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Abstract: Thymic stromal lymphopoietin (TSLP) plays an important role in the pathophysiology
of various allergic diseases that are mediated by T helper cell type-2 (Th2) responses, including
asthma and atopic dermatitis. The primary focus of this study was the identification of potent
inhibitors of the TSLP signaling pathway for potential therapeutic use. The 80% methanol extract of
Machilus thunbergii bark significantly inhibited the signal transducer and activator of transcription 5
(STAT5) phosphorylation in human mast cell (HMC)-1 cells. Through activity-guided isolation, three
lignans (1–3) were obtained and identified as (+)-galbelgin (1), meso-dihydroguaiaretic acid (2), and
machilin A (3). Among them, two lignans (1 and 2) significantly inhibited STAT5 phosphorylation
and TSLP/TSLPR interaction, as determined by ELISA. Our results indicated that lignans isolated
from M. thunbergii are a promising resource for the treatment of allergic diseases.
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1. Introduction

The prevalence of allergic diseases, such as asthma, rhinitis, and atopic dermatitis,
is rapidly increasing due to continuous antigen exposure caused by changes in the en-
vironment, industrialization, and pollution. Thymic stromal lymphopoietin (TSLP), an
epithelial cell-derived cytokine, plays a key role in allergic diseases promoted by dendritic
cell-mediated T helper cell type-2 (Th2) [1–3]. When exposed to allergens, epithelial cells
stimulate the production of cytokines, such as TSLP, interleukin-25 (IL-25), and IL-33.
TSLP binds to the heterodimeric receptor complex of TSLP receptor (TSLPR) subunit and
interleukin-7 receptor α chain (IL-7Rα). The binding induces the phosphorylation and acti-
vation of Janus kinases (JAKs) and the signal transducers and activators of transcription 5
(STAT5), leading to an allergic response as a result of the overproduction of Th2 cells [1,4,5].
Hence, TSLP signaling inhibitors can be used as materials for the development of allergy
drugs. Common allergy drugs (antihistamines, steroids, and immunosuppressants) are use-
ful only for symptomatic treatment and have side effects that include vomiting, headache,
and dizziness when taken over a long period of time [6,7]. In addition, allergic diseases
may continuously develop and reappear throughout life, with frequent recurrences and
exacerbations affecting the quality of life [7,8]. Therefore, there is a need to develop a
safe treatment that can be used for long periods of time, as well as being a fundamental
treatment. Natural products capable of synergic effects due to the diversity of chemical
structures have been suggested as alternatives to allergy drugs [9].

Machilus thunbergii (M. thunbergii) Sieb. et Zucc. (Lauraceae) is an evergreen broad-
leaved tree up to 20 m tall, and its bark is dark brown with gray markings. It grows
mainly in broad-leaved forests below 800 m and is distributed in warm regions such as
Korea, China, Japan, and Taiwan [10,11]. The bark of M. thunbergia has been used in
folk medicine for the treatment of abdominal pain and distension, leg edema, and anti-
inflammatory responses [10,12]. Its bark consists of lignans (machilin A–I, licarlin A and B,
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and meso-dihydroguaiaretic acid), flavonoids (kaempferol, quercetin, and taxifolin), and
butanolides (obtusilactone B, linderanolide, litsenolide A2, B1, and B2) [13–17], which have
been reported to exert hepatoprotective [18], neuroprotective [19,20], antibacterial [21], and
anticancer activities [22].

Seo et al. investigated the antiallergic effect of M. thunbergii extracts in vitro and found
that the extracts of the whole plant, leaf, root, stem, fruit, and flower of M. thunbergii
significantly inhibit the secretion of immunoglobulin (Ig) E in U266 cells [23]. In a previous
study, an 80% methanol extract of the bark of M. thunbergii Sieb. et Zucc. significantly
inhibited STAT5 phosphorylation in human mast cell (HMC)-1 cells. However, to the best
of our knowledge, researchers have yet to investigate whether a direct correlation exists
between the chemical composition and antiallergic activity of M. thunbergii. Therefore, the
main objective of this study was to isolate and analyze antiallergic active constituents from
the bark of M. thunbergii.

