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Abstract: The liver plays a pivotal role in drug handling due to its contribution to the processes of
detoxification (phases 0 to 3). In addition, the liver is also an essential organ for the mechanism of
action of many families of drugs, such as cholesterol-lowering, antidiabetic, antiviral, anticoagulant,
and anticancer agents. Accordingly, the presence of genetic variants affecting a high number of
genes expressed in hepatocytes has a critical clinical impact. The present review is not an exhaustive
list but a general overview of the most relevant variants of genes involved in detoxification phases.
The available information highlights the importance of defining the genomic profile responsible
for the hepatic handling of drugs in many ways, such as (i) impaired uptake, (ii) enhanced export,
(iii) altered metabolism due to decreased activation of prodrugs or enhanced inactivation of active
compounds, and (iv) altered molecular targets located in the liver due to genetic changes or
activation/downregulation of alternative/compensatory pathways. In conclusion, the advance in this
field of modern pharmacology, which allows one to predict the outcome of the treatments and to
develop more effective and selective agents able to overcome the lack of effect associated with the
existence of some genetic variants, is required to step forward toward a more personalized medicine.

Keywords: detoxification; haplotype; isoform; metabolism; mutation; pharmacogenomics; polymorphism;
SNP; transport; variant

1. Introduction

A better understanding of the genetic and molecular bases accounting for the interindividual
variability in response to pharmacological treatment requires the knowledge of the role of genetic
variants in genes expressed in hepatocytes and involved in the mechanisms affecting hepatic drug
handling. These include detoxification mechanisms that are classified into four groups: (i) phase
0, transporters determining the uptake of the drug by hepatocytes; (ii) phase 1, small changes in
the molecule induced by oxidation-reduction (redox) reactions; (iii) phase 2, conjugation of drugs
with a polyatomic group; and (iv) phase 3, which for some drugs involves the export across the
canalicular membrane toward the biliary lumen and, in other cases, involves the transfer across
the hepatocyte sinusoidal membrane back to the blood for the elimination by the kidney of the
usually more hydrophilic derivatives generated by phases 1/2 in liver cells. The present review is not
an exhaustive list but a general overview of the most relevant variants affecting genes involved in
detoxification phases because they affect drug activity or induce higher toxicity, in most cases, owing
to accumulation in this organ, promoting drug-induced liver injury (DILI) (Table 1). To elaborate
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this review, we have also taken into account that the liver is the target of many drugs, and hence the
existence of genetic variants can affect the efficacy and toxicity of these drugs (Table 2). Additional
information to that provided in the present review regarding the clinical relevance of genetic variants,
i.e., demonstrated effects on pharmacokinetics, drug response and/or toxicity and their potential
clinical impact can be found at databases such as the Pharmacogene Variation Consortium website
(https://www.pharmvar.org/gene/), the Clinical Genome (ClinGen) resource (https://clinicalgenome.org/)
and the PharmGKB database (http://www.pharmgkb.org/). Minor allele frequency (MAF) data
were obtained from the Allele Frequency Aggregator (ALFA) project (version 27 February 2020)
(https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/) included in the NCBI database of single nucleotide
polymorphisms (dbSNP).

2. Phase 0: Uptake of Drugs

During phase 0 of hepatic detoxification, drugs are taken up by the hepatocytes from the blood
mainly via carrier-mediated processes that involve members of the solute carrier (SLC) superfamily
of proteins. The existence of single nucleotide polymorphisms (SNPs) in these genes, together
with the variability of their expression levels in liver cells, are important factors contributing to the
interindividual variability in the response of drugs that either act on hepatocytes or whose metabolism
and elimination depends on liver function. In many cases, the consequence of genetic variants is the
alteration of drug uptake, resulting in a significant impact on its efficacy, safety, and the appearance
of adverse reactions. It should be noted that many carriers share overlapping substrate specificity.
For this reason, even if the variant reduces the activity of a transporter, this is not always accompanied
by essential differences in the clinical response, because it can be compensated by the activity of
other transporters.

