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Background: Meningioma invasion can be preoperatively recognized by radiomics
features, which significantly contributes to treatment decision-making. Here, we aimed
to evaluate the comparative performance of radiomics signatures derived from varying
regions of interests (ROIs) in predicting BI and ascertaining the optimal width of the
peritumoral regions needed for accurate analysis.

Methods: Five hundred and five patients fromWuhan Union Hospital (internal cohort) and
214 cases from Taihe Hospital (external validation cohort) pathologically diagnosed as
meningioma were included in our study. Feature selection was performed from 1,015
radiomics features respectively obtained from nine different ROIs (brain-tumor interface
(BTI)2–5mm; whole tumor; the amalgamation of the two regions) on contrast-enhanced
T1-weighted imaging using least-absolute shrinkage and selection operator and random
forest. Principal component analysis with varimax rotation was employed for feature
reduction. Receiver operator curve was utilized for assessing discrimination of the
classifier. Furthermore, clinical index was used to detect the predictive power.

Results: Model obtained from BTI4mm ROI has the maximum AUC in the training set
(0.891 (0.85, 0.932)), internal validation set (0.851 (0.743, 0.96)), and external validation
set (0.881 (0.833, 0.928)) and displayed statistically significant results between nine
radiomics models. The most predictive radiomics features are almost entirely generated
from GLCM and GLDM statistics. The addition of PEV to radiomics features (BTI4mm)
enhanced model discrimination of invasive meningiomas.
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Conclusions: The combined model (radiomics classifier with BTI4mm ROI + PEV) had
greater diagnostic performance than other models and its clinical application may
positively contribute to the management of meningioma patients.
Keywords: meningioma, brain invasion, radiomics, magnetic resonance images, peritumoral regions, prediction
INTRODUCTION

Brain invasion (BI), described as abnormal tumor projections
into the basal parenchyma, which lacks an overlapping layer of
the leptomeninges, has previously been considered to possess
therapeutic predictive and prognostic benefits in the
management of meningiomas (1–7). The designation of central
nervous system (CNS) tumors by the World Health
Organization (WHO) was revised in 2016, and this entity was
incorporated as a separate stand-alone classification standard for
atypical meningiomas (WHO grade II) (5). As a result, the
presence of BI will now significantly affect diagnosis, adjuvant
care, and, finally, prognosis in these patients. Though
preoperative BI detection is critically important, it continues to
present challenges in clinical practice. In this respect,
quantitative image analysis, or radiomics, has displayed
potential in BI detection. Radiomics can automatically obtain
thousands of tumor parameters from medical images centered
on intensity texture and geometric features, which could then be
used to demonstrate the relationship between the underlying
biological mechanisms and clinical implications (8). The
standard method employed in radiomics is to evaluate the
internal components of tumors. Despite the fact that this
technique has been considered helpful in several neoplastic
diseases, it has certain limitations when dealing with BI. The
main flaw is that it is unable to capture information on
peritumoral regions, which is a critical element for detecting
invasive growth. Malignant CNS tumors, such as glioblastoma
multiforme, develop infiltrative growth patterns and invade
surrounding tissues; actual tumor margins will stretch several
millimeters past the radiographically detectable margins (9). The
situation is comparable in invasive meningiomas, wherein diffuse
(single tumor cells extending into the encircling parenchyma)
and cluster-like (clustered islands or nests of tumor cells)
invasive patterns are sometimes too cryptic to be recognized
during medical imaging (10). When using this analytical
technique, it remains important to include the peritumoral
regions in the radiomics analysis to effectively identify
meningioma invasiveness (11). In addition to infiltrative tumor
cells, the peritumoral regions may accommodate other elements,
such as normal tissue or edema, and integrating these elements
for examination may limit the diagnostic capability of the
radiomics (9). Hypothetically, there may be an optimal width
for analyzing the peritumoral regions that ideally represent the
level of tumor penetration and development patterns, while
minimizing the influence of intervening factors, such as
normal parenchyma. Furthermore, it would be interesting to
note whether the analytical information obtained from
peritumoral regions alone could perhaps be utilized for
2

radiomics analysis, or whether the cumulative information
from the intra- and peritumoral regions is more beneficial.
Currently, we are not aware of any research that has attempted
to address these concerns.

