
Contents lists available at ScienceDirect

www.elsevier.com/locate/jpa

Journal of Pharmaceutical Analysis

Journal of Pharmaceutical Analysis 2014;4(4):234–241
2095-1779 & 2014 Xi
http://dx.doi.org/10.10

nCorresponding aut
Tel.: þ1 410 706 2646

E-mail addresses:

Peer review under r
www.sciencedirect.com
ORIGINAL ARTICLE
Quantification of anandamide, oleoylethanolamide
and palmitoylethanolamide in rodent brain tissue
using high performance liquid chromatography–
electrospray mass spectroscopy
Daniel J. Liputa, Eleftheria Tsakalozoua, Dana C. Hammellb,
Kalpana S. Paudelc, Kimberly Nixona, Audra L. Stinchcombb,d,n
aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
bAllTranz, Lexington, KY 40505, USA
cDepartment of Pharmaceutical Sciences, College of Pharmacy, South College, Knoxville, TN 37922, USA
dDepartment of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA

Received 17 June 2013; accepted 30 November 2013
Available online 7 December 2013
KEYWORDS

Endocannabinoids;
Acylethanolamides;
Anandamide;
OEA;
PEA;
LC–MS
’an Jiaotong Univer
16/j.jpha.2013.11.00

hor at: Department
; fax: þ1 410 706 0
astinchc@rx.umaryl

esponsibility of Xi’
Abstract Reported concentrations for endocannabinoids and related lipids in biological tissues can vary
greatly; therefore, methods used to quantify these compounds need to be validated. This report describes a
method to quantify anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) from
rodent brain tissue. Analytes were extracted using acetonitrile without further sample clean up, resolved on a C18
reverse-phase column using a gradient mobile phase and detected using electrospray ionization in positive
selected ion monitoring mode on a single quadrupole mass spectrometer. The method produced high recovery
rates for AEA, OEA and PEA, ranging from 98.1% to 106.2%, 98.5% to 102.2% and 85.4% to 89.5%,
respectively. The method resulted in adequate sensitivity with a lower limit of quantification for AEA, OEA
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Quantification of AEA, OEA and PEA in rat brain 235
and PEA of 1.4 ng/mL, 0.6 ng/mL and 0.5 ng/mL, respectively. The method was reproducible as intraday and
interday accuracies and precisions were under 15%. This method was suitable for quantifying AEA, OEA and
PEA from rat brain following pharmacological inhibition of fatty acid amide hydrolase.

& 2014 Xi’an Jiaotong University. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

The discovery of the endocannabinoid (eCB) system in the early
1990s intensified research on cannabinoid pharmacology, physiology
and pathophysiology. To date, two cannabinoid receptors have been
identified, including the CB1 receptor [1] and the CB2 receptor [2].
Additionally, two primary endogenous ligands have been discovered,
including N-arachidonylethanolamide (anandamide, AEA) [3] and
2-arachidonylglycerol (2-AG) [4]. Since these seminal discoveries,
the complexities of the eCB system have become increasingly
apparent. For example, it is now known that multiple receptors,
including the transient receptor potential cation channel V1 (TRPV1)
[5], G-protein receptor 55 (GPR55) [6] and peroxisome proliferator-
activated receptor (PPAR) isoforms [7], have the capacity to bind
cannabinoid ligands. Additionally, 2-AG and AEA, although the
most widely studied, are not the only endogenous ligands with the
capacity to bind cannabinoid receptors [8]. Moreover, other bioactive
lipids, particularly the N-acylethanolamides (NAEs), acylglycerols,
and acylamides have been shown to be important in cannabinoid
physiology as they act as entourage compounds by enhancing the
activity of AEA and/or 2-AG [9]. For example, both palmitoyletha-
nolamide (PEA) and oleoylethanolamide (OEA) have been shown to
reduce AEA degradation by competing for fatty acid amide hydro-
lase (FAAH) [10,11] and PEA can decrease FAAH expression [12].
Interestingly, OEA and PEA have the capability to displace [3H]-
CP55,940 and [3H]-WIN55,212-2 binding to CB1 and CB2 receptors
expressed in CHO cells [11]. It has also been demonstrated that both
PEA and OEA can increase the affinity of AEA for TRPV1 receptors
[13], an effect which contributes to the crosstalk between eCBs and
other signaling systems. Due to these complexities, understanding eCB
pharmacology, physiology and pathophysiology requires investigation
of these lipid classes as a whole, rather than in isolation. Therefore, it is
critical to develop analytical techniques that can simultaneously mea-
sure several eCBs and entourage compounds from biological tissues
under normal and pathological conditions. Furthermore, development
of easy, accurate, and reproducible analytical techniques to monitor
eCBs and related lipids will aid preclinical and clinical testing of agents
that modulate the eCB system, such as FAAH inhibitors.

