 81]:

M½ � €x½ � þ K½ � x½ � ¼ 0; ð1Þ

where [M] is the mass matrix; [K] is the stiffness matrix;

[x] is the displacement vector. The solution of the equation

of motion can be expressed as:

x tð Þ ¼ /iui tð Þ;
ui tð Þ ¼ Aicos xit � hið Þ;

ð2Þ

where /i is the ith mode shape; xi is the ith modal fre-

quency; ui is the ith time variation of displacement due to

harmonic excitation; hi is the ith phase angle; Ai is the ith

constant related to the ith mode shape. Substituting Eq. (2)

into Eq. (1) results in:

ui tð Þ �x2
i M½ �/i þ K½ �/i

� �
¼ 0; ð3Þ

The non-trivial solution of Eq. (3) can be written as:

K½ � � x2
i M½ �

� �
/i ¼ 0; ð4Þ

where Eq. (4) is called the standard eigenequation of the

undamped free vibration problem.

By taking into account the continuum damage

mechanics, structural damage can be defined as scalar

quantities a [ [0, - 1]. The 0 value indicates the intact

element, and 1 value illustrates the total failure. This can be

inserted inside the FE model updating process by

decreasing the global stiffness matrix to allocate damage

as:

K½ �d¼ K½ �u 1� aj
� �

; ð5Þ

where [K]d and [K]u are the global stiffness matrices of the

damaged and intact structures, respectively; aj is the

damage index of the jth element. The problem can be

transferred to an optimization problem by utilizing the

following equation:

Ri a1; a2; . . .; anð Þ ¼ K½ �d� xd
i

� �2
M½ �

n o
/d
i ; r ¼ 1; . . .; n;

F ¼
Xr

i¼1

Rij jj j2; ð6Þ

where Ri is the ith residual corresponding to ith vibration

mode; F is the objective function; r is the number of the

considered vibration modes; xd
i is the natural frequency of

the ith mode.

2.2 FE model updating methods

As it has been explained, the FE model updating process is

a mathematical procedure by which an initial FE model of

an intact structure is amended to achieve a good agreement

between the damaged structure and its FE model [28].

Various techniques have been developed for FE model

updating purpose. Those methods were surveyed by
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Mottershead and Friswell [18, 81] and Marwala [28] and

can be categorized into two main classes as: (1) direct

methods; (2) iterative and indirect methods as it is shown in

Fig. 1.

Direct methods use modal characteristics to update the

FE model. They are considered as accurate methods and

efficient from computational point of view. Moreover, they

do not require updating parameters to be handled. Several

direct model updating techniques were developed by var-

ious researchers such as the matrix-update [82], optimal

matrix, error matrix [81], eigenstructure assignment [83]

methods. The advantages of model updating using direct

methods are:

• Direct methods do not apply iterative paradigms, so

they insure the accurate and convergence to the exact

solution with computational efficiency.

• They do not consider updating physical parameters of

structures.

• The updated FE model can reflect the exact measured

quantities.

Although direct methods are efficient, they have many

drawbacks making them non-reliable as [28]:

• They require accurate measurements, and they are

highly sensitive for noise.

• Measured and calculated responses need to be equal in

size.

• Direct method may produce unrealistic representation

of elements along the FE mesh. In other words, loss of

symmetry may appear in model’s matrices.

• Possibility of losing the connectivity of the structure

and the updated model’s matrices are fully populated.

Because of the above-mentioned difficulties, direct

methods are not applicable for damage detection purposes.

Hence, iterative and indirect approaches come into picture.

Those methods can be summarized as:

• Sensitivity-based methods They consider the measured

responses as alterations of some design data derived

from the initial FE model of the intact structure and the

optimization problem is formulated using a penalty

function approach [28, 81]. Using this concept, the

measured responses must be near the calculated data

deduced from the initial FE model making the sensi-

tivity methods applicable only when changes in the real

structure are within a small scale. Hence, they can be

implemented just in the case of structures with minor

damage. The main philosophy of sensitivity-based

methods is to calculate derivatives of modal character-

istics or frequency response data that makes the overall

procedure computationally expensive [81, 84]. Repre-

sentative researches for using sensitivity method for

structural damage detection using FE model updating

can be seen in the work of Sarvi et al. [85] and Yu et al.

[86].

Fig. 1 FE model updating

approaches
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• The response-surface method (RSM) The RSM is a

statistical approach that develops a correlation between

a set of predetermined design variables and their

respective responses commonly as polynomial func-

tions. In FE model updating, RSM can deduce the best

response that matches the least variation between the

initial FE model and the measured responses

[28, 46, 87]. This makes the RSM easy to implement

with good computational efficiency. Moreover, RSM

can provide effective solution for complex model

updating problems. Examples of application of RSM

in FE model updating can be observed in [46, 87]. The

disadvantage of RSM for structural damage detection

using model updating is that it applies statistical

approximations with unknown parameters that may

not reflect the real damaged locations along the

structure [28]. Moreover, in large-scale structures, the

FE model updating using RSM still needs more

research [87].

• The Bayesian–Monte Carlo method The Bayesian

method is a modern FE model updating technique

influenced by the Bayes’ theorem in which by consid-

ering a set of data with a probability distribution it can

reflect the probability distribution of a model [28].

Bayesian methods are usually solved by Monte Carlo

approaches. They outcome accurate deductions without

over fitting. Moreover, the parameter estimation pro-

cess is easy to implement with sufficient physical

explanations of the results [33]. A detailed explanation

of Bayesian–Monte Carlo model updating methodology

can be referenced by many research papers such as

[33, 34, 37]. The Bayesian–Monte Carlo model updat-

ing was used for damage detection purposes. They were

implemented successfully by Kurata et al. [88] for

damage identification in plate-type structures as well as

Lam and Yang [90] for damage tracking in steel

towers. Sohn and Law [89] developed a Bayesian

approach for damage inference in a reinforced concrete

bridge structure with superior results. Nevertheless, the

Bayesian–Monte Carlo model updating methods have

tangible difficulties such as the requirements of solving

complex integrals which lead to high computational

cost. Moreover, the initial knowledge of intervals and

distributions of updating parameters must be known in

advance [28, 33].

• Computational intelligence model updating techniques

Computational intelligence techniques are utilized for

model updating due to the fact that model updating is

ultimately an optimization problem in which the

structural physical parameters are updated to achieve

relative matching between the FE model of the healthy

structure and the structure bearing damage [28]. The

uncertainty in updating parameters influenced the use

of computational intelligence for model updating

purposes. Main computational intelligence techniques

include machine learning and evolutionary algorithms.

Representative researches of machine learning-based

model updating can be observed in the work of Fei

et al. [91] in which they developed ANN models for

model updating of nonlinear beam elements using

frequency response data with efficient outcomes.