This study intends to evaluate the comparative performance
of radiomics signatures derived from varying regions related to
intratumoral region (whole tumor), peritumoral region (brain-
tumor interface), and the amalgamation of the two regions
(combine region) in predicting BI and to ascertaining the
optimal width of the peritumoral regions needed for accurate
analysis. We also used clinical, volumetric, and blood indices in
the assessment, to determine if we could enhance the diagnostic
strength of the envisaged models.
METHODS

Patients
The ethics committees of the Wuhan Union Hospitals and Taihe
Hospitals approved this research, and the requirement for
informed consent was signed. All individual medical data were
anonymized prior to analysis. We reviewed all cases of
neuropathologically diagnosed meningioma, from January
2012 to April 2020, in the neurosurgical database of Wuhan
Union Hospital. Patients were included in the study if the
following criteria were met: (a) recently diagnosed intracranial
meningiomas awaiting resection; (b) undergone relevant MRI
and blood testing in the same hospital, 4 and 2 weeks prior to
surgery; (c) MR images were accessible in DICOM format,
enveloping T1WI and T2 fluid-attenuated inversion recovery
(FLAIR) and contrast-enhanced T1-weighted (CE-T1WI)
sequences; (d) MR images were free of visible artefacts or
spatial distortions; (e) full blood test results were accessible in
the electronic medical database system. Patients with recurrent
intracranial lesions, neurofibromatosis type II, or a history of
brain surgery or radiotherapy were excluded. Based on these
criteria, 505 successive patients from Wuhan Union Hospital
(XHH cohort) were included in the analysis, with 105 having BI
and 400 without BI (NBI). Subsequently, a temporal split-sample
method was used to partition the dataset into a training set of 404
patients (84% without BI) and an internal validation set of 101
patients (21% with BI).

External validation was performed using data from Taihe
Hospital (THH cohort) with a similar search technique
employed. Following the implementation of the inclusion and
exclusion criteria, a total of 214 successive patients were
admitted, with 49 having BI and 165 being NBI. Figure 1
displays a flow diagram describing the selection process.
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Importantly, BI was evaluated retroactively and determined
retrospectively, based on pathological and operative results.
Meningioma specimens with adjacent CNS tissues were
routinely examined for signs of invasive tumor growth by a
junior neuropathologist in our centers, using the guidelines
employed by Perry et al.; a senior neuropathologist later
reviewed the findings to guarantee accuracy (1). We began by
reviewing each patient’s pathological analysis. If there was a clear
indication of BI in the study, the patient was classified as BI (105
cases); if there was brain parenchyma in the tumor specimen, but
no indication of BI was found, the patient was classified as NBI
(279 cases); and if there was no brain parenchyma in the
specimen, the accompanying operative report was examined.
When considering the operative report, if valid comments on
Frontiers in Oncology | www.frontiersin.org 3
invasive growth or breach of the pial-arachnoid border were
present, the patient would be excluded from the analysis (81
cases), otherwise, the patient would be classified as NBI (121
cases). This method of analysis yielded a total of 105 cases with
BI and 400 cases with NBI in the XHH cohort.

Image Analysis
MR images in XHH and THH cohort were carried out with the
aid of the 1.5T (Siemens Avanto, Erlangen, Germany) or 3.0T
(Siemens Trio, Erlangen, Germany) magnetic resonance clinical
scanners with a standard head coil. Images were obtained with a
line of sight of 230 × 230 mm, a matrix of 512 × 512, a slice
thickness of 5 mm, and a flip angle of 90°. The repetition time
(TR)/echo time (TE) for T1WI and FLAIR sequences were 500/
FIGURE 1 | Patient selection criteria.
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8.4 and 9,000/105 ms, respectively. MR images in dataset III was
carried out with the aid of the 3.0T (Discovery MR750w,
Milwaukee, WI, USA) magnetic resonance clinical scanner.
Images were obtained with a line of sight of 240 × 240 mm, a
matrix of 416 × 416, a slice thickness of 5 mm, and a flip angle of
90°. The TR/TE for T1WI and FLAIR sequences were 2,009/22.7
and 9,000/130 ms, respectively. CE-T1WI sequences in the two
centers were obtained following the intravenous administration
of 0.2 ml/kg gadopentetate dimeglumine.

FLAIR and CE-T1WI sequences were utilized for the image
analysis. The publicly available software, ITK-SNAP (version 3.8.0,
http://www.itksnap.org), was selected for the segmentation tasks
(12). The tumor was manually segmented on CE-T1WI by one
researcher (DDX, with 6 years of clinical experience in
neuroimaging). Another researcher (ZZ, with 3 years of clinical
expertise in neuroimaging) manually outlined peritumoral edema
on FLAIR in a similar fashion; since this region also included the
tumor, the volume of the peritumoral edema (PEV) was measured
by deducting the magnitude of the tumor from the total volume of
this outlined region. PEV divided by tumor volume gives the
peritumoral edema index (PEI). A senior researcher (PFY, with
10 years of clinical expertise in neuroimaging) examined all
segmentations, and when opinions differed, common ground was
established through a dialog between the clinicians. During the
segmentation and examination processes, researchers were blinded
to the characteristic features of the subjects. Following the initial
segmentation, 50 patients were randomly selected from the data
pool; the latter two researchers (DDX and ZZ) resegmented the
tumor on CE-T1WI to determine and evaluate inter- and
intrarater reliability.