A variety of analytical methods have been developed for the
measurement of eCBs and other related lipids since their discovery
[14,15]. Many of the initial methods were developed using gas
chromatography–mass spectroscopy (GC–MS) instrumentation to
measure AEA [16] and/or 2-AG [17] and had on-column sensitivity
in the femtamolar (fmol) to picomolar (pmol) range. For example,
Giuffrida et al. [18], using GC–electron ionization (EI)-MS, reported
limits of detection (LOD) of 300, 200 and 100 fmol for AEA, OEA
and PEA, respectively, while another report by Maccarrone et al.
[19] achieved sensitivity of 20710 pmol for a variety of eCBs and
related lipids, including AEA, OEA and PEA. However, eCBs typi-
cally need to be derivatized for GC–MS to increase volatility and
sensitivity, which is a complex and time consuming task. Therefore,
more recent methods for the quantification of eCBs and related lipids
take advantage of liquid chromatography–mass spectroscopy (LC–
MS) [18,20] and LC–MS–MS [21,22], as additional derivatization
procedures are not necessary for these methodologies. Additionally,
LC–MS systems have fmol sensitivity and in many cases may have
greater sensitivity than GC–MS for measuring eCB and related lipid
species. For example, Chen et al. [20] reported a LC–electrospray
ionization (ESI)-MS method with a lower limit of quantification
(LLOQ) of 2.5 ng/mL (28.8 fmol on column) for AEA, and Koga
et al. [23] reported a LOD of 200 fmol using a LC–atmospheric
pressure chemical ionization (APCI)-MS instrument. Further, reports
describing methods for eCB quantification using LC–MS–MS have
also reported LLOQ and LODs in the low fmol range [21,22].
Specifically, Richardson et al. [21] reported a LOD of 25 fmol for
AEA, OEA and PEA. Although MS–MS systems have benefits over
MS systems for the measurement of eCBs and related compounds,
such as increased selectivity and signal to noise ratios [15], single
quadrupole systems may be the only available option for many
laboratories. Therefore, development of methods for single quadru-
pole systems is valuable and necessary.

Extraction and sample preparation procedures for eCB and related
lipids differ widely among published analytical methods. A chloro-
form/methanol solvent mixture is commonly used for extracting eCBs
and related lipids from biological matrices; however, this is typically
followed by sample clean-up using solid phase extraction (SPE) or
thin-layer chromatography (TLC) [14]. Moreover, organic solvents
such as toluene [24], ethyl acetate/hexane [21,25] or acetonitrile
(ACN) [20,26] have also been used for protein precipitation and lipid
extraction; however, many of the reported methods using these solvents
still require further sample clean-up using SPE or TLC. For many
extraction methods, it is necessary to further purify analytes of
interest from high levels of other lipid constituents that can cause
ion supression and peak interference [15]. However, SPE and TLC
procedures are time consuming and expensive, and not ideal for
analysis of multiple biological samples and/or high throughput drug
discovery. Therefore, combined extraction and chromatographic
methods that can reduce contamination, without using SPE or TLC,
and adequately resolve analytes of interest, will significantly reduce
the burden of measuring eCBs and related lipids in brain tissue.

The endogenous nature of eCBs and related lipids renders
method validation using biological matrices rather difficult. In fact,
many reported methods fail to use an appropriate matrix during
method validation; however, this approach can negatively impact
accurate quantification. Validation using surrogate matrices does not
account for either ion suppression or analyte specific recovery from
biological matrices, which can result in inaccurate estimation of
analyte concentration. For example, reports that include validation
in biological matrices have demonstrated that extraction efficiencies
for eCBs and related lipids can deviate greatly depending on the
analyte of interest [15,21]. Therefore, potential interactions between
the biological matrix and analytes should be taken into considera-
tion when developing analytical methods.

In this study, simultaneous measurement of AEA, OEA and
PEA in rodent whole brain tissue is reported. This report describes
the first validated method to quantify this combination of analytes
with a simple protein precipitation procedure followed by single
quadrupole LC–MS detection, using low milligrams of brain
tissue. Notably, this method was validated in whole brain matrix
while accounting for the endogenous nature of these eCB and
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Table 1 Effect of multiple extraction cycles on analyte re-
covery.

Analyte 1 Cycle (n¼3) 3 Cycles (n¼3)
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related lipid species. Additionally, the developed method was
successfully implemented to quantify AEA, OEA and PEA in the
rat hippocampus and entorhinal cortex following pharmacological
inhibition of FAAH.
Mean (% C1) CV (%) Mean (% C1) CV (%)

AEA 100.0 14.1 121.4 11.4
OEA 100.0 8.9 163.7 3.7
PEA 100.0 8.0 218.4 3.3
2. Materials and methods

2.1. Chemicals

Methanol and ACN were of HPLC grade, while all other chemicals
used were of analytical grade. AEA, OEA, PEA and URB597 were
purchased from Cayman Chemicals (Ann Arbor, MI, USA) and had
a purity of Z98%. Methanol and ACN were purchased from VWR
International (Batavia, IL, USA), acetic acid was purchased from
Fisher Scientific (Fairlawn, NJ, USA), ammonium acetate was
purchased from Mallinckrodt Chemicals (Phillipsburg, NJ, USA),
and ethanol was purchased from Pharmco-AAPER (Brookfield, CT,
USA). Water was obtained from a Milli-Qs Advantage A10
purification and filtration system (Millipore, Billerica, MA, USA).
Mobile phase was filtered at 0.2 μm using a nylon membrane filter
(Supelco, Bellefonte, PA, USA).

2.2. Calibration and quality control sample preparation

Stock solutions of AEA, OEA and PEA were prepared in ethanol at
2.0 mg/mL and stored at �20 1C. From these stock solutions, 50 mg/
mL working stocks and subsequent working solutions of appropriate
concentration were prepared for each compound in ACN. From the
working solutions, calibration and quality control (QC) samples were
prepared for each compound by adding 5 mL of working solution of
appropriate concentration to 95 mL of ACN or tissue homogenate.
Calibration curves were constructed for AEA using the following
calibration concentrations: 2.5, 5, 15, 25, 50 and 100 ng/mL, while
curves for OEA and PEA were constructed using the following
concentrations: 5, 10, 25, 50, 100, 250 and 500 ng/mL. QC samples
for AEA were prepared at three concentration levels including 7.5, 35
and 75 ng/mL, while QC samples for OEA and PEA were prepared at
15, 30 and 90 ng/mL. The concentration ranges used for calibration
and QC samples were chosen to encompass basal concentrations of
AEA, OEA and PEA and concentrations anticipated following FAAH
inhibition by URB597 [27,28].