Zapico et al. [92] implemented ANNs for the FE

model updating of a small-scale frame using the natural

frequencies as dynamic responses. Results demon-

strated accurate updating when clarified with experi-

ments. Zhu and Zhang [93] utilized support vector

machines for FE model updating of 164 FE model of an

aircraft, and results showed precise matching between

natural frequencies of the updated model and the real

structure. Other interesting implementation of machine

learning techniques can be seen in [28].

• EAs Other computational intelligence techniques are

EAs which are efficient mathematical approaches able

to solve complex optimization problems of high

nonlinearity, multimodal interactions, etc. As it has

been shown in the introduction, EAs have been

effectively used in cases of complex FE model updating

for damage detection. Besides the conventional opti-

mization methods, EAs do not require the calculation of

the objective function gradients, a process that is not

suitable for large-scale structure with major damage.

Moreover, EAs are population-based optimization

approaches that improve a set of possible solutions

rather than a solution-to-solution framework [52, 53].

These features enhance the ability of detecting damage,

especially when damage locations are distributed along

the structure. Furthermore, EAs have stronger ability to

overcome optimization problems with many local

optima which is a great issue that appears when solving

highly nonlinear and multimodal FE model updating

for damage identification problems. Such feature gives

reliability to EAs, especially when damage is located

along a structure under consideration [28]. The above-

mentioned advantages influenced researchers world-

wide to apply EAs for FE model updating alone or for

damage identification purpose.

To summarize, it is observed that the modern FE model

updating approaches for structural damage assessment

purpose are the Bayesian–Monte Carlo-based, machine

learning-based and EAs-based methods. In this paper, our

aim is to give a complete overview about critical aspect

and main methodology of damage detection in structures

using FE model updating with EAs as it is shown in Fig. 2.
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3 Residuals of dynamic characteristics:
damage portrayal

In structural damage detection based on FE model updat-

ing, the theoretical core is to formulate residuals between

dynamic characteristics of the initial FE model that reflect

the undamaged structure and the structure with damage.

The residuals reflect the deviation of the initial FE model

from the structure with damage, suitable for formulating

the objective function for damage characterization. A valid

residual is highly dependent on the proper selection of

dynamic characteristics. In what follows, we review the

representative residuals used in FE model updating for

structural damage detection. Those residuals can be clas-

sified in terms of dynamic characteristics: natural fre-

quencies, mode shapes, FRFs, modal flexibility, and modal

strain energy.

3.1 Natural frequencies and mode shapes

Natural frequencies and modal vectors are fundamental

dynamic characteristics of structures. These characteristics

can provide general information about damage-caused

changes in structural dynamic properties. Hence, natural

frequencies and mode shapes can be utilized to formulate

residuals for use in FE model updating. The residual of

natural frequency [94, 95], XR, can be written as

XR ¼
XN

i¼1

ci �
xI

i � xD
i

xD
i

� �2

; ð7Þ

where xI
i and xD

i are the ith natural frequencies generated

from the initial FE model of the undamaged structure and

from the damaged structure, respectively; ci is a weighting
factor that indicates the relative contribution of ith natural

frequency to XR. ci is usually set to 1 for the first natural

Fig. 2 The organization of

structural damage detection

using FE model updating with

EAs
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frequencies, implying that the first natural frequencies have

greater contribution or importance than the latter ones in

reflecting changes of structural dynamic properties

between the FE model and the structure.

The residual of mode shape is formulated based on the

correlation between the modal vectors of the initial FE

model of the intact structure and the structure involving

damage. The most typical correlation is the modal assur-

ance criterion (MAC) [94]. The MAC is a scalar quantity

that measures the consistency between a reference modal

vector and another measured modal vector. The MAC can

be defined as

MAC uIf g; uDf gð Þ ¼
u�
I

� �T
uDf g

���
���
2

u�
I

� �T
uIf g u�

D

� �T
uDf g

; ð8Þ

where {u} is the modal vector; I labels the initial FE model

of the undamaged structure; D denotes the damaged

structure; T denotes the manipulation of transpose; and *

represents the complex conjugate. If the MAC value is

equal to 1, there is complete consistency between the

modal vectors of the FE model and the structure, and a 0

value addresses the entire inconsistency.

Several mode shape residuals have been developed

using the MAC by researchers [28, 65, 95]:

uR1 ¼
XN

i¼1

bi � 1�MACi uI
i

� �
; uD

i

� �� �� �
; ð9Þ

uR2 ¼
XN

i¼1

bi � 1� diag MACi uI
i

� �
; uD

i

� �� �� �� �
; ð10Þ

uR3 ¼
XN

i¼1

bi �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MACi

p� �2

MACi

; ð11Þ

where uR is the mode shape residual; MACi is the MAC

value corresponding to the ith mode shape; uI and uD

denote the modal vectors obtained from the initial FE

model of the undamaged structure and those from the

damaged structure; diag(MAC) represents the ith diagonal

element of the MAC matrix; bi is a weighting factor giving

the relative importance of MACi.

Perera and Ruiz [95] developed a modified total modal

assurance criterion (MTMAC) by fusing natural frequen-

cies and the modal vectors into one expression. The

MTMAC can be expressed by

MTMACi ¼
MAC uI

i

� �
; uD

i

� �� �

1þ xD2
i � xI2

i =x
D2
i þ xI2

ij j ð12Þ

The residual depending on the MTMAC can be given by

MTR ¼ 1�MTMAC ¼ 1�
YN

i¼1

MTMACi ð13Þ

where MTR is the modified total modal assurance criterion

residual; and N is the number of mode shapes.

3.2 FRFs

Model updating using FRF data has been reported by

various researchers [96–102]. The FRF residual is estab-

lished on the frequency domain assurance criterion

(FDAC) [103]

FDAC xI
i ;x

D
j


 �
¼

HIT

i :H
D
j

HI
i H

D
j

; ð14Þ

where HI
i is the ith FRF generated from the initial FE

model and HD
j is the jth FRF from the damaged structure.

The FDAC may vary within the interval [- 1, 1]: the

value 1 indicates complete consistency between the FRF

from the initial FE model and that from the damage

structure, and a value greater than 0 implies that the two

FRFs are in the same phase.

A modified FDAC with a similar form to the MAC was

proposed by Yan and Golinval [102]

FDAC xI
i ;x

D
j


 �
¼

HIT

i :H
D
j


 �
HIT

i :H
D
j

���
���

HIT

i H
I
i


 �
HDT

j HD
j


 � ð15Þ

The FDAC was further modified [102, 103] to be suit-

able for incomplete measured FRFs, leading to the sim-

plified frequency domain assurance criterion (SFDAC).