Relying on the tumor outline, boundary areas of the tumor
were instantaneously formulated using an in-house script written
Frontiers in Oncology | www.frontiersin.org 4
in Python (version 3.8.0, https://www.python.org/). The script
would concurrently move the outline N mm inward and N mm
outward and generates a boundary region with a width of 2 × N
mm. Each patient had four boundary areas with widths of 10, 8,
6, and 4 mm accordingly. Since meningiomas are commonly
present around the skull, we streamlined these areas by manually
discarding the regions adjacent to the skull to reduce the possible
effect of this component on eventual image processing
(investigator DDX). Investigator PFY visibly inspected all
streamlined segmentations. Furthermore, we merged
segmentations of the boundary areas with tumor segmentation
using the same script, resulting in three new equivalent
segmentations for each subject. These new segmentations
consisted of information on the internal components and the
surrounding regions of the tumor and thus could constitute an
alternate method for detecting BI (Figure 2).

Radiomics features were retrieved through pyradiomics, an
open-source python package (version 3.0.0, https://github.com/
AIM-Harvard/pyradiomics) (13). The volume of the ROI is
calculated from the triangle mesh of the ROI, which could be
obtained with a ready-to-use function provided in pyradiomics.
Images were preprocessed leading up to the retrieval, which
focused on normalization, discretization, and resampling to a
3 × 3 × 3 isotropic voxel size. These measures were intended to
enhance the efficiency and reliability of radiomics analysis and
were recommended as an aspect of the methodology by the
developers of the package (14, 15). Three classes of
characteristics were calculated. First-order statistics (N = 18)
define the histogram of voxel intensity values embedded inside
the region of interest (ROI) via fundamental and popularly
utilized metrics. Geometric features (N = 14) described the 3D
form and scale of the ROI and were measured only on the 3D
FIGURE 2 | Images show the BTI, WT, and Com radiomics of invasive meningioma at CE-T1W MR image.
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mask of the ROI (i.e., independent from the gray-level intensity
distribution in the ROI). Textural features characterizing
patterns or spatial distribution of voxel intensities were
determined from the gray-level co-occurrence matrix (GLCM,
N = 21), gray-level size zone matrix (GLSZM, N = 16), gray-level
run length matrix (GLRLM, N = 16), neighboring gray tone
difference matrix (NGTDM, N = 5), and gray-level dependence
matrix (GLDM, N = 14). In addition to the original image, 10
derived images were produced by adding LoG or Wavelet filters.
Notwithstanding, a total of 1,015 features were retrieved for
each patient.

Blood Indices
Blood samples were obtained within the 2 weeks prior to the
surgery. Where several samples were present, the one taken
nearest to the time of surgery was used. Absolute counts of
leukocytes, erythrocytes, hemoglobin, platelets, neutrophils,
lymphocytes, monocytes, albumin, and fibrinogen were
evaluated. Consequently, we evaluated the neutrophil-to-
lymphocyte ratio (NLR), derived NLR, neutrophil/[leukocyte-
neutrophil] (dNLR), platelet-to-lymphocyte ratio (PLR),
systemic immune-inflammation index (SII), monocyte-to-
lymphocyte ratio (MLR), and prognostic nutritional index
(PNI). The detailed descriptions and explanations of these
indices have been illustrated earlier (16–22).

Feature Selection and Modeling
Firstly, the raw values of all radiomics-extracted features were
scaled from 0 to 1 as

X΄
i =

Xi − Xmin

Xmax − Xmin

where X΄
i indicates the scaled ith value of variable X. Xmin and

Xmax indicate the minimum and maximum value for variable
X, respectively.

The intraclass coefficient (ICC) was applied to assess the
reproducibility of imaging metrics measured by different
radiologists. As Figure 3C shows, only features with ICC ≥0.8
were maintained for further feature selection processing. We
then applied least absolute shrinkage and selection operator
(LASSO) (23) by a 10 cross-fold cross-validation, to further
filter the variables, followed by ranking the importance of these
variables and selecting the corresponding variables according to
the events per variable principle to construct logistic regression
models and random forest models, respectively. In addition,
principal component analysis (PCA) (R package version 2.1.3,
https://CRAN.R-project.org/package=psych) (24) with varimax
rotation was employed for feature reduction, in an effort to retain
more variance and reduce redundancy of the variables.

Statistic Analysis
Quantitative variables are reported as mean ± SD and median
(IQR), while describing variables as counts and percentages.
Comparisons of frequency distributions between subgroups of
categorical variables were made using the c2 test or the exact
Fisher’s test, while the t-test or Wilcoxon’s test was used for
Frontiers in Oncology | www.frontiersin.org 5
comparisons between numerical variables. Spearman’s
correlation test was used to evaluate the collinear correlations
between features.