2.3. Sample extraction

AEA, OEA and PEA were extracted from rat brain tissue using a
protein precipitation protocol modified from Chen et al. [20]. Brain
tissue was weighed and then homogenized with equal volumes of ice
cold saline in a siliconized microcentrifuge tube by rapid sonication on
ice using a Sonic Dismembrator (Fisher Scientific, Fairlawn, NJ, USA).
Following sonication, 100 mL of homogenate was transferred to a fresh
siliconized microcentrifuge tube containing 1 mL of ACN. Samples
were then vortexed for approximately 30 s and centrifuged at 13,000g
for 20 min at 4 1C. ACN extracts were then transferred to a 5 mL
siliconized test tube and gently evaporated under nitrogen at 37 1C.
Following evaporation, samples were reconstituted in 100 mL ACN.
To ensure maximum reconstitution of analytes of interest from the dry
residue, samples were vortexed for 30 s, sonicated in an ice cold water
bath for 15 min and vortexed again for 30 s. Samples were then
transferred to siliconized microcentrifuge tubes and centrifuged at
13,000g at 4 1C to remove precipitates following reconstitution.
Finally, the reconstituted samples were transferred to HPLC vials
fitted with siliconized low volume inserts and placed in a temperature
regulated autosampler (4 1C) for analysis. A 20 μL aliquot of sample
was injected for LC–MS quantification. To ensure maximal extraction
of analytes of interest, the effect of one vs. three extraction cycles on
analyte recovery was investigated. To that end, homogenates were
created and extracted one or three times according to the procedures
described above and the relative MS signal between one and three
extractions was compared as percent of one extraction cycle. This
preliminary experiment showed that multiple extraction cycles were
necessary to achieve maximal analyte recovery (Table 1). Therefore,
for all subsequent validation experiments, analytes were extracted a
total of three times and extracts were pooled before reconstitution by
evaporating in the same test tube.

2.4. LC–MS conditions

HPLC was performed using a Waters Alliances 2695 LC pump
(Waters, Milford, MA, USA) equipped with a Waters Alliances

2695 autosampler and thermostatic column compartment which
was maintained at 37 1C. Separation was achieved using a Waters
Symmetrys C18 (2.1 mm� 150 mm, 5 mm) column coupled with
a Waters Symmetrys C18 guard column (2.1 mm� 10 mm,
3.5 mm). A gradient elution protocol was adapted from Patel
et al. [26]. Mobile phase A consisted of 1 mM ammonium acetate
and 0.1% acetic acid (v/v) in methanol and mobile phase B
consisted of 1 mM ammonium acetate, 0.1% acetic acid (v/v) and
5% methanol in water. Initial conditions were set at 70% A and
30% B. A was increased linearly to 85% over 25 min and
maintained for 1 min, then increased linearly to 100% over
1 min and held at 100% for 5 min. Finally, A was returned
linearly to 70% over 1 min and held for 10 min for column
equilibration. Flow rate was maintained at 0.3 mL/min. The MS
detector used was a Micromasss ZQ™ (Waters, Milford, MA,
USA) with an ESI probe. The MS conditions were set according to
Chen et al. [20]: nitrogen desolvation gas 450 L/h, nitrogen cone
gas 50 L/h, source temperature 120 1C, desolvation temperature
250 1C, capillary voltage 3.5 kV, cone voltage 25 kV, extractor
voltage 5.0 kV and RF lens voltage 0.5 kV. ESI was set to the
positive mode and selective ion monitoring was set to the
following protonated ions, m/z 348.28 [MþH]þ (AEA), m/z
326.6 [MþH]þ (OEA) and m/z 300.5 [MþH]þ (PEA) with dwell
times of 0.3 s for each ion.

2.5. Validation

The method was validated by examining linearity of standard
curves, LLOQ, intra- and interday accuracy, intra- and interday
precision, process efficiency (PE) and short-term analyte stability
in rat brain extract at 4 1C. AEA, OEA and PEA linearity was
evaluated over concentrations ranging from 2.5 to 100 ng/mL for
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AEA and 5 to 500 ng/mL for OEA and PEA in ACN and brain
tissue by performing linear regression analysis. The LLOQ for
each analyte was defined as the lowest concentration producing a
peak height (signal) 10� greater than the baseline height (noise).
This concentration was back calculated from a linear regression
analysis of signal:noise vs. analyte concentration at analyte levels
ranging from 2.5 to 25 ng/mL. Accuracy and precision were
determined for each analyte at three different QC levels. Intraday
QC's were run in triplicate on two separate occasions and
accuracies and precisions were reported for intraday 1 and intraday
2. Interday QC's (n¼8) were run on separate days with each day
ranging from 1 to 3 replications. Accuracy was calculated as the
following, accuracy¼ (calculated concentration/nominal concen-
tration) � 100, while precision (% coefficient of variation, CV)
was calculated as, %CV¼ (standard deviation/mean calculated
concentration)� 100. Accuracy and precision were considered
acceptable when within 15%. PE was calculated for each analyte
at each QC level and was defined as the ratio between the relative
MS signal of the QC extracted from brain homogenate and the
relative MS signal of the QC in ACN; PE¼ (QC spiked/QC in
ACN)� 100. As endogenous AEA, OEA and PEA may interfere
with standardization and validation, great care was taken to ensure
uniformity of homogenates. To that end, bulk brain homogenate
used for the preparation of calibration and QC samples was
produced by sonication on ice, followed by vigorous vortexing.
Consistent background levels of AEA, OEA and PEA were
achieved with this method, as repeated background measurements
(n¼5–7) varied by only 8.1%, 6.7% and 3.3%, respectively.
Background signal of each analyte was subtracted prior to
calculation of the measured calibrators and QC concentrations.
To study the short-term stability of AEA, OEA and PEA, extracts
were stored in the autosampler at 4 1C and injected at T¼0 h and
T¼18 h. Relative MS signals between the two time points were
compared as percent of T¼0 h.
2.6. Biological application