This criterion can only be used on the set of natural fre-

quencies obtained from damaged structure as expressed in

the following

SFDACi ¼
HIT

i :H
D
i


 �
HIT

i :H
D
i

���
���

HIT

i H
I
i


 �
HDT

i HD
i


 � ; ð16Þ

where i = 1, …, ND; ND is the number of frequencies

related to the structure with damage; SFDAC is a vector

containing scalars [ [- 1, 1].

Finally, the mean value of the SFDAC (Eq. 16) can be

used to develop the FRF residual as

SFDAC ¼ 1

ND

XND

i¼1

SFDACi; ð17Þ

FRFR ¼ 1� SFDAC ¼ 1� 1

ND

XND

i¼1

SFDACi; ð18Þ

where FRFR is the FRF residual; ND is the number of

frequencies considered.

From Eq. (17), the value of 1 of SFDAC means that

there is complete agreement between the initial model

predicted and the FRF obtained from damaged structure,

Neural Computing and Applications (2018) 30:389–411 395

123



leading to the minimum value of FRFR equal to 0, which

can be more convenient for structural damage detection

based on the FE model updating procedure.

3.3 Modal flexibility

The modal flexibility parameter has been reported as a

sensitive parameter for identification of local damage in

structures [104–107]. Modal flexibility can be defined by

employing natural frequencies and modal vectors. To

derive the modal flexibility residual, we begin with the

non-damped free vibration equation [11].

M½ �€xþ K½ �x ¼ 0; ð19Þ

where [M] and [K] are the mass matrix and stiffness matrix,

respectively; x is the displacement. The solution of the

eigenvalue problem can be written as

u½ �T K½ � u½ � ¼ k½ �; u½ �T M½ � u½ � ¼ I½ �; ð20Þ

where [u] denotes the eigenvector matrix; [k] refers to the

diagonal matrix containing the squares of the natural fre-

quencies; [I] is the unity matrix. From Eq. (20), we can

write

K½ � ¼ u½ ��T k½ � u½ ��1¼ u½ � k½ ��1 u½ �T

 ��1

ð21Þ

The modal flexibility matrix [F] can be derived from the

inverse of the stiffness matrix [K] as

F½ � ¼ K½ ��1¼ u½ � k½ ��1 u½ �T¼
XN

i¼1

1

x2
i

ui½ � ui½ �T; ð22Þ

where xi is the natural frequency corresponding to the ith

mode shape number.

Usually, modal vectors and natural frequencies are not

obtainable for all degrees of freedom. For that reason, it is

essential to divide the modal flexibility matrix into two

sub-matrices. The first sub-matrix is related to measured

mode shapes and the second is related to the remaining

unmeasured mode shapes, as follows:

F½ � ¼ Fms½ � þ Fum½ �
¼ ums½ � kms½ ��1 ums½ �Tþ uum½ � kum½ ��1 uum½ �T; ð23Þ

where Fms and Fum are the modal flexibility matrices for

measured and unmeasured mode shapes; ums and uus are

the measured and unmeasured modal vectors; kms and kum
are the squares of the measured and unmeasured natural

frequencies, respectively.

The next procedure is to normalize the modal vectors

using the mass matrix, in order to overcome the difficulty

of incomplete mode shapes due to ambient vibration

experiments. Jaishi et al. [21] used the Guyan mass matrix

reduction method [108] that ignores the inertial forces at

unmeasured degrees of freedom. This presumption helps to

utilize only the first set of natural frequencies. Normal-

ization of the modal vectors using the Guyan method can

be expressed as

/ij ¼
uijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uj

� �T
M½ � uj

� �q ; ð24Þ

where /ij is the value of the normalized modal vector

corresponding to the ith mode shape and the jth degree of

freedom, respectively. Normalization of the modal vectors

in cases of a diagonal mass matrix can be written as

/ij ¼
uijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1 mku2

kj

q ; ð25Þ

Finally, the deflection vector vi under a uniformly dis-

tributed unit load is defined in Eq. (20) to form the modal

flexibility residual as in Eq. (27).

vi ¼
XNmv

k¼1

/ikð Þ
PNd

j¼1 /kj

� �

x2
k

; ð26Þ

RF2 ¼
XNd

i¼1

vIi � vDi
vEi

� �2

; ð27Þ

where RF is the modal flexibility residual; Nmv and Nd are

the numbers of measured degrees of freedom and the mode

shapes, respectively; vIi and vDi are the deflection vectors of

the initial FE model and the damaged structure under a

uniformly distributed unit load, respectively.

To develop the modal flexibility residual without using

reduction methods, a modified modal assurance criterion

called the ‘modal assurance criterion for modal flexibility’

(MACF) was introduced by Perera and Ruiz [95] as

MACFi ¼
FI
i

� �T
FD
i

� ����
���
2

FI
if gT FI

if g FD
if gT FD

if g

 � ; ð28Þ

where FI
i

� �
and FD

i

� �
are the initial FE model predicted

and the damaged structure’s modal flexibility vectors cor-

responding to the ith mode shape number.

The modal flexibility residual RF can be written utiliz-

ing the MACF as

RF ¼ 1�MACF ¼ 1�
YN

i¼1

MACFi ð29Þ

The main benefit of using the modified MACF when

developing an objective function is that the objective

function values are bounded by an interval with limits of 0

and 1. Furthermore, there is no need to use a mass reduc-

tion normalization method, an advantage that can lead to

easier application of the FE model updating procedure.
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3.4 Modal strain energy

Various studies have shown the efficiency of using modal

strain energy (MSE) as a sensitive indicator for damage

[65, 109–111]. The ability of MSE to detect minor damage

in complex structures is superior to that of other modal

analyses such as modal vectors and natural frequencies

[112–115]. Moreover, MSE-based damage indicators can be

successfully implemented for FE model updating of 3D

structures such as buildings [65, 98, 116–118]. Structural

damage can be explained by means of the reduction in

stiffness [119]. Although reduction of stiffness may not

explain all damage cases, it can represent cases in which the

damage varies linearly. For this purpose, two methodologies

for developing MSE residuals can be described as the ele-

mental MSE residual and the global strain energy residual.

3.4.1 Global MSE

Jaishi and Ren [70] described a MSE damage indicator in

which the MSE residual is represented by employing the

global stiffness matrix of the structure. Hence, the FE

model predicted MSE for the undamaged structure and the

MSE of the structure bearing damage corresponding to the

ith mode shape are defined as

MSEI
i ¼

1

2
uI
i

� �T
K uI

i

� �
; ð30Þ

MSED
i ¼ 1

2
uD
i

� �T
K uD

i

� �
; ð31Þ

where MSEI
i and MSED

i imply the initial FE model MSE

and the damaged structural MSE corresponding to the ith

mode shape, respectively; uI
i and uD

i denote the modal

vectors of the initial FE model and the modal vectors of the

structure bearing brooking damage corresponding to ith

mode shape, respectively; and K is the global stiffness

matrix of the structure.