Receiver operator curve (ROC) was utilized for assessing
discrimination of the classifier; area under curve values (AUC)
were calculated (25). Multiple hypothesis testing using Benjamini
and Hochberg’s (BH) method was used to control false-discovery
rate (FDR) for comparison between groups. The performance of
predictors was expressed by its accuracy, sensitivity (i.e., true
positive rate), and specificity (i.e., true negative rate), positive
predictive value (PPV), and negative predictive value (NPV).
Precision-recall curve (PRC) was drawn to further evaluate the
model performance under the condition of sample proportion
imbalance (Figure S3). Decision curve analysis (DCA) is a
method for assessing the benefits of diagnostic tests that covers
a range of patient preferences for receiving under- and
overtreatment risk in order to make decisions about test
selection and use (26).

Statistical analyses were performed using R software (version
4.0.1, https://www.r-project.org). Statistical significance was
fixed at p < 0.05 (a = 0.05).
RESULTS

Patient Characteristics
Table 1 displays patient characteristics and contextual
information. In both the XHH and THH cohorts, there was no
substantial variation in age or sex among the invasive and
noninvasive groups (p = 0.15; 0.84). High-grade meningiomas
(grades II and III) were much more prevalent in the invasive
group in both cohorts. There were no statistically significant
variations in the laboratory research index among the invasive
and noninvasive groups. The distribution of tumor and
peritumoral edema volume was distorted across cohorts, with
invasive meningiomas having a greater median volume in tumor
and peritumoral edema (p < 0.001).

Comparison of Performance
Across ROI Areas
BTI4mm-Based Radiomics Features Showed the
Best Diagnostic Performance Independently in Both
the XHH and THH Cohorts
Patients has been devided into XHH cohort (Figure 3A) and
THH cohort (Figure 3B). Prior to the radiomics analysis, we
exempted 49 radiomics features with an intraclass correlation
coefficient <0.8 (Figure S2), representing a broader margin of
variation under modest segmentation disparities. The residual
966 features were vetted by Spearman’s correlation test and
features with Spearman’s correlation coefficient >0.9 were
excluded in the XHH and THH cohorts, respectively
(Figure 3C). The features included are summarized in Table
S1. Considering the number of events per variable (EPV), the
nine top features in the XHH cohort and three features for the
THH cohort were chosen in every iteration. Figures 3D, E
depicts the distribution of AUCs for nine ROIs after 100
August 2021 | Volume 11 | Article 708040
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TABLE 1 | Baseline characteristics of the patients in the different cohorts.

XHH (training and internal validation cohorts) THH (external validation cohort)

Noninvasive Invasive p Noninvasive Invasive p

N 400 105 165 49
Age
Median [IQR] 53.0 [47.0, 60.0] 55.0 [49.0, 61.0] 0.109 52.0 [47.0, 60.0] 54.0 [48.0, 60.0] 0.146

Sex (%)
Male 81 (20.2) 38 (36.2) 0.001 45 (27.3) 12 (24.5) 0.839
Female 319 (79.8) 67 (63.8) 120 (72.7) 37 (75.5)

WHO grade (%)
I 372 (93.0) 65 (61.9) <0.001 156 (94.5) 31 (63.3) <0.001
II 28 (7.0) 33 (31.4) 7 (4.2) 17 (34.7)
III 0 (0.0) 7 (6.7) 2 (1.2) 1 (2.0)

Laboratory test, (median [IQR])
WBC (×109/L) 6.18 [4.90, 8.84] 6.22 [4.95, 7.82] 0.646 5.77 [4.70, 7.32] 5.55 [4.33, 8.13] 0.587
Erythrocyte (×109/L) 4.22 [3.83, 4.56] 4.25 [3.93, 4.53] 0.773 4.22 (0.52) 4.14 (0.52) 0.380
Hemoglobin (g/L) 125 [115, 135] 126 [117, 137] 0.446 126 [116, 137] 127 [115, 135] 0.708
Platelet (×109/L) 195 [155, 238] 202 [162, 235] 0.667 197 [159, 238] 189 [161, 236] 0.660
Neutrophil (×109/L) 3.74 [2.70, 6.79] 3.62 [2.78, 5.58] 0.714 3.50 [2.58, 5.31] 3.33 [2.49, 5.61] 0.750
Lymphocyte (×109/L) 1.56 [1.04, 1.97] 1.52 [1.08, 1.95] 0.820 1.64 [1.26, 1.95] 1.52 [1.10, 1.80] 0.342
Monocyte (×109/L) 0.38 [0.28, 0.49] 0.42 [0.33, 0.56] 0.003 0.35 [0.28, 0.47] 0.37 [0.32, 0.44] 0.416
Albumin (g/L) 40.1 [36.0, 43.0] 38.8 [35.6, 42.1] 0.101 40.6 [37.9, 42.8] 40.1 [38.3, 43.3] 0.684
FIB (g/L) 2.89 [2.52, 3.33] 2.89 [2.62, 3.33] 0.629 3.10 [2.75, 3.65] 3.11 [2.79, 3.69] 0.943