Adult male Sprague-Dawley rats weighing approximately 330 g
(n¼12; Charles River, Raleigh, NC) were used in this study. All
treatment protocols followed the Guide for the Care and Use of
Laboratory Animals by the National Research Council (1996) and
were approved by the University of Kentucky Institutional Animal
Care and Use Committee. Rats were singly housed in Plexiglas
cages in a University of Kentucky vivarium on a 12 h light/dark
cycle with access to rat chow and water ad libitum. Rats were
allowed to acclimate to housing conditions for 5 days and were
handled for at least 3 days. During experimentation, rat chow was
removed from cages and rats were fed a nutritionally complete diet
consisting of Vanilla Ensure Plus© (Abbott Laboratories, Colum-
bus, OH) and dextrose in water. Rats received diet by oral gavage
every 8 h for 24 h. Rats were treated with the FAAH inhibitor,
URB597 (0.3 mg/kg) by intraperitoneal injection at a concentra-
tion of 1.0 mg/mL in dimethylsulfoxide (DMSO). Two hours after
injection, rats were euthanized by rapid decapitation; brains were
extracted; and hippocampi and entorhinal cortices were dissected,
placed in microcentrifuge tubes and flash frozen using a slurry of
dry ice and 70% ethanol. The entire process from decapitation to
rapid freezing was kept under 6 min to minimize post-mortem eCB
and NAE accumulation [15]. Tissue was stored at �80 1C until
further processing. Fifty mg of tissue was sufficient to achieve
quantifiable levels of AEA, OEA and PEA in the hippocampus and
entorhinal cortex. QCs were run prior to batch analysis of samples
and periodically during analysis to ensure fidelity of the analytical
method.

2.7. Statistics

LC–MS data were analyzed using Quanlynx (Waters, Milford,
MA, USA) and analyte concentrations and LLOQs were deter-
mined using peak area and peak height, respectively. Statistics
were performed using Prism (GraphPad version 4.03, La Jolla,
CA, USA). Linear regression was used to assess linearity of
calibration curves for AEA, OEA and PEA. Student's t-tests were
used to compare differences in AEA, OEA and PEA content
between vehicle and URB597 treated rats for each brain region.
Statistical significance was accepted at po0.05. Values are given
as mean7SD unless otherwise indicated.
3. Results and discussion

3.1. Method development

This report describes a LC–MS method for quantifying AEA,
OEA and PEA in rat brain tissue. The LC protocol used in the
current report was adapted from Chen et al. [20], with modification
to prevent peak interference from co-eluting analytes. AEA, OEA
and PEA eluted at 21.29 min, 25.89 min and 24.21 min, respec-
tively, as shown in Fig. 1. Quantification of eCBs and related
lipids using LC–MS typically requires long run times [18,20].
Therefore, method optimization towards shorter elution times can
provide significant advantages when analyzing biological samples
such as decreasing the possibility of sample instability in the
autosampler and increasing sample throughput. With the current
protocol, run time was decreased by 7 min relative to Chen et al.
[20]. Moreover, during method development, a final step involving
washing with 100% methanol for 5 min was incorporated into the
gradient protocol to ensure elution of analytes that would other-
wise cause interference on subsequent runs.

Recovery of eCBs and related lipids from biological tissues is
performed using liquid–liquid extraction/precipitation protocols
[14,15] and different solvent conditions can result in varying
extraction efficiencies for specific analytes [29]. Thus, preliminary
experiments were performed in order to determine the optimum
solvent or solvent combination for simultaneously extracting AEA,
OEA and PEA. These solvents included ACN [20,26,30], metha-
nol [15] and a 9:1 ethyl acetate/hexane mixture [21,25]. ACN and
methanol extractions produced similar chromatograms and extrac-
tion efficiencies, while the ethyl acetate/hexane extraction was
more time consuming and did not offer any significant benefit over
the other two protocols (data not shown). Considering the well-
documented superiority of ACN over methanol as a protein
precipitant [31], ACN was selected as an extraction solvent. To
further optimize analyte extraction, the effect of one vs. three
extraction cycles was determined to ensure maximal analyte
recovery from brain tissue homogenates. The effect of one and
three extraction cycles is shown in Table 1. Repeated extractions
enhanced the relative recovery of each analyte while the CV
remained at acceptable levels (o15%). Interestingly, a correlation
was observed between the relative endogenous abundance of each
analyte and the magnitude of recovery following repeated extrac-
tion. The majority of AEA, which has low endogenous levels (low



Fig. 1 Representative LC–MS chromatograms of analytes in whole brain tissue. (A) AEA, retention time (RT) 21.29 min, (B) OEA, RT
25.89 min and (C) PEA, RT 24.21 min.