The global MSE residual for FE model updating can be

defined as the summation of the square errors between

MSEI and MSED as

MSEGR ¼
XV

i¼1

uI
i

� �T
K uI

i

� �
� uD

i

� �T
K uD

i

� �

uD
ið ÞTK uD

ið Þ

 !2

; ð32Þ

where MSEGR is the global MSE residual and V is the total

number of modal vectors. The normalization between the

initial FE model’s predicted modal vectors and the exper-

imentally obtained modal vectors for the damaged structure

should be consistent. Also, the experimental modal vectors

must be consistent with the degrees of freedom of the FE

model. To overcome such difficulties, Jaishi and Ren [70]

utilized the modal scale factor (MSF) method originally

proposed by Allemang and Brown [120, 121], by

multiplying the incomplete modal vectors by the MSF,

where the MSF can be stated as

MSFi ¼
uI
i

� �T
uD
i

� �

uD
ið ÞT uD

ið Þ
ð33Þ

The subsequent task is to expand the experimental

modal vectors by using one of several modal expansion

techniques. Jaishi and Ren [70] used the expansion method

of Lipkins and Vandeurzen [122], in which the experi-

mental modal vectors are considered as a linear combina-

tion of the modal vectors predicted by the initial FE model

and a transformation matrix T, as shown in Eq. (34).

uE
� 


¼
uD
1

� 

n�v

uD
2

� 

N�nð Þ�v

" #

¼
uI
1

� 

n�u

uI
2

� 

N�nð Þ�u

" #

� T½ �v�u;

ð34Þ

T½ � ¼ uI
1

� 
T
uI
1

� 

 ��1

uI
1

� 
T
uD
1

� 

 �
ð35Þ

where uD is the expanded experimental modal vectors

obtained from the structure suffering damage; N is the

number of degrees of freedom; n is the number of exper-

imentally obtained degrees of freedom; v and u are the

number of the obtained modal vectors and the added modal

vectors, respectively; T is the transformation matrix.

3.4.2 Elemental MSE

The elemental MSE damage indicator was implemented by

Cha and Buyukozturk [65] and can be stated as the sum-

mation of inner products between the square of the ith

modal vector ui and the element stiffness matrix Kj cor-

responding to the jth element. The MSE predicted by the

initial FE model and the experimentally calculated MSE of

the damaged structure can be shown as

MSEI
ij ¼ uI

i

� �T
Kj u

I
i

� �
; ð36Þ

MSED
ij ¼ uD

i

� �T
Kj u

D
i

� �
; ð37Þ

where MSEI
ij and MSED

ij are the estimated MSE of the

undamaged structure FE model and the structural MSE in

the case of damage corresponding to the ith modal vector

and the jth elemental stiffness matrix.

The elemental MSE residual for damage detection via

FE model updating can be expressed as the summation of

the absolute errors between MSEI and MSED as

MSEER ¼
XV

i¼1

XL

j¼1

uI
i

� �T
Kj u

I
i

� �
� uD

i

� �T
Kj u

D
i

� ����
���; ð38Þ

where MSEER is the elemental MSE residual; V and L are

the total number of modal vectors and the total number of

model elements, respectively.
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4 Selection of updating parameters:
damage parameterization

Structural damage is usually defined as the change in

various mechanical parameters of a structure [1]. This

change can be directly employed to detect damage loca-

tions by connecting the FE model elements and the struc-

tural parameters within a FE model updating procedure.

The updating parameters are the set of underlying param-

eters in the FE model that can be varied to update the initial

model [70, 94]. Selection of the updating parameters

associated with the FE model updating procedure is a

crucial issue that can determine the quality of the updated

model, especially when it is used for detection of structural

damage. Usually, the updated parameters are selected

depending on the type of structure being considered and

with understanding of the overall parameters used to model

it. Several key points must be considered before selection

of the updating parameters. First, there should be a focus

on the locations where damage is likely to occur. Next,

formulation of the objective function for the FE model

updating problem must take into account the residuals that

are sensitive to the selected updating parameters. Finally,

the set of updating parameters should be as small as pos-

sible, to eliminate unnecessary parameters and reduce

computation cost [123, 124].

Various studies have been concerned with parameteri-

zation methods. The basic and simplest strategy is to define

scalar multipliers associated with the mass, stiffness, and

damping matrices [118], as is shown in Eqs. [39–41].

M ¼ MI þ a1M1 þ a2M2 þ � � � þ amMm; ð39Þ

K ¼ KI þ b1K1 þ b2K2 þ � � � þ bkKk; ð40Þ

C ¼ CI þ c1C1 þ c2C2 þ � � � þ ccCc; ð41Þ

where M, K, and C are the mass, stiffness, and damping

matrices, respectively; I denotes the initial FE model’s

matrices; m, k, and c are the chosen mass, stiffness, and

damping updating parameter numbers; a, b, and c are the

non-dimensional multipliers. By using this strategy, the

updating parameters can be applied to sub-structures con-

taining elements that share common features or to indi-

vidual elements that are scattered along the FE mesh and

must be updated for special reasons strongly related to the

structure under consideration.

Another parameterization strategy employs the direct

material and geometrical properties of the structure [125].

Material properties such as Young’s modulus of elasticity

E and mass density q are usually chosen as updating

parameters to indicate the damage along the model’s ele-

ments. Moreover, the stiffness and mass matrices are pro-

portional to Young’s modulus and mass density,

respectively, and that makes the updating procedure easier

to implement. Other parameters, geometrical parameters

that are highly linked to structural damage, can be chosen,

such as the element cross-sectional area A and the thickness

of the element t. Mottershead et al. [81] recommended that

E and q should not be chosen independently because that

can lead to identical eigenvalue sensitivities as well as

A and t because of the difficulty in physical interpretation.

The above-mentioned parameters can be useful updating

parameters because they are strongly linked to the overall

elements along the FE mesh and the perturbation of those

parameters can effectively reflect damage cases.

If we choose an updating parameter as x, a normalized

factor a [ [0, 1] is commonly used to measure the relative

change between the initial updating parameter x0 and the

updated parameter x. The change in this factor a can reflect

existing damage that has already occurred in different

locations (elements) in the structure. The relative change of

the selected updating parameter can be expressed as

xi ¼ x0 1� aið Þ; ð42Þ

where ai is the normalization factor corresponding to the xi
updating parameter related to the ith FE model element.