Magnetic resonance imaging
TV (median [IQR]; ml) 21.8 [7.7, 46.1] 30.1 [13.9, 54.4] 0.021 16.6 [7.9, 37.3] 36.7 [16.7, 62.9] <0.001
PEV (median [IQR]; ml) 16.0 [4.6, 51.3] 51.3 [17.4, 114.3] <0.001 8.8 [2.9, 29.3] 41.9 [12.0, 83.1] <0.001
Frontiers in Oncology | www.fron
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IQR, interquartile range; WBC, white blood cell; FIB, fibrinogen; TV, tumor volume; PEV, peritumoral edema volume.
A B

D E

C

FIGURE 3 | The overall predictive performance of invasive meningioma in different ROI areas between two independent cohort. (A) Patients were split into the XHH
cohort (n = 505) and the THH cohort (n = 214). (B) During feature selection and classifier establishment, fivefold cross-validations of 100 sampling without
replacement were used. (C) Schematic representation of feature selection and classifier building. (D, E) Violin plot of the AUC value distribution of different ROI areas
in the XHH cohort (left side) and the THH cohort (right side). ****p < 0.0001.
708040

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xiao et al. Prediction of Invasive Meningioma
iterations.TheaverageAUCof theBTI4mmmodel in theXHHcohort
(Figure 3D) is much greater than that of the other models based on
various ROIs, both by logistic regression (AUCmean = 0.929) and
random forest algorithms (AUCmean = 0.922). The THH cohort
(Figure 3E) also exhibits the same pattern. Furthermore, the XHH
cohort BTI4mmmodel predicted disease invasivenessmore effectively
than the THH cohort (AUCmean is 0.870 and 0.865 for LR and
RF, respectively).
Frontiers in Oncology | www.frontiersin.org 7
Feature Reselection and Further Comparison of
Radiomics Model
To validate the robustness of the initial results, we split the XHH
cohort into the training and internal validation sets and used the
THH cohort as the external validation set (Figure 4). After
Spearman’s correlation test for both cohort, we preprocessed the
radiomics features of each ROI among the nine ROIs from
BTI2mm to the entirety of the tumors, we maintained 230,
A B

D

C

FIGURE 4 | The receiver operating characteristic curves when applying the backward stepwise LR algorithm. (A) Patients were split into the XHH cohort (n = 505).
(B, C) Feature selection, reduction and classifier establishment. (D) After feature reselection and PCA dimensional reduction, models were obtained based on
principal components.
August 2021 | Volume 11 | Article 708040
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225, 216, 206, 197, 199, 197, 209, and 218 features in that
sequence, with the comprehensive features demonstrated in the
Table S3. Eventually, PCA with varimax rotation was
implemented to feature mitigation and eight principal
components such as PC1, PC5, PC2, PC3, PC6, PC7, PC11,
and PC10were acquired in the BTI4mm model. Other PCA
characteristics of the ROI areas are represented in the Figure S4.
As previously stated, the AUC values of the models constructed
by LR and RF are identical (Figures 3D, E). Given the simplicity
of assessing the model, we picked the backward stepwise LR
algorithm to design models for these eight PCA indicators.

As illustrated in Figure 4D, BTI4mm has the maximum
ROC-AUC in the training set (0.891 (0.85, 0.932)), internal
validation set (0.851 (0.743, 0.96)), and external validation set
(0.881 (0.833, 0.928)) and displayed statistically significant
results. The PRC-AUC in the training set is 0.709, internal
validation set is 0.736, and external validation set is 0.675
(Figure S3). P-Value of AUCs in violin plot (Figures 3D, E),
peritumoral edema volume, and peritumoral edema index and
the nine models from different regions (Figure 4D) were
adjusted, and the adjusted p-value was statistically significant.
Corresponding adjusted p-values between nine models are
shown in Table S2.

After extensive analysis, BTI4mm was found to be the best-
predictive radiomics model to put it briefly.

Clinical Predictors for Disease Invasion
As displayed in Table 1 and Figure S5, there were significant
variations in peritumoral edema volume and peritumoral edema
index. In the external validation sample, PEV performed better
as an independent predictor, with an AUC of 0.71, especially
when compared with PEI (AUC, 0.59).