Table 2 Linearity, intra- and interday accuracy and precision of analytical method for NAE measurement from brain matrix.

Analyte R2 Nominal
concentration
(ng/mL)

Intraday 1 (n¼3) Intraday 2 (n¼3) Interday (n¼8)

Mean
(ng/mL)

Accuracy
(%)

CV
(%)

Mean
(ng/mL)

Accuracy
(%)

CV
(%)

Mean
(ng/mL)

Accuracy
(%)

CV
(%)

AEA 0.999 7.5 8.6 115.0 9.4 7.9 105.8 1.3 8.2 109.5 7.8
35 31.7 105.7 6.2 34.2 114.0 6.1 33.2 110.8 7.5
75 68.1 90.8 7.5 72.5 96.7 9.1 68.5 91.4 8.2

OEA 0.989 15 18.2 121.5 18.8 14.8 98.4 5.5 15.9 105.8 17.6
30 30.9 102.9 5.1 25.1 83.6 2.8 28.4 94.8 13.3
90 85.8 95.4 5.3 90.6 100.7 4.2 85.9 95.4 6.1

PEA 0.999 15 14.9 99.4 11.6 13.9 93.0 3.6 14.3 95.0 8.6
30 28.5 95.0 13.2 29.1 97.1 7.2 28.6 95.8 8.7
90 94.8 105.3 5.4 80.7 89.6 4.9 88.9 98.8 8.9
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pmol range), was efficiently extracted following 1 extraction cycle,
while recovery of PEA, found at higher endogenous levels (high
pmol range), was greatly enhanced after 3 extractions (118.4%
increase). Thus, this study suggests that multiple extractions with
1 mL of ACN are required to overcome a limited capacity of ACN
to extract eCBs and related lipids from brain tissue.
3.2. Validation

Calibration curves were linear for AEA (R2¼0.999) over a
concentration range of 2.5–100 ng/mL and linear for OEA
(R2¼0.999) and PEA (R2¼0.989) over a concentration range of
5–500 ng/mL. The concentration ranges for calibration curves
were chosen to span across anticipated basal levels of endogenous
AEA, OEA and PEA and levels expected following FAAH
inhibition. The calculated LLOQs for AEA, OEA and PEA were
1.4, 0.6 and 0.5 ng/mL, respectively. This analytical method was
found accurate, precise and reproducible for the simultaneous
measurement of AEA, OEA and PEA in rodent brain tissue
(Table 2). Intraday and interday accuracies were generally within
15% of the nominal concentration and CVs were also generally
well below 15%. These results are acceptable for the developed
method; however, the slight discrepancies reported in Table 2 are
attributed to the endogenous nature of AEA, OEA and PEA in
biological tissues, which needs to be accounted for while validat-
ing analytical methods. eCBs and related lipids are notoriously
difficult to quantify accurately because their endogenous nature
adds variability during method validation. Methods using biologi-
cal matrices for validation have to account for endogenous analyte
levels and correct for these basal levels to calculate calibration and
QC concentrations. However, this can be a difficult task because
basal levels can vary greatly in tissue homogenates. For example,
it is well known that eCB and related lipids accumulate post-
mortem and during sample processing [15,16]. To reduce varia-
bility, tissue needs to be rapidly dissected, flash frozen and kept ice
cold during processing. However, tissue processing procedures are
not standardized in the literature [21,22,25], which may partially



Table 4 Short-term analyte stability at 4 1C.

Analyte 0 h (n¼3) 18 h (n¼3)

Mean (% 0 h) CV (%) Mean (% 0 h) CV (%)

AEA 100.0 13.1 130.5 2.3
OEA 100.0 3.3 112.4 3.5
PEA 100.0 3.7 107.0 4.0
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account for varying estimations of eCB and NAE tissue content
reported in the literature [20,21]. In this report, bulk homogenates
were created each day and great care was taken to ensure
uniformity by vigorously vortexing the homogenate while ice
cold. Additionally, new background measurements were acquired
each day and for every batch of homogenate. Comparatively, in
Richardson et al. [21], homogenates were prepared by freezing
tissue samples in liquid nitrogen prior to being ground up using a
mortar and pestle and aliquoted for validation experiments. It is
possible that these differences in preparation could result in
differences in homogenate quality and therefore account for
seemingly different accuracies and precisions reported in the
literature.

In order to circumvent the obstacles associated with the endo-
genous nature of eCBs and related lipids, some reports use surrogate
matrices. However, opinions on whether or not the use of artificial
matrices is appropriate while developing analytical methods vary in
the literature. Some reports use alternative matrices commonly
consisting of water and bovine serum albumin (BSA) for method
validation [22,30]. On the other hand, other reports use biological
matrices and therefore can adjust for extraction efficiency and
potential matrix effects for every analyte of interest [20,21,25].
Adjusting for extraction efficiency and matrix effects is particularly
important when not using an internal standard or when only using a
representative internal standard for multiple analytes during valida-
tion and sample quantification [20]. For the current study, the later
approach was used for the reasons mentioned above.