Databases, such as PharmGKB [1] and the ClinGen resource [2], have included more than
25,000 associations between genetic polymorphisms in SLC genes and drug response. Moreover,
the International Transporter Consortium (ITC), which is comprised of scientists from academia,
industry and regulatory agencies around the world, has documented a high degree of interindividual
variability in SLC transporter activities due to the presence of these genetic variants [3].

2.1. Organic Anion-Transporting Polypeptides (OATPs)

Some members of the OATP family, such as OATP1B1, OATP1B3, and OATP2B1 (SLCO1B1,
SLCO1B3, SLCO2B1 genes, respectively) are highly expressed at the basolateral membrane of hepatocytes,
where they play an important role in the uptake of many different substrates [4]. Because of their role
in drug uptake and disposition, OATP1B1 and OATP1B3 are considered among the most clinically
relevant carriers by ITC guidelines [5,6].

OATP1B1 is expressed exclusively in the sinusoidal membrane of hepatocytes. This transporter
has a broad substrate specificity that includes anionic, but also zwitterionic and neutral lipophilic
compounds. Among them are drugs widely used to reduce the risk of cardiovascular diseases, such as
statins, the antihypertensives enalapril, temocapril, olmesartan, and valsartan, and antidiabetics such
as repaglinide [7]. OATP1B1 can also transport thiazolidinediones (troglitazone), anticancer drugs
(SN-38, methotrexate, and taxanes), antibiotics (rifampicin, benzylpenicillin), antifungals (caspofungin)
and immunosuppressants (tacrolimus) [8]. To date, almost 200 SNPs in the SLCO1B1 gene have been
described, some of them very frequent, such as c.388A>G (p.Asn130Asp, rs2306283), whose minor
allele frequency (MAF) is 42.8%. This variant has less capacity to transport certain drugs, for instance,
repaglinide [9,10]. However, this does not result in an important impact on the pharmacokinetics,
response and toxicity of these drugs. In contrast, other SLCO1B1 variants have considerable clinical
importance. This is the case of c.521T>C (p.Val174Ala, rs4149056), which has MAF of 14.7%. When
expressed in cells in vitro, this carrier has decreased transport activity, due to diminished expression at
the plasma membrane [11] and a higher degree of protein phosphorylation [12]. There are four common
haplotypes bearing these two SNPs: SLCO1B1*1A, consisting of wild-type sequences (c.388A/c.521T),
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SLCO1B1*1B (c.388G/c.521T), SLCO1B1*5 (c.388A/c.521C) and SLCO1B1*15 (c.388G/c.521C). Among
them, SLCO1B1*5 and SLCO1B1*15 haplotypes have been associated with higher serum concentrations
of certain drugs, which may be due to a slower hepatic uptake. Although low clinical impact of
these SNPs for many drugs that are substrates of OATP1B1 has been found, they markedly affect
the pharmacokinetics of statins [13]. As compared with patients carrying the wild-type SLCO1B1*1A
haplotype, serum concentrations of statins are higher in patients harboring the c.521T>C variant,
which is accompanied by lower drug efficacy together with higher risk of suffering myopathy and
rhabdomyolysis [14,15]. The impact of this variant is such that the clinical guidelines released by the
ITC and the Dutch Pharmacogenetics Working Group recommend for patients harboring the c.521T>C
variant to halve the dose of simvastatin or to replace atorvastatin with fluvastatin, which is a worse
OATP1B1 substrate (http://www.pharmgkb.org/) [1]. Moreover, patients carrying this variant have
higher plasma levels of the anti-HIV drug atazanavir [16], and it has been proposed to reduce the drug
dose when these patients also harbor the variants rs2472677 of NR1I2 and rs1045642 of ABCB1 to avoid
adverse effects (http://www.pharmgkb.org/) [1].