Hence, the updated stiffness and mass matrices can be

written as

MU
i ¼ MI

i þ DMi; ð43Þ

KU
i ¼ KI

i þ DKi; ð44Þ

where MU
i and KU

i are the updated elemental mass and

stiffness matrices, respectively; MI
i and KI

i are the initial

elemental mass and stiffness matrices, respectively; DMi

and DKi are the changes in mass and stiffness matrices,

respectively, that can be calculated as

DMi ¼ xi:M
I
i ; DKi ¼ xi:K

I
i ð45Þ

The FE modeling assumptions can notably affect the

accuracy of the model. Several assumptions are usually

made to facilitate the modeling process. One of the most

general assumptions is to consider links and boundaries

between elements to be rigid, although that is not true in

practice, especially when the damage occurs. Flexible

joints strongly reflect structural damage along the FE

model’s mesh and are less likely to be rigid. One effective

strategy is the method of offset nodes in which the FE

nodes’ dimensions are to be varied to simulate the flexi-

bility of the joints, a strategy that can improve the accuracy

of the model [126].

Another effective parameterization strategy introduced

by Ahmadian et al. [127, 128] is the generic elements

method. This method implements the procedure of updat-

ing the stiffness and mass matrices by adjusting the

eigenvectors and eigenvalues of the individual elements or
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sub-structures. In this method, the eigenvectors of an ele-

ment having Ke
0;M

e
0

� �
stiffness and mass matrices with the

number of degrees of freedom d is less than or equal to six

can be written as

Ue
0 ¼ /1;/2; . . .;/dj/dþ1; . . .;/r

� 

¼ UR;US½ �; ð46Þ

and

Ue
0

� �T
Me

0U
e
0 ¼ I; Ue

0

� �T
Ke
0U

e
0 ¼ K; ð47Þ

where R and S are the rigid-body and strain, respectively;

Ue
0 is the element eigenvector; K is the element eigenvalue

matrix.

For updating the FE model, Ahmadian et al. [127, 128]

assumed that an initial model to be updated had the ele-

mental mass and stiffness matrices Ke
0;M

e
0

� �
and corre-

sponding eigenvectors and eigenvalues Ue
0 and Ke

0. The

alternative eigenvectors Ue can be written by means of the

original eigenvectors and a non-singular matrix S [119] as

Ue
0 ¼ Ue:S ð48Þ

Alternatively, to make Eq. (48) more suitable for prac-

tical implementation and by using Eq. (46), we can write

U0RU0S½ � ¼ URUS½ � SR SRS
0 SS

� �
ð49Þ

By inserting Eqs. (48, 49) into Eq. (47), and by using

the orthogonality of eigenvectors, the alternative mass and

stiffness matrices of the generic element can be derived as

Me ¼ Me
0U0MSU

T
0M

e
0; Ke ¼ Ke

0U0SKSU
T
0SK

e
0; ð50Þ

where

MS ¼ STS; KS ¼ STSKSSS; ð51Þ

and KS represents the diagonal eigenvalue matrix of the

strain modes.

MS and KS can be varied and used for updating pur-

poses. Moreover, because both matrices involve the modal

characteristics, i.e., the eigenvectors and eigenvalues, they

can strongly reflect the damaged elements along the FE

mesh.

5 FE model updating using EAs: damage
tracking

In FE model updating for structural damage identification,

the residuals of dynamic characteristics are usually com-

bined to represent the deviation of the damaged structure

from the initial FE model of the intact structure. On this

basis, the objective function commonly consists of one or

more suitable residuals of dynamic characteristics as

described in Sect. 3. Such an objective function does not

benefit any sensitivity-based approach or system matrix-

related method [27]. The use of EAs to tackle the opti-

mization problem of FE model updating with the objective

function can be, by and large, categorized into two types:

single-objective EAs and the multi-objective EAs. The

former is used to convert the optimization problem into a

single-objective optimization problem using the weighted

sum method, and the latter is used to solve the problem

directly using the multi-objective optimization paradigm.

The basic differences between single-objective EAs and

multi-objective EAs can be summarized as follows

[52, 129]. In each iteration, a single-objective EA calcu-

lates a single-objective function value for each individual

in a population of potential solutions, whereas a multi-

objective EA evaluates multiple values, simultaneously.

Unique optimal solution is obtained by each run of a sin-

gle-objective EA, while a set of optimal solutions is

achieved by a multi-objective EA. When using a combi-

nation between a single-objective EA and the weighting

sum method to solve multiple objectives, the outcome is a

sub-set of the total Pareto optimal solutions, while a

powerful multi-objective EA can generate the whole Pareto

optimal solutions or at least the majority of them. When

solving a multi-objective optimization problem, using

single-objective EAs lacks ability to find alternative solu-

tions that trade all conflicting objectives.

5.1 Single-objective EAs

Single-objective EAs can be exploited to solve the opti-

mization problems of FE model updating for damage

identification, where the single-objective function is com-

posed of the sum of a set of residuals of dynamic charac-

teristics, linked with weighting factors. The general form of

a single-objective function is given as

minimizeF xð Þ ¼
PNF

i¼1

wiFi xð Þ;

subject to gj xð Þ\0; j ¼ 1; 2; . . .;
hk xð Þ ¼ 0; k ¼ 1; 2; . . .;

XL � x�XU;
PNF

i¼1

wi ¼ 1; wi � 0;

ð52Þ

where Fi is the ith residual included in the objective

function F; wi denotes the weighting factor for Fi; NF is the

number of residuals; h and g signify the constraint func-

tions; XL and XU are the lower and the upper bounds of x,

respectively.

Researchers have formulated various single-objective

functions by combining two or more residuals of dynamic

characteristics. The most frequently used single-objective

function is the linear combination of the residual of natural

frequencies and that of modal vectors [27, 28, 66, 94]. The
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linear combination can be defined by merging Eq. (7) and

one of equations [8–10]. By way of illustration, several

representative single-objective functions are provided as

follows.

A typical single-objective function was formulated by

Jin et al. [66] in Eq. (53), expressed by

F ¼
XN

i¼1

ai
xI

i � xD
i

xD
i

� �2

þ
XN

i¼1

bi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MACi

p� �2

MACi

; ð53Þ

where F is the objective function and it includes two parts:

the first term is the residual of natural frequencies and the

second term is the residual of modal shapes; N is number of

modes; ai and bi denote the weighting factors for the ith

order natural frequency and the ith modal vector,

respectively.

Another distinctive objective function was developed by

Jung and Kim [27]. They combined the static deflection

residual with natural frequency and modal vector residuals

as.

F ¼ 1

N

XN

i¼1

ai
xI

i � xD
i

xD
i

� �2

þ
XN

i¼1

bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�MACii

MACii

r !

þ 1

M

XM

j¼1

cj
vIj � vDj

vEj

 !2
0

@

1

A; ð54Þ

where vj signifies the static deflection measured at the jth

point; M is number of measured deflection points; cj is the
weighting factors corresponding to the jth point’s static

deflection, respectively.