PE was examined for the extraction of AEA, OEA and PEA
from the whole brain homogenates (Table 3). Concentration levels
to study PE were selected to reflect both reported levels of
endogenous AEA, OEA and PEA [27] and results from prelimin-
ary analysis of analyte content. PE values for AEA and OEA
ranged from 98.1% to 106.2% and 98.5% to 102.2%, respectively
(Table 3). These high PE values indicate that the current extraction
method was optimal and that the method did not result in a matrix
effect. Moreover, PE for PEA ranged from 85.4% to 89.5%.
Although a lower PE was consistently observed for PEA compared
to AEA and OEA, the calculated CV was acceptable and accurate
and precise quantification of PEA was achieved, as indicated in
Table 2. These high process efficiencies achieved are consistent
with previous literature using other extraction procedures [21,22].
Noteworthy, although it appears that significant matrix–analyte
interactions were not encountered, it is possible that this could
occur when validating and quantifying other related lipid species
using the present method.
Table 3 Process efficiency.

Analyte Nominal concentration
(ng/mL)

PE
(%, n¼3)

CV (%)

AEA 7.5 106.2 2.4
35 99.2 2.3
75 98.1 9.6

OEA 15 102.2 2.2
30 99.5 16.5
90 98.5 6.8

PEA 15 89.5 10.4
30 85.4 17.1
90 85.8 8.1
Due to long sample run times (43 min), short-term sample
stability was examined in the autosampler at 4 1C. The MS signals
for AEA, OEA and PEA at T¼18 h were 130%, 112.4% and
107% of T¼0 h, respectively (Table 4). These data suggest that
degradation processes are not occurring under the specified storage
conditions. However, in order to reduce inflation of estimated
analyte concentrations, samples were not allowed to remain in the
autosampler longer than 12 h before analysis.

3.3. Biological application

The developed method was used to quantify AEA, OEA and PEA in
the rat hippocampus and entorhinal cortex following administration
of the FAAH inhibitor, URB597. FAAH is the major enzyme
responsible for the degradation of NAEs [32], is expressed through-
out the central nervous system (CNS) [32,33] and thus is implicated
in a variety of physiological and behavioral processes. For example,
pharmacological inhibition and/or genetic deletion of FAAH mod-
ulates depressive-like behavior [34], reduces inflammatory pain [35],
alters drug reward [36] and affords neuroprotection [37]. Therefore,
FAAH is under intense investigation for its therapeutic utility in a
variety of CNS disorders. In the present study, a significant elevation
in AEA, OEA and PEA was observed 2 h following intraperitoneal
administration of URB597 (Table 5). In the hippocampus, AEA,
OEA and PEA tissue content was increased by 57.5%, 475.6% and
986.6%, respectively. Contrastingly, in the entorhinal cortex, an
increase in AEA content was not observed and much smaller
increases of 250.2% and 435.0% were observed for OEA and
PEA, respectively. This is the first study to demonstrate brain region
and compound specific alterations in eCB and NAE content
following a single dose of URB597. Comparatively, these data are
consistent with studies examining NAE content following chronic
URB597 administration. After weeks of URB597 administration,
Bortolato et al. [34] observed elevations of AEA in the midbrain,
thalamus and striatum; however, this effect was absent in the
prefrontal cortex and hippocampus [32]. Although the original
characterization of URB597 reported elevations of AEA, OEA and
PEA in the whole brain tissue following a single dose [28], the
aforementioned study and the findings of this report suggest that
FAAH inhibition results in brain region specific regulation of eCBs
and NAEs, providing insight into the neurochemical effects of
FAAH inhibition.
4. Conclusions

The current study describes a novel method for quantifying eCBs
and related lipids with acceptable accuracy and precision. This
method has been developed to quantify AEA, OEA and PEA from
rodent brain tissue and offers multiple advantages over other
validated methods. A simple extraction protocol was used without



Table 5 Effect of URB596 on endogenous levels of AEA, OEA and PEA.

Analyte Brain region Vehicle URB597 (0.3 mg/kg)

AEA (nmol/g tissue) Hippocampus 37.9720.5 59.779.4n

Entorhinal cortex 43.3712.0 44.0712.4

OEA (nmol/g tissue) Hippocampus 82.9711.4 477.2790.2nn

Entorhinal cortex 171.57146.6 300.1756.0nn

PEA (nmol/g tissue) Hippocampus 155.7760.1 1691.87377.6nn

Entorhinal cortex 85.7750.0 917.67195.8nn

Values are given as mean7SD.
npo0.05.
nnpo0.001 compared to respective vehicle group.
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time consuming and costly sample clean-up, analytes were measured
on a single quadrupole MS with satisfactory sensitivity, the method
was validated using appropriate biological matrices, which accurately
accounts for analyte–matrix interactions, and low milligrams of brain
tissue such as bilateral adult rat hippocampi was sufficient for the
quantification of AEA, OEA and PEA. Finally, the method was
proven effective in detecting elevations in AEA, OEA and PEA in
rodent hippocampi and entorhinal cortices following administration
of the FAAH inhibitor, URB597.

Acknowledgments

This work was supported by funding from the National Institute of
Alcohol Abuse and Alcoholism AA016959 (KN), AA016499
(KN) and AA019853 (DJL) and the Kentucky Science and
Technology Corporation (KSTC-184-512-07-029; ALS). Sponsors
had no contribution to the execution, interpretation or preparation
of the current report.

References

[1] L.A. Matsuda, S.J. Lolait, M.J. Brownstein, et al., Structure of a
cannabinoid receptor and functional expression of the cloned cDNA,
Nature 346 (1990) 561–564.

[2] S. Munro, K.L. Thomas, M. Abu-Shaar, Molecular characterization of
a peripheral receptor for cannabinoids, Nature 365 (1993) 61–65.