The substrate specificity of OATP1B3, also highly expressed in hepatocytes, markedly overlaps that
of OATP1B1. Like other SLCO genes, SLCO1B3 is polymorphic, and many genetic variants have been
associated with reduced transport activity or expression of OATP1B3 in vitro [17]. Among them, the most
clinically relevant SNPs are c.334T>G (p.Ser112Ala, rs4149117) and c.699G>A (p.Met233Ile, rs7311358).
These two very common SNPs have a frequency of 84.2% and 85.3%, respectively. The presence in the
OATP1B3 protein of these two amino acid substitutions, but not when they appear separately, reduces
the activity of this transporter expressed in a cellular model [18]. In addition, the presence of both SNPs
in patients results in elevated plasma levels of tacrolimus, an immunosuppressant used in patients with
renal transplantation [19].

The clinical significance of the presence of genetic variants in other members of the OATP family
is not well understood, because only weak evidence or contradictory results have been obtained
and, therefore, no recommendations have been made for clinical implementation. Thus, the ITC
guidelines do not specifically recommend OATP2B1 research in drug development and personalized
medicine. However, OATP2B1 is a drug transporter with a broad substrate specificity expressed in the
liver and many other tissues, suggesting that it may have an important, but not yet fully elucidated,
role in drug bioavailability. OATP2B1 mediates the uptake of statins, antihistamines (fexofenadine),
antidiabetics (glibenclamide, glyburide), antiarrhythmics (amiodarone), and some antitumor drugs
(antifolate drugs). Although in vitro studies have shown that SLCO2B1 SNPs affect the uptake of some
of these drugs [20], in vivo confirmation is still required.

Table 1. Genetic variants affecting genes involved in mechanisms of liver drug handling.

Phase Gene Variant Drugs Affected Consequences References

0 SLCO1B1 rs4149056

Statins, Atazanavir Lower liver uptake. [13,16]
Enhanced toxicity

Pravastatin, Rosuvastatin Lower liver uptake. [14,15]
Reduced efficacy

1 CYP2B6
rs3745274

Efavirenz Decreased plasma
concentrations

[21,22]rs8192719
rs28399499

1 CYP2C19

rs4986893 Clopidogrel Lower activity [23]

rs4244285 Omeprazole, Lansoprazole Higher plasma
concentrations [24,25]

1 CYP2C8 rs1050968 Paclitaxel, Rosiglitazone,
Pioglitazone Lower response [26–30]

http://www.pharmgkb.org/
http://www.pharmgkb.org/
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Table 1. Cont.

Phase Gene Variant Drugs Affected Consequences References

1 CYP2C9

rs1799853

Warfarin, Phenytoin,
Glipizide, Tolbutamide

Higher response.
Enhanced toxicity [31–34]

rs1057910
rs7089580
rs28371686
rs56165452
rs4917639
rs7900194

1 CYP2D6
rs3892097 Tamoxifen, Codeine Lower response. [35–37]
rs28371706 Enhanced toxicity

1 CYP3A5 rs776746 Tacrolimus Lower response [38,39]

1 CYP4F2 rs2108622 Warfarin, Acenocoumarol Lower response [40]

2 COMT rs4680 Catechol-related drugs Enhanced toxicity [41]

2 GSTP1 rs1695 Oxaliplatin Enhanced toxicity [42]

2 NAT1 rs13253389 Cotinine
Lower response. [43]

Enhanced toxicity

2 NAT2 Several *
Isoniazid, Pyrazinamide,

Rifampicin
Lower response. [44]

Enhanced toxicity

2 SULT1A1
rs9282861 SN-38, Flavopiridol,

Raloxifene, Ezetimibe
Lower response [45]

rs1801030

2 TPMT
rs1800462 Thiopurine drugs

(6-Mercaptopurine, 6
Thioguanine, Azathioprine)