Selection of suitable weighting factors to effectively

measure the relative importance of each residual is crucial

for solving the optimization problem. The weighting fac-

tors are usually determined by trial and error.

The procedure of identifying structural damage relying

on FE model updating using single-objective EAs is

schematized in Fig. 3. In the figure, first, the updating

parameters for damage tracking are selected carefully.

After checking the stopping criteria, weighting factors are

chosen and the objective function is formulated using

Eq. (52). Then, a suitable single-objective EA is imple-

mented to create a superior FE model to the initial one.

Thereafter, the weighting factors are modified and a new

objective function is formulated. When the stopping cri-

teria are satisfied, the process stops and the best performing

model is chosen. Finally, the damage patterns are derived

by checking the normalizing factors for each element.

FE model updating using single-objective EAs has been

used to identify structural damage, where the genetic

algorithm (GA) is the most representative method to

implement model updating. Xia and Hao [130] utilized a

real coded GA to solve FE model updating with the single-

objective functions framed by the residual of natural

frequencies and that of modal vectors to detect damage in a

cantilever beam and a portal frame, with accurate damage

identification results obtained. Marwala [28] used the GA

to solve FE model updating problem in a damaged asym-

metrical H-shaped structure and in a damaged simply

supported beam using the residual of modal shapes and that

of natural frequency. The GA was found to outperform the

Nelder–Mead (NM) simplex method in both applications.

Jung and Kim [27] implemented a hybrid GA-NM method

for FE model updating on a small-scale bridge, with sat-

isfactory performance of the method proved. Perera and

Torres [73] used the GA for tracking damage in a simple

beam for various damage cases in noisy conditions. The

residual of mode shapes and that of natural frequencies

were exploited to form two objective functions for the

optimization problem. Their study results showed

remarkable ability of the GA in assessing damage based on

FE model updating. Au et al. [131] implemented the micro-

GA to detect structural damage in both a single-span

simply supported beam and a three-span continuous beam

using noisy and incomplete modal characteristics. Their

observations showed that the damage detection technique

was accurate, but noisy modal characteristics negatively

affected the results. He and Hwang [132] proposed a hybrid

simulated annealing and GA for damage identification in a

simple cantilever beam and a clamped beam using dis-

placement-based objective functions.

Different from the GA, particle swarm optimization

(PSO), developed by Kennedy and Eberhart [133], is a

typical single-objective EA for FE model updating for

structural damage interrogation. Marwala et al. [72] used

PSO for FE model updating with the objective function

framed by the residual of natural frequencies and that of

modal vectors in both damaged asymmetrical H-shaped

structure and damaged simply supported beam. The results

showed that PSO performed better than GA and simulated

annealing (SA) [28]. Moreover, a hybrid NM-PSO [28]

outperformed NM and PSO algorithms when they were

implemented individually. The superior performance of

NM-PSO was attributed to the combined merits of the PSO

in global optimization and the NM in local optimization. A

compound hybrid algorithm that utilized PSO, ray opti-

mizer, and harmony search, developed by Kaveh et al. [74],

was used for damage assessment based on FE model

updating in a five-story and four-span frame as well as an

A-52-bar space truss, with the robustness for damage

detection testified. Saada et al. [78] studied an approach of

FE model updating using a modified PSO for damage

identification in beams. The proposed method could detect

local damage in beams. PSO and modal-based residuals for

damage detection in a Timoshenko beam structure were

successfully utilized by Gökdağ and Yildiz [134]. An

improved PSO was proposed by Kang et al. [135] for
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damage identification in a simply supported beam and truss

structure. Their results showed better performance of the

developed method when compared with original PSO, DE,

and GA. Seyedpoor [136] proposed a two-stage structural

damage detection method using a modal strain energy-

based index and PSO. Their method was tested in various

structures and showed great performance. Other proved

hybrid PSO techniques were investigated in [75–77] for FE

model updating procedures.

Other powerful single-objective EAs include differential

evolution (DE) [137] cuckoo search (CS) [138], covariance

matrix adaptation evolutionary strategy (CMA-ES) [139],

and artificial bee colony (ABC) [140]. Seyedpoor et al.

[141] proposed a DE and modal characteristics-based

framework for damage detection in beams, trusses, and 3D

structures. Results showed outstanding performance com-

pared with the results of the PSO. Xu et al. [79]

implemented CS on the objective function formed by the

residual of modal shapes and that of natural frequencies for

damage detection in a dual span simply supported beam

and truss structure. Experimental results indicated that the

CS was efficient in identifying local damage. The CMA-ES

was incorporated into FE model updating to track damage

in a quarter-scale two-span reinforced concrete bridge

[139], where the single-objective function was created by

combining the residual of modal shapes and that of natural

frequencies. Ding et al. [142] successfully implemented the

ABC with a hybrid search strategy for damage tracking in a

61-bar truss structure and a two-span continuous plate

using mode shape and natural frequency residuals.

Although the strong ability of the CMA-ES to locate

damage was displayed, more experimental validation is

needed to further verify this method.

Fig. 3 FE model updating using

single-objective EAs for

damage identification
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Despite the successful applications reported, single-ob-

jective optimization using EAs combined with the weigh-

ted sum method to solve the detection of damage based on

FE model updating has shown some deficiencies. Deter-

mination of the optimal weighting factors usually under-

taken by trial and error is an exhausting task. It requires the

multiple runs of the algorithm while varying the weighting

factors at each run. Another problem can arise when the

distribution of the Pareto optimal front that contains the set

of optimal solutions is non-convex: namely, inability to

discover the Pareto solutions in the non-convex region, as

shown in Fig. 4. Moreover, the effect of the weighting

factors on the objective function is to some extent uncer-

tain: a small variation in one weighting factor can cause a

dramatic change in objective function values, whereas a

large variation may cause only a small change in those

values [52].

5.2 Multi-objective EAs

Multi-objective EAs have stimulated wide interest in

solving inverse problems in engineering applications in

recent years. Nevertheless, they have rarely been utilized

for solving FE model updating problems; in particular, few

multi-objective EAs have been concerned with structural

damage detection based on FE model updating.

The key to using multi-objective EAs to perform FE

model updating for damage detection lies in the formula-

tion of the multi-objective function. In this case, the multi-

objective function is formed by substantially combining

more than one residual of dynamic characteristic, with no

need for linkage by weighting factors [66], expressed as

minimize Fi xð Þð Þ ¼ minimize F1 xð Þ;F2 xð Þ; . . .;FNF xð Þð Þ;
subject to gj xð Þ\0; j ¼ 1; 2; . . .

hk xð Þ ¼ 0; k ¼ 1; 2; . . .
XL � x�XU

ð55Þ

where Fi denotes the ith objective function; NF is the total

number of objective functions; gj and hk signify the con-

straint functions; XL and XU imply the lower and the upper

bounds of the variable x, respectively.