[3] W.A. Devane, L. Hanus, A. Breuer, et al., Isolation and structure of a
brain constituent that binds to the cannabinoid receptor, Science 258
(1992) 1946–1949.

[4] R. Mechoulam, S. Ben-Shabat, L. Hanus, et al., Identification of an
endogenous 2-monoglyceride, present in canine gut, that binds to
cannabinoid receptors, Biochem. Pharmacol. 50 (1995) 83–90.

[5] R.A. Ross, Anandamide and vanilloid TRPV1 receptors, Br. J. Pharma-
col. 140 (1993) 790–801.

[6] H. Sharir, M.E. Abood, Pharmacological characterization of GPR55, a
putative cannabinoid receptor, Pharmacol. Ther. 126 (2010) 301–313.

[7] Y. Sun, S.P. Alexander, M.J. Garle, et al., Cannabinoid activation of
PPAR alpha; a novel neuroprotective mechanism, Br. J. Pharmacol.
152 (2007) 734–743.

[8] M. Kano, T. Ohno-Shosaku, Y. Hashimotodani, et al., Endocannabinoid-
mediated control of synaptic transmission, Physiol. Rev. 89 (2009) 309–
380.

[9] H.B. Bradshaw, J.M. Walker, The expanding field of cannabimimetic
and related lipid mediators, Br. J. Pharmacol. 144 (2005) 459–465.

[10] T. Bisogno, S. Maurelli, D. Melck, et al., Biosynthesis, uptake, and
degradation of anandamide and palmitoylethanolamide in leukocytes,
J. Biol. Chem. 272 (1997) 3315–3323.
[11] K.O. Jonsson, S. Vandevoorde, D.M. Lambert, et al., Effects of
homologues and analogues of palmitoylethanolamide upon the
inactivation of the endocannabinoid anandamide, Br. J. Pharmacol.
133 (2001) 1263–1275.

[12] V. Di Marzo, D. Melck, P. Orlando, et al., Palmitoylethanolamide
inhibits the expression of fatty acid amide hydrolase and enhances the
anti-proliferative effect of anandamide in human breast cancer cells,
Biochem. J. 358 (2001) 249–255.

[13] L. De Petrocellis, J.B. Davis, V. Di Marzo, Palmitoylethanolamide
enhances anandamide stimulation of human vanilloid VR1 receptors,
FEBS Lett. 506 (2001) 253–256.

[14] A.A. Zoerner, F.M. Gutzki, S. Batkai, et al., Quantification of endocan-
nabinoids in biological systems by chromatography and mass spectro-
metry: a comprehensive review from an analytical and biological
perspective, Biochem. Biophys. Acta 1811 (2011) 706–723.

[15] M.W. Buczynski, L.H. Parsons, Quantification of brain endocanna-
binoid levels: methods, interpretations and pitfalls, Br. J. Pharmacol.
160 (2010) 423–442.

[16] K. Kemp, F.F. Hsu, A. Bohrer, et al., Isotope dilution mass spectro-
metric measurements indicate that arachidonylethanolamide, the
proposed endogenous ligand of the cannabinoid receptor, accumulates
in rat brain tissue post mortem but is contained at low levels in or is
absent from fresh tissue, J. Biol. Chem. 271 (1996) 17287–17295.

[17] S. Kondo, H. Kondo, S. Nakane, et al., 2-Arachidonoylglycerol, an
endogenous cannabinoid receptor agonist: identification as one of the
major species of monoacylglycerols in various rat tissues, and
evidence for its generation through Ca2þ-dependent and -independent
mechanisms, FEBS Lett. 429 (1998) 152–156.

[18] A. Giuffrida, F. Rodriguez de Fonseca, D. Piomelli, Quantification of
bioactive acylethanolamides in rat plasma by electrospray mass
spectrometry, Anal. Biochem. 280 (2000) 87–93.

[19] M. Maccarrone, M. Attina, A. Cartoni, et al., Gas chromatography–
mass spectrometry analysis of endogenous cannabinoids in healthy
and tumoral human brain and human cells in culture, J. Neurochem.
76 (2001) 594–601.

[20] J. Chen, K.S. Paudel, A.V. Derbenev, et al., Simultaneous quantification
of anandamide and other endocannabinoids in dorsal vagal complex of
rat brainstem by LC–MS, Chromatographia 69 (2009) 1–7.

[21] D. Richardson, C.A. Ortori, V. Chapman, et al., Quantitative profiling
of endocannabinoids and related compounds in rat brain using liquid
chromatography–tandem electrospray ionization mass spectrometry,
Anal. Biochem. 360 (2007) 216–226.

[22] J. Williams, J. Wood, L. Pandarinathan, et al., Quantitative method for
the profiling of the endocannabinoid metabolome by LC–atmospheric
pressure chemical ionization-MS, Anal. Chem. 79 (2007) 5582–5593.