2. Results and Discussion

In a study to identify antiallergic active constituents from natural products, 80% MeOH
extracts of the bark of M. thunbergii exhibited significant TSLP inhibitory activity in the
pSTAT5 assay (69.2% at 100 µg/mL; Table 1). In an attempt to evaluate active constituents
obtained from the bark of M. thunbergii, three lignans were isolated and identified as (+)-
galbelgin (1) [24,25], meso-dihydroguaiaretic acid (2) [26,27], and machilin A (3) [28,29], by
1H-NMR, 13C-NMR, and MS spectral data and compared them with previously reported
physical and spectroscopic data (Figure 1).

Table 1. The effect of isolated compounds on STAT5 phosphorylation by flow cytometry.

STAT5 Phosphorylation (%)

3 µM 30 µM

Extracts of M. thunbergii 79.2 (a) 69.2 (b)

1 67.6 54.5
2 68.7 64.1
3 111.9 104.3

(a) 50 µg/mL; (b) 100 µg/mL.
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Figure 1. Chemical structures of isolated compounds 1–3 of Machilus thunbergii (M. thunbergii).

In order to evaluate the antiallergic activity of compounds 1–3 of the bark of M. thun-
bergii, an assay was performed to confirm the inhibitory effect of STAT5 phosphorylation
and binding between TSLP and TSLPR through pSTAT5 assay and ELISA assay, respec-
tively. TSLP, a cytokine involved in the initiation of allergic reactions, has been reported as
the only cytokine that characteristically phosphorylates STAT5 among STAT proteins using
a combination of JAK1 and JAK2 linked to the IL-7Rα and TSLPR [30].

Compounds 1 and 2 showed strong pSTAT5 inhibitory activities of 54.5% and 64.1%
at 30 µM, respectively, in HMC-1 cells stimulated with hTSLP (Table 1 and Figure S1).
None of them have reported pSTAT5 inhibitory activity. Song et al. investigated the
antiasthmatic activity of meso-dihydroguaiaretic acid (2) in an ovalbumin (OVA)-induced
allergic asthma model and found that it decreased the levels of Th2-type cytokines and
total immunoglobulin (Ig) E [31]; however, the antiallergic activity of (+)-galbelgin (1) was
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first identified in our study. In addition, as shown in Table 2, compound 1 showed more
than 20% inhibitory activity of hTSLP–hTSLPR interaction at 0.3 mM, which correlated
with the pSTAT5 assay. However, the other two compounds (2 and 3) did not show more
than 20% inhibitory activity at 0.3 mM. These results suggested compound 1 as a material
that can fundamentally prevent and treat allergic diseases by inhibiting TSLP-mediated
signal transduction.

Table 2. The inhibitory effects of isolated compounds 1–3 on thymic stromal lymphopoietin
(TSLP)/TSLP receptor (TSLPR) interaction by ELISA.

Compounds
hTSLP/hTSLPR Interaction Inhibition (%) a

0.1 mM 0.3 mM

Control 0.0 ± 0.9
1 17.2 ± 2.2 ** 27.3 ± 1.9 *
2 13.8 ± 0.6 ** 16.7 ± 1.2 **
3 11.0 ± 1.5 ** 19.5 ± 1.2 *

a Samples that differ significantly from the control. * p < 0.05, ** p < 0.01.

To further elucidate the inhibitory activity of the isolated compounds against hTSLP–
hTSLPR interaction, molecular docking studies were conducted for human TSLP in complex
with TSLPR and IL-7Rα. As shown in Table 3, compound 1 had the highest docking score
compared to the other compounds, which is consistent with the ELISA results. Moreover, as
shown in Figure 2A, compound 1 appeared to be bound to the hTSLP–hTSLPR interaction
interface. The interaction mode of compound 1 is shown in Figure 2B. Six hydrogen bonds
were formed between the 3′, 4, 3, and 4”-methoxy oxygen and 1-oxygen of compound 1
with Lys161, Lys188, Gln164, and Glu191, respectively. The lengths of these hydrogen bonds
were 1.89, 1.88, 2.46, 2.13, 2.13, and 2.43 Å. As shown in Figure 2C,D, six hydrogen bonds
were formed between 3, 3′-methoxyl oxygen and 4, 4′-OH and Gln164, Glu165, Asp192,
Glu191, and Ser184, with lengths of 1.91, 1.93, 2.07, 2.09, 3.05, and 2.95 Å, respectively.
On the other hand, compound 3 formed four hydrogen bonds between methylenedioxy
oxygen atoms and Ser162, Glu149, and Lys188, with lengths of 1.93, 2.08, 2.56, and 2.95 Å,
respectively (Figure 2E,F). These results demonstrate that these compounds are able to bind
tightly to catalytic amino acid residues to inhibit hTSLP–hTSLPR interaction. Furthermore,
compounds with more hydroxyl and methoxy groups exhibited more hydrogen bonding
and higher docking scores. As a high-scoring inhibitor of the hTSLP–hTSLPR interaction,
compound 1 is a good candidate for the treatment of allergic diseases, consistent with the
ELISA results.