Various multi-objective function formulations have

been created with the residuals of dynamic characteristics,

similar to those illustrated in Sect. 3. By way of illustra-

tion, representative multi-objective functions are explicated

as follows.

Kim and Park [94] formulated a multi-objective

function:

min
XN

i¼1

xI
i � xD

i

�� ��; 1�MACii

� �
ð56Þ

where xI
i and xD

i denote the ith natural frequency derived

from the initial FE model for an undamaged structure and

that from the damaged structure, respectively; MACii is the

diagonal value of the MAC matrix in correspondence to the

ith mode shape of the initial FE model for the intact

structure and that of the damaged structure, respectively.

Jin et al. [66] also developed a multi-objective function

using the residual of modal characteristics, as stated in

Eqs. (7) and (11), given by

min F1 ¼
XN

i¼1

xI
i � xD

i

xD
i

� �2

; F2 ¼
XN

i¼1

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MACi

p� �2

MACi

 !

ð57Þ

Perera and Ruiz [95] utilized modal flexibility along

with natural frequencies and modal vectors for damage

detection based on FE model updating in large-scale

structures. They incorporated Eqs. (13) and (29) to design

the multi-objective function:

min F1 ¼ 1�
YN

i¼1

MTMACi; F2 ¼ 1�
YN

i¼1

MACFi

 !

ð58Þ

Fig. 4 Convex Pareto front

(a) and non-convex Pareto front

(b)
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Another interesting research study was carried out in

[65], where incomplete mode shapes were utilized to derive

the residual of MSE, as shown in Eq. (38). The comparison

was drawn between the initial (I) and the induced model

(IC), without experimental data. Using S number of

incomplete mode shapes, the objective function was

expressed as

min

F1 ¼
P
S
2

i¼1

PL

j¼1

uI
i

� �T
Kj uI

i

� �
� uIC

i

� �T
Kj uIC

i

� ����
���;

F2 ¼
PS

i¼s
2
þ1

PL

j¼1

uI
i

� �T
Kj uI

i

� �
� uIC

i

� �T
Kj uIC

i

� ����
���

0

BBBB@

1

CCCCA

ð59Þ

where uI
i and uIC

i are the ith model vectors of the initial FE

model and the induced model, respectively; K implies the

elemental stiffness matrix; S and L denote the selected

number of incomplete mode shapes and the number of

elements in the FE model mesh, respectively.

The procedure of implementing FE model updating

using multi-objective EAs to identify structural damage is

depicted in Fig. 5. As shown in the figure, the procedure

begins with selection of the FE model updating parameters

by satisfying the recommendations in Sect. 4, followed by

the creation of an initial population of normalizing factors.

After that, a complete evaluation of all individuals in the

population is performed. Then, the multi-objective EA

algorithm is implemented to update the population by

eliciting the best FE models for the next generation. When

the stopping criteria are satisfied, the procedure progresses

to the next step, where a multi-attribute decision-making

technique is used to select the best performed model out of

the set of the Pareto optimal solutions (models). Finally,

the damaged elements are defined by studying the change

in normalized factors corresponding to each candidate

element in the FE model.

FE model updating using multi-objective EAs has been

successfully employed in various damaged structures. Kim

and Park [94] solved the FE model updating problem of a

plate with a crack using the Pareto GA introduced by

Cheng and Li [143], where the appropriate FE model was

selected by a criterion relying on the MAC matrix:

minMACii [ 0:97 ð60Þ

in which the value of 0.97 indicates high consistency

between the two modal vectors of the updated FE model

and the damaged structure; in other words, the updated

model approximates the damaged structure well.

Kim and Park [94] reported that the proposed multi-

objective EA was more efficient than the single-objective

EA. Jin et al. [66] tackled the FE model updating problem

of a damaged highway bridge using a non-dominated

sorting genetic algorithm (NSGA-II), a powerful algorithm

introduced by Deb et al. [144]. The NSGA-II incorporates

the advantage of GAs with that of non-dominated sorting

and crowding distance metric techniques to perform multi-

objective optimization. Moreover, they developed a suc-

cessful multi-attribute decision-making technique to select

the optimal FE model from all optimal Pareto front models.

They reported that the results obtained from the multi-ob-

jective strategy were much superior to those from single-

objective optimization using GA. Further, the multi-ob-

jective strategy required less computational time and gave

more physical meaning to the updated model.

Perera and Ruiz proposed a two-stage updating proce-

dure for damage detection in large-scale structures based

on FE model updating. The first stage was identification of

potential damage regions by means of damage functions

using the method of Teughels et al. [145]. The second stage

was the identification of damaged elements in these

potential damage regions. During the two stages, the

strength Pareto genetic algorithm (SPGA) [146] was

applied as a multi-objective EA to recognize the damage

region and identify the damage. The results showed that the

proposed method was robust, computationally efficient,

and could be applied effectively for damage detection in

large structures. Cha and Buyukozturk [65] used an

implicit redundant representation genetic algorithm (IRR-

GA) [147, 148] with NSGA-II [144] to perform multi-ob-

jective optimization to solve damage detection of complex

3D structures based on FE model updating. For the selec-

tion of the most preferred model, the summation of both

parts of the objective function was used. The model with

the lowest summation value could be selected as the best

model because no trade-off characteristics between the two

terms of the objective function had been discovered. Cha

and Buyukozturk’s final remarks showed that the proposed

method could be used effectively for detecting minor local

damage in 3D structures. Although the method successfully

detected damage, real-world validation using experimental

data is still needed. Wang et al. [149] compared FE model

updating using NSGA-II, differential evolution for multi-

objectives (DEMO) [150] and multi-objective particle

swarm optimization (MOPSO) [151] for damage detection

in truss structure. They noted that MOPSO outperformed

NSGA-II and MOPSO for all damage patterns.

The summary of implementation of various single-ob-

jective EAs and multi-objective EAs and their applications

can be listed in Table 1. From the table and above survey,

it is observed that most of the existing researches lack

comparative studies. Moreover, various EAs have never

been tested for the purpose of damage identification in

structures using FE model updating with EAs. Also, we

notice that not all types of structures have been studied

during the applications.