[23] D. Koga, T. Santa, T. Fukushima, et al., Liquid chromatographic–
atmospheric pressure chemical ionization mass spectrometric deter-
mination of anadamide and its analogs in rat brain and peripheral
tissues, J. Chromatogr. B 690 (1997) 7–13.

http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref1
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref1
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref1
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref2
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref2
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref3
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref3
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref3
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref4
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref4
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref4
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref5
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref5
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref6
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref6
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref7
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref7
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref7
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref8
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref8
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref8
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref9
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref9
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref10
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref10
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref10
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref11
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref11
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref11
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref11
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref12
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref12
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref12
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref12
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref13
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref13
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref13
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref14
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref14
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref14
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref14
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref15
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref15
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref15
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref16
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref16
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref16
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref16
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref16
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref17
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref17
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref17
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref17
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref17
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref17
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref18
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref18
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref18
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref19
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref19
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref19
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref19
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref20
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref20
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref20
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref21
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref21
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref21
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref21
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref22
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref22
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref22
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref23
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref23
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref23
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref23


Quantification of AEA, OEA and PEA in rat brain 241
[24] C.C. Felder, A. Nielsen, E.M. Briley, et al., Isolation and measure-
ment of the endogenous cannabinoid receptor agonist, anandamide, in
brain and peripheral tissues of human and rat, FEBS Lett. 393 (1996)
231–235.

[25] P.J. Kingsley, L.J. Marnett, Analysis of endocannabinoids by Agþ
coordination tandem mass spectrometry, Anal. Biochem. 314 (2003)
8–15.

[26] S. Patel, E.R. Wohlfeil, D.J. Rademacher, et al., The general
anesthetic propofol increases brain N-arachidonylethanolamine (ana-
ndamide) content and inhibits fatty acid amide hydrolase, Br. J.
Pharmacol. 139 (2003) 1005–1013.

[27] P.C. Schmid, R.J. Krebsbach, S.R. Perry, et al., Occurrence and
postmortem generation of anandamide and other long-chain N-
acylethanolamines in mammalian brain, FEBS Lett. 375 (1995)
117–120.

[28] D. Fegley, S. Gaetani, A. Duranti, et al., Characterization of the fatty
acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′-carba-
moyl-biphenyl-3-yl ester (URB597): effects on anandamide and
oleoylethanolamide deactivation, J. Pharmacol. Exp. Ther. 313
(2005) 352–358.

[29] M.Y. Zhang, Y. Gao, J. Btesh, et al., Simultaneous determination of
2-arachidonoylglycerol, 1-arachidonoylglycerol and arachidonic acid
in mouse brain tissue using liquid chromatography/tandem mass
spectrometry, J. Mass Spectrom. 45 (2010) 167–177.

[30] H.B. Bradshaw, N. Rimmerman, J.F. Krey, et al., Sex and hormonal
cycle differences in rat brain levels of pain-related cannabimimetic
lipid mediators, Am. J. Physiol. Regul. Integr. Comp. Physiol. 291
(2006) R349–358.
[31] C. Polson, P. Sarkar, B. Inchedon, et al., Optimization of protein
precipitation based upon effectiveness of protein removal and
ionization effect in liquid chromatography–tandem mass spectro-
metry, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 785 (2003)
263–275.

[32] B.F. Cravatt, D.K. Giang, S.P. Mayfield, et al., Molecular character-
ization of an enzyme that degrades neuromodulatory fatty-acid
amides, Nature 384 (1996) 83–87.

[33] E.A. Thomas, B.F. Cravatt, P.E. Danielson, et al., Fatty acid amide
hydrolase, the degradative enzyme for anandamide and oleamide, has
selective distribution in neurons within the rat central nervous system,
J. Neurosci. Res. 50 (1997) 1047–1052.

[34] M. Bortolato, R.A. Mangieri, J. Fu, et al., Antidepressant-like activity
of the fatty acid amide hydrolase inhibitor URB597 in a rat model of
chronic mild stress, Biol. Psychiatry 62 (2007) 1103–1110.

[35] P.S. Naidu, S.G. Kinsey, T.L. Guo, et al., Regulation of inflammatory
pain by inhibition of fatty acid amide hydrolase, J. Pharmacol. Exp.
Ther. 334 (2010) 182–190.

[36] M. Scherma, L.V. Panlilio, P. Fadda, et al., Inhibition of anandamide
hydrolysis by cyclohexyl carbamic acid 3′-carbamoyl-3-yl ester
(URB597) reverses abuse-related behavioral and neurochemical
effects of nicotine in rats, J. Pharmacol. Exp. Ther. 327 (2008)
482–490.

[37] J. Hwang, C. Adamson, D. Butler, et al., Enhancement of endocan-
nabinoid signaling by fatty acid amide hydrolase inhibition: a
neuroprotective therapeutic modality, Life Sci. 86 (2010) 615–623.

http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref24
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref24
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref24
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref24
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref25
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref25
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref25
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref26
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref26
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref26
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref26
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref27
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref27
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref27
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref27
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref28
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref28
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref28
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref28
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref28
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref29
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref29
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref29
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref29
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref30
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref30
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref30
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref30
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref31
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref31
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref31
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref31
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref31
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref32
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref32
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref32
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref33
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref33
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref33
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref33
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref34
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref34
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref34
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref35
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref35
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref35
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref36
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref36
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref36
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref36
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref36
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref37
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref37
http://refhub.elsevier.com/S2095-1779(13)00134-2/sbref37

	Quantification of anandamide, oleoylethanolamide and palmitoylethanolamide in rodent brain tissue using high performance...
	Introduction
	Materials and methods
	Chemicals
	Calibration and quality control sample preparation
	Sample extraction
	LC–MS conditions
	Validation
	Biological application
	Statistics

	Results and discussion
	Method development
	Validation
	Biological application

	Conclusions
	Acknowledgments
	References