Table 3. Molecular docking results of isolated compounds 1–3 on TSLP/TSLPR interaction.

Compounds Docking Analysis
(Total Score) a Key Residues

1 7.4243 Lys161(1.89), Lys188(1.88, 2.46), Gln164(2.13), and
Glu191(2.13, 2.43)

2 7.2410 Gln164(1.91), Glu165(1.93), Asp192(2.07),
Glu191(2.09, 3.05), and Ser184(2.95)

3 5.7852 Ser162(1.93, 2.08), Glu149(2.56), and Lys188(2.95)
a Total scores were expressed in –log10(Kd)2 units to represent binding affinities.
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3. Materials and Methods
3.1. General Experimental Procedures

Intracellular phospho-STAT5 (pSTAT5) was measured using a BD LSR Fortessa Flow
cytometer (BD Biosciences, San Diego, CA, USA). NMR spectra were recorded on a Bruker
SPECTROSPIN 300 MHz spectrometer (Bruker Corporation, Billerica, MA, USA). For the
pSTAT5 assay measuring TSLP inhibitory activity, recombinant human TSLP was pur-
chased from R&D Systems (Minneapolis, MN, USA) and BD Cytofix/Cytoperm and Alexa
Fluor 647 mouse anti-STAT5 (pY694) were purchased from BD Biosciences (San Diego, CA,
USA). For the ELISA assay to assess hTSLP–hTSLPR interaction, Ni-NTA HisSorb plates
were purchased from Qiagen (Hilden, Germany), and monoclonal anti-FLAG antibody
conjugated to HRP and o-phenylenediamine dihydrochloride were purchased from Sigma-
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Aldrich Co. (St. Louis, MO, USA). Iscove’s modified Dulbecco’s medium (IMDM) and fetal
bovine serum (FBS) were purchased from Hyclone Laboratories Inc. (Logan, UT, USA).
Penicillin-streptomycin was purchased from Gibco Industries Inc. (Auckland, NZ, USA).

3.2. Plant Material

The bark of M. thunbergii was obtained from the Medicinal Herb Garden, College of
Pharmacy, Seoul National University, Seoul, Korea, and identified by Dr. Ki Yong Lee,
a professor at the College of Pharmacy, Korea University (Sejong, Korea). The voucher
specimen (KUP-HD066) was deposited at the Laboratory of Pharmacognosy, College of
Pharmacy, Korea University.

3.3. Extraction and Isolation

The bark of M. thunbergii (500 g) was extracted three times with 80% MeOH under
ultrasonic conditions for 90 min. After removing the solvent in vacuo, the obtained crude
extracts (45.2 g) were suspended in distilled water and partitioned using dichloromethane
to yield a dichloromethane fraction (7.1 g). The dichloromethane fraction was subjected
to medium-pressure liquid chromatography (MPLC) on a silica gel column using an
Isolera One system (Biotage, Uppsala, Sweden) and eluted with an n-hexane:EtOAc:MeOH
gradient (20:1:0→0:0:1) to yield 32 fractions (D1–D32). Compound 1 (2.3 mg) was purified
from D20 via recrystallization. Fractions D5 and D7 were separated using Sephadex LH-20
column chromatography. Compounds 2 (12.3 mg) and 3 (2.1 mg) were obtained from D7-2
and D5-4, respectively, and were observed as a single spot on a TLC plate.

3.4. pSATA5 Assay
3.4.1. Cell Culture

HMC-1 cells were obtained from the Department of Food Technology and Inflamma-
tory Disease Research Center, Hoseo University, Asan, Chungnam, Korea. HMC-1 cells
were cultured in IMDM containing 10% FBS and 1% penicillin-streptomycin at 37 ◦C under
a humidified atmosphere of 5% CO2 and 95% air. Subculturing was performed every
2 days. When HMC-1 cells were grown to 80% confluence, the cells were harvested and
centrifuged at 1000 rpm for 3 min. Then, the cells were recultured with a complete growth
medium in a 1:3 volume ratio.