Combined Models
As per themaximumclinical benefit recommended byDCAcurves
(Figure 5), the cutoff value was set as 0.20, and the comprehensive
diagnostic performances are demonstrated in Table 2. The
radiomics-based model outperformed the clinical parameter-
based model in both internal and external set discrimination of
invasive meningioma on ROC study. The addition of PEV to
radiomics features enhanced the model discrimination of invasive
meningiomas.Figure 6Adepicts the ranking of variable priority for
discriminating invasive meningioma in the combined model, and
essential radiomics parameters are encapsulated in a heatmap
(Figure 6B). Between these clusters, radiomics features that align
exceptionally well with PC10 and PC7, and provide the best
diagnostic results, are almost entirely generated from GLCM,
GLDM, and GLSZM statistics.
DISCUSSION

This multicenter study analyzed the BTI2mm, BTI3mm,
BTI4mm, BTI5mm, Com2mm, Com3mm, Com4mm,
Com5mm, and WT ROI areas independently to formulate and
confirm nine radiomics signatures to forecast brain invasion in
Frontiers in Oncology | www.frontiersin.org 8
meningioma patients. We discovered that BTI4mm ROI had a
higher ROC-AUC and PRC-AUC, particularly compared with
other models both in the training set, internal validation set, and
external validation set and acquired the highest AUC value of
0.891, 0.851, and 0.881, respectively. Compared with other ROIs,
the diagnostic performance of the BTI4mm model in the THH
cohort was not as high as in the XHH cohort after 100 iterations.
However, both provided better classification performance
independently. Furthermore, peritumoral edema volume
enhanced the diagnostic performance of the BTI4mm
radiomics model as an autonomous clinical predictor.

A subsequent study stated that brain-tumor interface MRI
features in the combination of multisequences (T1C and T2)
with a boundary of 5 mm (as in our research) allow forecasting of
brain invasion in meningioma, with a recorded AUC of 0.82 in
the corresponding internal validation set (11). That being said, in
the results, the writers employed only the T1C phase to train
radiomics models and obtained a lower AUC value for BTI5mm
(AUC, 0.72). In the research of Zhang et al., combining T1C and
T2 models resulted in enhanced discrimination capacity by
4.77% and 6.34%, accordingly, as contrasted to the T1C and
T2 models (27). Moreover, in the external validation set,
radiomics models combining T1C and T2 yielded a higher
AUC (0.796) than a single T1C sequence WT model (AUC,
0.72). T1C images are not only typically used to represent tumor
boundary and blood flow but can also be used to assess the level
of tumor invasiveness (28). T2 imaging is more effective at
measuring edema and is typically used on water-rich tissue
(29). As a result, multisequence radiomics models may be
more sensitive in display detail about tumors and have a
higher diagnostic capacity than T1C and T2 sequences alone.
Notably, in the analysis, TBTI4mm features derived from only
the T1C sequence demonstrated outstanding diagnostic
efficiency with an AUC of 0.851 in the internal validation set,
which was higher than the multisequence radiomics models in
the previous two tests. While having an AUC of merely 0.881,
BTI4mm was the best-performing model compared with the
other ROIs in the external validation set.

We considered potential reasons as to why the BTI4mm ROI
area demonstrated the overall best-predictive effectiveness in
diagnosing invasive meningioma. Some research centered on
detecting glioma microstructural heterogeneity using
sophisticated MRI, which implicitly showed the infiltrating
extension relative to standard white matter (30–32). Niha et al.
claimed that radiomics features extracted from intranodular and
perinodular regions of nodules can distinguish nonsmall-cell
lung cancer adenocarcinomas from benign granulomas at
noncontrast CT, and the most predictive features were found
to be within an immediate distance of 5 mm from the nodule
(33). In light of our observations, we concluded that the 4-mm
extension boundary within and outside the tumor contour could
have an increased level of heterogeneity for most invasive
meningioma. Normal brain around the tumor may reveal
tumor cells trying to infiltrate the surrounding parenchyma
and lacking an intervening layer of leptomeninges (10), which
is essentially distinct from noninvasive meningiomas. Recent
August 2021 | Volume 11 | Article 708040
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studies have focused on the correlation between meningioma
pathological grade and radiomics features. The research of Park
et al., for example, indicated that MRI-based radiomics features
enabled the differentiation of meningioma grading (34). Our
previous study also reflected the potential value of preoperative
MRI texture and shape analysis in grading meningiomas (35).
Maria Caffo’s study indicated that brain invasion significantly
influence the DFS of Simpson’s grade I meningioma. The
prognosis of meningioma is determined by many factors,
besides brain invasion, high mitotic index and sheeting also
indicated poor outcome. Researchers deemed that atypical
meningioma should be diagnosed mainly based on high
mitotic index or brain invasion, which is more associated with
recurrence than minor criteria (34). Until now, there have been
very few studies on the invasive expansion extent of
meningiomas. In this research, the average tumor volume of
the XHH and THH cohorts was 21 and 23 ml, respectively. It
may serve to reflect the aggregate volume of meningiomas in
large-scale hospitals in China (Figure S1).