Neural Computing and Applications (2018) 30:389–411 403

123



Fig. 5 FE model updating using

multi-objective EAs for

structural damage identification

Table 1 A summary showing various applications of EAs for structural damage detection with FE model updating

Algorithm Reported applications Studies

Single-objective EAs

GA and its

variations

Various types of beams, bridges, frame

structures, and trusses

Jung and Kim [27], Marwala [28], Perera and Torres [73], Xia and Hao [130], Au

et al. [131], He and Hwang [132]

PSO and its

variations

Various types of beams, bridges, frame

structures, and trusses

Marwala et al. [28, 72], Kaveh et al. [74], Saada et al. [78], Gökdağ and Yildiz

[134], Kang et al. [135], Seyedpoor [136]

DE Beams, trusses, and 3D structures Seyedpoor et al. [141]

ABC Frames and trusses Ding et al. [142]

CS Frames and trusses Xu et al. [79]

CMA-ES Bridges Jafarkhani and Masri [139]

Multi-objective EAs

NSGA-II and its

variations

Beams, bridges, and 3D structures Cha and Buyukozturk [65], Jin et al. [66], Kim and Park [94], Wang et al. [149]

MOPSO Beams Wang et al. [149]

DEMO Beams Wang et al. [149]

SPGA Large-scale structures Perera and Ruiz [95]
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6 Case study

In order to make a comparative study between the struc-

tural damage identification using FE model updating with

single-objective EAs and multi-objective EAs, two single-

objective EAs, namely GA [52, 53] and PSO [53, 133], are

compared with a multi-objective EA, namely MOPSO

[151]. In the application of MOPSO, having a leader

solution in each iteration makes a multi-attributes decision-

making technique not required. A 3D modular structure is

developed based on the Phase II ASC–ASCE SHM

benchmark 4-story building [152, 153]. The model is

constructed with no side braces along the 4 floors as shown

in Fig. 6. This complex model can well illustrate the effi-

ciency of structural damage tracking using FE model

updating with EAs. One damage case is considered by

simulating damage in element 7 by reducing 25% of its

Young’s modulus as in Fig. 7. To simulate noise, ;5%

white noise is added to the mode shapes. The objective

function for the optimization problem is formulated by

combining the mode shape and the MSE residuals as in

Eq. (61). Initially, to execute the three applied algorithms

and by following the recommendations reported in

[52, 53, 133, 151], various parameter combinations are

tested to achieve best performances. Finally, for GA, a

population size of 100, tournament selection with size of

five individuals, blend crossover with crossover rate of

0.95, and random mutation with mutation probability equal

to 0.1 are used. A detailed explanation of GA operators can

be observed using a relevant book [52]. Both PSO and

MOPSO are implemented by using a population size of

100, inertia factor of 0.5, and acceleration coefficients of

1.2. The velocity vectors are bounded by intervals of

[- 0.25, 0.25] to obtain better outcomes. Extra parameters

in MOPSO are set as: the number of hypercubes is 10 and

the number of individuals in the repository is 50. A com-

plete description of PSO and MOPSO parameters is

available in [52, 133, 151]. Results of implementation of

GA, PSO, and MOPSO can be seen in Figs. 8, 9, 10, 11,

12, and 13 in ‘‘Appendix’’. The performances of GA, PSO,

and MOPSO are listed in Table 2 by considering the

computational time, consistency, and accuracy of results. It

is obvious from Table 2 and ‘‘Appendix’’ that GA, PSO,

and MOPSO are able to detect damage even under noisy

conditions. Nevertheless, PSO has superior performance

when compared with GA which in turn results in various

estimation errors along the structure. Moreover, MOPSO

achieved better performance than GA and similar perfor-

mance to PSO by means of consistency and reliability.

Min MSR uI;uD
� �

;MSER uI;uD;K
� �� �

¼ Min
XN

i¼1

bi � ð1� diag MACi uI
i

� �
; uD

i

� �� �� �
;

 

�
XN

i¼1

uIT

i Ku
I
i � uDT

i KuD
i

uDT

i KuD
i

 !2
1

A;

ð61Þ
Fig. 6 The ASC–ASCE SHM benchmark 4-story building model.

a The original model [154], b the developed model

Fig. 7 The damage scenario
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where MSR(uI, uD) and MSER(uI, uD, K) are the mode

shape and the global MSE residuals, respectively; K is the

global stiffness matrix; MACi is the MAC value corre-

sponding to the ith mode shape; uI and uD are the mode

shapes obtained from the initial FE model of the undam-

aged structure and those from the damaged structure;

diag(MAC) is the ith diagonal element of the MAC matrix;

bi is a weighting factor defining the relative importance of

MACi; N is the total number of mode shapes.

In order to suggest possible future research directions

and from the case study, it is important to conduct more

comparative studies on the application of various existing

EAs to recommend the most efficient algorithms. More-

over, it is necessary to study different types of structures

during the structural damage detection procedure. Finally,

the existence of many dynamic characteristics can influ-

ence more research about the application of various

residuals of dynamic characteristics in order to formulate

powerful objective functions able to transfer damage

information efficiently.

7 Concluding remarks

This paper surveyed the technologies of FE model updating

using EAs and their applications in damage detection. A

theoretical background addressed the structural damage

detection problem, and FE model updating methods were

illustrated. The common dynamic characteristics employed

to develop residuals used in formulating the objective

functions for damage tracking were investigated. The uses

of single-objective EAs and multi-objective EAs for dam-

age identification via FE model updating were evaluated.

Finally, a case study showed the applications of FE model

updating-based structural damage detection with two sin-

gle-objective and one multi-objective EAs were conducted.

This survey suggests several potential research directions

to further enhance the use of FE model updating using EAs

for structural damage detection:

• Most relevant studies have focused on applications of

FE model updating using EAs for damage identification

in small- and medium-scale structures such as beams,

frames, 2D structures. For that reason, it is recom-

mended to make more efforts to apply EAs to solve

damage detection in large-scale complex structures

using FE model updating.

• Although various combinations of dynamic character-

istics have been used in the formulation of the objective

function, there is a trend to solve complex damage

assessment based on the FE model updating problem

using EAs by combining other different dynamics

characteristics to form the objective function.

• Many powerful EAs available in the literature have

never been implemented to solve the damage detection

problem based on FE model updating. Therefore, it is

worth exploring the most suitable EAs to achieve

accurate and reliable results of damage identification as

well as considering computational efficiency.

• The various types of EAs with different features and

application scopes should stimulate more comparative

studies in order to define the most applicable and

reliable algorithms for structural damage identification

using FE model updating.

• Noisy measurements and incomplete data are major

issues facing damage detection based on FE model

updating. Most of the existing studies verified their

techniques by either computer simulations or laboratory

experiments. Hence, industrial implementations have to

be carried out to study the effects of those issues.

• Multi-attribute decision-making techniques are essen-

tial for determining trade-off solutions from the overall

solutions in the Pareto front when using multi-objective

EAs. Such techniques identify the most adequate

solution to be chosen for damage tracking. To date,

only a few related applications exist in the field of FE

model updating.
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