Enhanced toxicity [46]rs1142345
rs1800584

2 UGT1A1
rs4148323 Indinavir, Irinotecan Enhanced toxicity [47]
rs8175347

3 ABCB1

rs2032582 Simvastatin, Ondansetron Higher hepatic clearance. [48,49]
Reduced efficacy

rs1045642

Ondansetron, Fentanyl Higher hepatic clearance. [49,50]
Reduced efficacy

Methotrexate, Digoxin Higher hepatic clearance. [51,52]
Lower toxicity

3 ABCG2 rs2231142

Allopurinol Increased plasma urate. [53]
Higher dose recommended

Rosuvastatin
Lower hepatic clearance. [54]

Higher efficacy and toxicity

3 ABCC4 rs1751034 Tenofovir
Lower plasma levels. [55]

Reduced efficacy

Only variants for which there is evidence of high or moderate clinical relevance (levels 1 to 2 in the PharmGKB
database classification) have been included. *, See https://www.pharmgkb.org/gene/PA18/clinicalAnnotation.

2.2. Organic Cation Transporters (OCTs)

OCT1 (SLC22A1) is the primary hepatic transporter of organic cations. This carrier is highly
expressed at the sinusoidal membrane of the hepatocytes, where it mediates the uptake from the blood
of a wide variety of cationic drugs [21]. Recent clinical evidence supports the results obtained from
in vitro studies regarding the functional impact of genetic variants on OCT1 transport activity and the
significant pharmacokinetic changes that accompany these variants.

Many SNPs and SLC22A1 haplotypes have been linked to clinical effects. Nevertheless, the results
are not robust enough for clinical guidelines to include recommendations regarding changes in drug
dosage for patients carrying these variants. The five non-synonymous SNPs of SLC22A1 with clinical
consequences that have been most extensively studied are c.181C>T (p.Arg61Cys, rs12208357, MAF
6.9%), c.262T>C/A (p.Cys88Ser/Arg, rs55918055, MAF 0.3%), c.1201G>A (p.Gly401Ser, rs34130495,

https://www.pharmgkb.org/gene/PA18/clinicalAnnotation
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MAF 2.5%), c.1260_1262del (p.Met420del, rs72552763, MAF 10.4%), and c.1393G>A (p.Gly465Arg,
rs34059508, MAF 2.2%). The six haplotypes resulting from these SNPs are SLC22A1(*1 to *6) [21].
The Arg61Cys, Cys88Ser/Arg and Gly465Arg variants have a deleterious effect on OCT1 transport
capacity, while others like Gly401Ser and Met420del result in a slight reduction in OCT1 function [56].
Patients carrying any of these OCT1 variants showed higher plasma concentrations of metformin [57]
together with a lower hypoglycemic response to this drug [58]. In addition, these variants also affect
the pharmacokinetics of imatinib, tropisetron, sumatriptan, morphine, tramadol, and sorafenib [56,59].
Other deleterious SLC22A1 variants have been associated with increased risk of metformin-induced
side effects [60]. Although many SNPs have been described in other organic cation transporters,
such as OCTN1 (SLC22A4) and OCTN2 (SLC22A5), these have not been linked to relevant clinical
consequences [21].

2.3. Organic Anion Transporters (OATs)

Most members of the OAT family have low expression in the liver, except for OAT2 (SLC22A7),
which is highly expressed in hepatocytes and has broad substrate specificity. Accordingly, the presence
of SNPs in SLC22A7 could be expected to be clinically relevant. However, no robust results have
been reported. Patients with colorectal cancer carrying the frequent synonymous variant c.1269C>T
(p.Ser423Ser, rs2270860, MAF 33.6%) and the intronic polymorphism g.43272188A>G (rs4149178, MAF
17.3%) have been reported to have a higher risk of capecitabine-induced toxicity [61]. Although several
SNPs in the SLC22A9 gene encoding OAT7 have been described, and some of them reduce pravastatin
uptake in vitro, the clinical consequences of these variants are not yet well known [62].