Nevertheless, owing to the graded diagnosis and care program
of the country, meningioma size in primary medical units is
smaller than in high-level hospitals. As a result, BTI4mm ROI
could not accurately depict the maximum heterogeneity in
primary care hospitals. We considered whether there was a
proportional association between the extent of meningioma
infiltration and tumor size that deserved further investigation.

PC10 and PC7 have a significant weighting coefficient in
variable importance analysis and have a robust predictive
strength for diagnosing invasive meningioma. The radiomics
Frontiers in Oncology | www.frontiersin.org 9
feature-based principal component analysis revealed that the
highest output is almost entirely PC10, PC7, and PC1 elements,
which are almost entirely generated from the GLCM, GLDM,
and GLSZM statistics. The result of GLCM and GLDM is
consistent with the research of Leehi et al. (11). PEV boosted
the AUC of the radiomics model by about 0.003 in the external
validation set and 0.007 in the training set as an independent
predictor for an AUC of about 0.702. The eight components of
the unified model included radiomics solid features to the fullest
degree possible, assisting in avoiding heterogeneous information
loss. This might be part of the reason why T1C sequences solely
facilitate an optimal classifier performance.

The use of radiomics methods to implicitly portray tumor
infiltration is significant for clinical transformation applications,
mainly in determining the presence of an invasive meningioma.
The gold standard for BI assessment remains neuropathological
investigations (1, 7). Unfortunately, this has the inherent flaw of
only being able to make the correct diagnosis a few days
following surgery. Predicting BI before surgery is of great
importance in clinical practice for many reasons. For starters,
information on tumor invasiveness may assist in determining
future management and considering surgical plans for patients
with minor and asymptomatic lesions. Though such cases
typically do not necessitate early excision, signs of invasiveness
can necessitate closer monitoring or even earlier elimination.
Secondly, some research suggests that BI is a significant indicator
of perioperative complications (2–4). For example, if it can be
shown that patients with BI are genuinely at greater risk of
perioperative seizures, antiepileptic treatment could be
FIGURE 5 | Decision curve analysis of BTI4mm model for invasion diagnosis. For the training and validation sets, the net benefit curve is shown. When threshold
probability reached 0.20, the clinical benefit of the models was the greatest.
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commenced in a timely fashion. Finally, it has been proposed
that surgical procedures and the degree of histological sampling
may affect the neuropathological diagnosis of BI (1, 36–38).
Preoperative BI awareness should be demonstrated in
communication among neurosurgeons and neuropathologists,
enhancing neuropathological diagnosis precision by taking
strategic measures.

Since the publication by Perry et al. in 1997, BI has been
constantly described as the presence of tumor cells within the
adjacent brain tissue without a dividing connective tissue layer
(1). As per this definition, conclusive diagnosis of BI depends
entirely on histopathological evaluation, which requires the
existence of adjacent brain parenchyma. Consequently, since in
reality most meningioma specimens lack brain parenchyma,
definitive diagnosis is generally challenging. The fundamental
cause for the absence of CNS tissue is that neurosurgeons tend to
keep the arachnoid membrane intact wherever possible to
prevent neurological injury. Another possible explanation is
nonstandardized intraoperative tumor sampling (37). Several
operation-related variables, including partial resection and the
use of a cavitron ultrasonic surgical aspirator (CUSA), appear to
be relevant to the reduced ease of access to CNS tissue. Timme
et al. demonstrated that microsurgery nuances could affect the
Frontiers in Oncology | www.frontiersin.org 10
existence of CNS parenchyma on meningioma specimens and
thus change the efficiency of BI detection (38). Histopathological
sampling methods may also affect the evaluation of BI (7). As a
result, the existence of BI is most likely underreported.

To remedy this shortcoming, two recent studies (37, 39)
sought to ascertain the advantages of a hybrid strategy that
contained knowledge from both operative and pathological
observations. Their early findings showed that the combined
method had the ability to transcend the shortcomings of sole
neuropathological evaluation and may be of considerable
therapeutic benefit. In light of these findings, we embraced
identical combined standards to evaluate BI in the current
study. Importantly, for patients whose tumor specimens
revealed no ordinary CNS tissues, the resulting operative
reports were evaluated. If the operative reports described the
presence of BI, it is difficult to confirm whether BI had in fact
occurred, and this makes it impracticable to ascertain BI without
neuropathological verification. To prevent potential bias, we
agreed to eliminate these cases during the patient-selection
stage. These combined criteria should be able to reduce the
effect of incorrectly classifying cases on our analysis. It can also
help to understand the comparatively high proportion of BI in
the current study.
TABLE 2 | Diagnostic performance of classifiers.