3.4.2. Flow Cytometry

pSTAT5 staining was performed according to the protocol obtained from the laboratory
of Susan Kaech, Department of Immunobiology, Yale University School of Medicine, New
Haven, CT, USA. Briefly, HMC-1 cells were seeded at a density of 1 × 107 cells/mL in a
96-well U-bottom plate, and the supernatant was discarded after centrifugation (1650 rpm
for 2 min). The cells were then stimulated with 100 ng/mL of recombinant hTSLP alone
(control) or with the sample for 30 min and fixed in the BD Cytofix/Cytoperm solution
for 10 min. The fixed cells were permeabilized in ice-cold methanol for 30 min. After
permeabilization, intracellular pSTAT5 was stained with Alexa Fluor 647 mouse anti-
STAT5 for 30 min. The stained cells were washed twice in FACS buffer and resuspended in
the FACS buffer before flow cytometry analysis. pSTAT5 was acquired on a BD LSRFortessa
flow cytometer and analyzed using FlowJo software (version 9.7.6) (Tree Star Inc., Ashland,
OR, USA).

3.5. ELISA Assay

ELISA was performed according to a previously described method [4]. The C-terminal
octa-histidine tag (TSLPR-His) and N-terminal FLAG tag (FLAG-hTSLP) were obtained
from Dr. Young Ho Jeon, a professor at the College of Pharmacy, Korea University, Sejong,
Korea. A solution containing hTSLPR with C-terminal octa-histidine tag (TSLPR-His)
was added to each well at a rate of 100 µL. After incubation at a room temperature for
2 h, the plate was washed three times with 200 µL of PBS containing 0.05% Tween-20 to
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remove unbound TSPL-His. Potential inhibitors were treated with concentrations of 0.3
and 0.1 mM, and 100 µL of TSLP with N-terminal FLAG tag (FLAG-hTSLP) was added and
incubated overnight (18 h) at 4 ◦C. The plate was washed three times to remove unbound
FLAG-hTSLP. Next, the plate was blocked with the 100 µL blocking buffer (PBS with
0.05% Tween-20, 1% non-fat dry milk, and 1% bovine serum albumin) for 2 h and washed
three times. Then, the plate was coated with 100 µL of monoclonal anti-FLAG antibody
conjugated to HRP and incubated for 2 h. The incubated plate was washed five times, and
200 µL of an o-phenylenediamine dihydrochloride solution were added and incubated for
30 min. To stop the reaction, 1N HCl was added to the plate, and the inhibitory effect was
determined by measuring the optical density (OD) at 450 nm in a 96-well microplate reader.
The inhibitory effects were calculated using the following equation:

Inhibitory effect (%) = (1 − OD of sample/OD of control) × 100%. (1)

3.6. Molecular Docking Studies

Molecular docking studies were conducted using SYBYL-X (version 2.1.1) (Tripos Ltd.,
St. Louis, MO, USA). The structure of human TSLP in complex with TSLPR and IL-7Ralpha
(PDB-ID: 5J11) was provided by the Research Collaboratory for Structural Bioinformatics
Protein Data Bank (RCSB PDB). The protein was prepared with a Tripos force field and
a termination of 0.05, and all water compounds were removed. The three-dimensional
(3D) structures of the ligands were prepared using Chem3D Pro and saved as mol files.
Molecular docking was performed using the Surflex preparation protocol in SYBYL-X
2.1.1, and the docking results were analyzed by Discovery Studio 2019 Client (Biovia Co.,
San Diego, CA, USA), which showed the interaction between ligands and residues in a
docked complex.

4. Conclusions

The antiallergic activity of lignans isolated from the bark of M. thunbergii was eval-
uated. Among these, (+)-galbelgin (1) and meso-dihydroguaiaretic acid (2) were found
to exhibit strong pSTAT5 and TSLP/TSLPR interaction inhibitory activity in an in vitro
assay (STAT5 assay and ELISA assay) and an in silico assay (docking study). Notably,
(+)-galbelgin (1), the most bioactive compound, was identified as an antiallergic agent for
the first time in this study. Therefore, lignans of the bark of M. thunbergii may be a good
resource for the development of antiallergic agents targeting the TSLP signaling pathway.

Supplementary Materials: The following are available, Figure S1: Flow cytometric analysis of STAT5
phosphorylation levels in hTSLP-stimulated HMC-1 cells.
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