3. Phase 1: Drug Oxidoreduction

Several enzymes of the superfamily of cytochrome P450 (CYPs) are involved in the hepatic
oxidative metabolism of numerous drugs. Although CYP2C and CYP3A (20%–30% of liver CYPs) are
the most important subfamilies, many other CYPs, such as CYP1A2, CYP2B, CYP2D, CYP2E1, CYP2J2,
and CYP4F2, are also expressed in the liver and have a clinical impact on drug oxidoreduction [63].
Genetic variants in CYP genes play an important role in liver pharmacogenomics. Thus, the presence of
multiallelic polymorphisms has been the rationale for classifying individuals as poor (PM), intermediate
(IM), extensive (EM) and ultrafast (UM) drug metabolizers, which is closely related to suffering from
adverse drug reactions (ADR) and, in some patients, dosage adjustment is required to obtain the
desired drug effect.

3.1. CYP2B6

This enzyme accounts for the oxidation of ≈3% of drugs metabolized by CYPs, such as efavirenz,
bupropion, and cyclophosphamide [64]. This gene is highly polymorphic, with variants affecting
efavirenz metabolism and pharmacokinetics, which have become relevant for the treatment of HIV [65].
Patients carrying variants c.516G>T (p.Gln172Gln, rs3745274, MAF 25.9%) and g.21563C>T (rs8192719,
MAF 26.3%) suffering from HIV infection may have decreased plasma concentrations and increased
clearance of efavirenz as compared to patients with the GT or TT and CT or TT genotype, respectively.
Moreover, patients with variants c.516G>T (p.Gln172Gln, rs3745274), c.983T>C (p.Ile328Thr, rs28399499,
MAF 0.4%), or both 516G>T/983T>C, as well as haplotypes CYP2B6*4 and CYP2B6*6, have been
associated with adverse effects of efavirenz treatment [22].

3.2. CYP2C19

There are 30 CYP2C19 variants, some of which have been widely studied due to their clinical
relevance in the treatment of gastric ulcers, depression, thromboembolic disease, and epilepsy. Dosing
guidelines for patient management [66] and genotyping platforms have been approved by the Food
and Drug Administration (FDA) to detect CYP2C19 alleles [67]. Thus, variants c.636G>A (p.Trp212Ter,
rs4986893, MAF 1.2%) and c.681G>A (p.Pro227Pro, rs4244285, MAF 14.8%), and loss-of-function alleles
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(*2, *3, *4, *5, *6, *7 and *8) have been associated with a reduction in the efficacy of the antiplatelet agent
clopidogrel and with a higher risk of suffering from serious adverse cardiovascular events during
treatment with this drug [23]. The treatment with some antibiotics and proton pump inhibitors such as
omeprazole, lansoprazole, and pantoprazole, used against H. pylori infection, results in higher plasma
concentrations and therefore increased efficacy in PM than EM individuals [24] and less effective in
UM patients with the *17/*17 genotype [25].

3.3. CYP2C8

This enzyme is involved in the metabolism of antidiabetics, non-steroidal anti-inflammatory
drugs (NSAIDs), and the anticancer drug paclitaxel [26]. Oral clearance of thiazolidinediones, such as
rosiglitazone and pioglitazone, used in the treatment of type 2 diabetes mellitus, is higher in individuals
carrying the CYP2C8*3 allele and variant c.986A>G (p.Ala257Asp, rs10509681, MAF 10.9%). In these
patients, the therapeutic effect of these agonists of the peroxisome proliferator-activated receptor
(PPAR) is reduced, but also the risk of developing edema, as compared with individuals carrying
the variant CYP2C8*1/*1 [27]. There is conflicting information regarding the relationship between
CYP2C8*3 and the pharmacokinetics of ibuprofen. This may be due in part to the fact that ibuprofen is
also a substrate of CYP2C9. Concerning adverse effects, some data suggest that the combined presence
of CYP2C8*3 and CYP2C9*2 plays a determinant role in gastrointestinal bleeding induced by treatment
with NSAIDs. However, further studies are needed to confirm this point [68].