Parameter Combined model Clinical model Radiomics model

Peritumoral edema volume + interface radiomics (4 mm) Peritumoral edema volume Interface radiomics (4 mm)

Training sets
TN/FP/FN/TP 255/68/13/68 248/72/43/41 253/70/13/68
AUC 0.898 (0.857, 0.939) 0.702 (0.639, 0.765) 0.891 (0.85, 0.932)

Accuracy 0.8 (0.757, 0.837) 0.715 (0.669, 0.759) 0.795 (0.752, 0.833)
Sensitivity/recall 0.84 0.488 0.84
Specificity 0.789 0.775 0.783
PPV/precision 0.5 0.363 0.493
NPV 0.951 0.852 0.951
NRI (categorical) Ref NA −0.04 (−0.10, −0.03)
NRI (continuous) Ref NA −0.43 (−0.66, −0.19)†

IDI Ref NA −0.03 (−0.06, 0)†

Internal validation sets
TN/FP/FN/TP 64/13/4/20 64/16/15/6 64/13/5/19
AUC (95% CI) 0.854 (0.745, 0.963) 0.608 (0.468, 0.749) 0.851 (0.743, 0.96)
Accuracy 0.832 (0.744, 0.899) 0.693 (0.593, 0.781) 0.822 (0.733, 0.891)
Sensitivity/recall 0.833 0.286 0.792
Specificity 0.831 0.8 0.831
PPV/precision 0.606 0.273 0.594
NPV 0.941 0.81 0.928
NRI (categorical) Ref NA −0.01 (−0.1, 0.07)
NRI (continuous) Ref NA 0.21 (−0.15, 0.57)
IDI Ref NA 0.02 (0, 0.06)

External validation sets
TN/FP/FN/TP 124/41/7/42 140/25/30/19 131/34/10/39
AUC 0.885 (0.839, 0.932) 0.709 (0.628, 0.79) 0.881 (0.833, 0.928)
Accuracy 0.776 (0.714, 0.83) 0.743 (0.679, 0.8) 0.794 (0.734, 0.846)
Sensitivity/recall 0.857 0.388 0.796
Specificity 0.752 0.848 0.794
PPV/precision 0.506 0.432 0.534
NPV 0.947 0.824 0.929
NRI (categorical) Ref NA 0.01 (−0.08, 0.11)
NRI (continuous) Ref NA 0.09 (−0.37, 0.19)
IDI (95% CI) Ref NA 0 (−0.03, 0.02)
August 2021
P < 0.05. Ref, Reference; Na, Not applicable.
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There are some drawbacks to this analysis that should be
stated. Owing to the retrospective nature of the results, uncertain
confounding variables may be present. Second, MRI images were
collected using a range of parameters and devices, which may
affect the efficiency and robustness of the radiomics features. To
minimize this effect, we used widely suggested preprocessing
Frontiers in Oncology | www.frontiersin.org 11
pipelines prior to the actual study. Third, a manual technique
was employed for tumor segmentation; the critical reason for this
was that comparing segmentation approaches was not the
primary objective of this work. A manual approach could, in
our view, yield precise delineations of meningiomas with
adequate time and labor.
A

B

FIGURE 6 | Multiple types of radiomics features associated with brain invasiveness in the combined model. (A) Variable importance for classification of event in combined
model. (B) Radiomics feature-based principal component analysis (PCA) of tumor invasion. PCA shows that PC10 and PC7 are almost able to distinguish the invasive and
noninvasive groups of meningiomas and the multivariate variation of different radiomics features of PC10 and PC7. A total of six features including gray-level co-occurrence
matrix (GLCM) and gray-level dependence matrix (GLDM) were subjected to PCA, and those features with variable loading for PC7 ≥0.7 or PC10 ≥0.5 were shown as major
contributors. Box plots show the overall distribution of PC10 and PC7 scores within tumor invasion (Wilcoxon rank-sum test). PEV, peritumoral edema volume; ****p < 0.0001.
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Furthermore, the ICC analyses demonstrated the accuracy of
the manual delineations. Fourth, we only considered radiomics
features extracted from CE-T1WI sequences, while other related
research used or proposed T2WI, FLAIR, and DWI sequences.
This may be viewed as a limitation in this study; however,
reaching satisfactory prediction accuracy with fewer MR
sequences may encourage clinical implementation of the
proposed model.

Lastly, we only considered the functionality of the variables
stated previously, in predicting BI in meningiomas; a more
instinctive and important question would be to consider
whether these variables are correlated to patient prognosis,
particularly given the ongoing debate about the true prognostic
value of BI. We intend to gather such data in order to answer this
question in future studies.
CONCLUSION

In conclusion, the study found that the radiomics classifier with
BTI4mm ROI had greater diagnostic performance than the other
eight radiomics models: BTI2mm, BTI3mm, BTI5mm, com2mm,
com3mm, com4mm, com5mm, and WT. PEV strengthened the
diagnostic capacity of the radiomics classifier in detecting invasive
meningioma. Further prospective multicenter research is required
to determine the best BTI extension for detecting invasiveness in
various tumor size groups.
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