3.4. CYP2C9

This is the most abundant CYP in hepatocytes (20% of all CYPs). CYP2C9 is also the most
important enzyme of the CYP2C subfamily in the metabolism of many drugs, such as warfarin,
phenytoin, glipizide, and tolbutamide [69,70]. Two clinically relevant polymorphisms of this gene are
*2 and *3, because all carriers, even the heterozygous ones, with type 2 diabetes mellitus are at risk
of hypoglycemia and bleeding during treatment with NSAIDs [63]. Two variants included in these
haplotypes c.430C>T (p.Arg144Cys, rs1799853, MAF 11.3%) and c.1075A>G (p.Ile359Leu/p.Ile359Val,
rs1057910, MAF 6.8%), respectively, lead to PM phenotypes [71]. Regarding warfarin, these patients
require lower doses of this drug to achieve a similar anticoagulant effect to that induced in *1/*1
patients [31]. Lower blood sugar levels during glipizide and tolbutamide therapy have also been
reported [32], as well as a higher risk of overdose during phenytoin therapy [33]. Homozygous
individuals for variant c.1075A>G (p.Ile359Leu/p.Ile359Val, rs1057910) also have lower clearance of
S-acenocoumarol, celecoxib, diclofenac, ibuprofen, nateglinide, fluvastatin, and phenprocoumon than
homozygous *1/*1 individuals [34]. Other variants involved in warfarin-induced ADR are *11, *5,
*6 haplotypes, c.482-2313A>G (rs7089580), c.1080C>A,G (p.Asp360Glu, rs28371686), c.1076T>A/C
(p.Ile359Asn/p.Ile359Thr, rs56165452), c.449G>A/C/T (rs7900194), all with MAF <0.01%, and c.820A>C/T
(rs4917639, MAF 19.5%). In addition, the pharmacological inhibition of CYP2C9 by drugs such as
fluconazole, as well as the existence of genetic variants in genes involved in the pathway accounting
for the mechanism of action of warfarin, such as the enzyme vitamin K epoxide reductase complex 1
(VKORC1), influence warfarin clearance.

3.5. CYP2D6

Although representing only 1%-5% of liver CYP enzymes, the activity of CYP2D6 accounts for
25%–30% of the metabolism of all prescribed drugs, and 25% of the so-called FDA pharmacogenomic
biomarkers. The CYP2D6 gene is highly polymorphic, and hence there are over 100 allelic variants
causing different effects on the activity of this enzyme, which results in different phenotypes [72].
Some of them determine IM phenotypes (*9, *10, *17, *29 and *41), whereas others account for PM
(3 to *8 and *36) or UM (*1xN, *2, and *35) phenotypes [73]. CYP2D6 metabolizes tamoxifen into
endoxyfen that binds to the receptor more efficiently than tamoxifen. Thus, cancer patients carrying
allele variants *10, *3, *4 (variant c.1846G>A, rs3892097, MAF 18.4%) *41, *5 and *6 with a PM phenotype
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showed a greater risk of relapse [35]. The variants mentioned above also have a role in reducing
the effect and increasing the risk of secondary effects of some antidepressants such as amitriptyline,
clomipramine, desipramine, doxepin, imipramine, nortriptyline and trimipramine. A relationship
between the presence of CYP2D6*10, *17 (variant c.1023C>T, p.Thr107Ile/Asn, rs28371706, MAF 2.9%),
*1xN, *2, *2xN, *3, *4, *40, *41, *5 and *6 variants and the alteration in the metabolism of codeine to
morphine has been reported [37]. Several studies have shown a decrease in morphine levels and in
analgesia in PMs that receive codeine compared to IMs, and IMs compared with UMs, which have
a higher conversion rate of codeine into morphine, which can lead to toxic systemic concentrations of
the later [74]. Other CYP2D6 variants, such as *3, *4, *5 and *10, are involved in ADR events during
treatment with fluvoxamine, paroxetine, risperidone, flecainide, propafenone, and metoprolol.

3.6. CYP3A5

Several members of the CYP3A subfamily, such as CYP3A4, CYP3A5, CYP3A7, and CYP3A43, are
responsible for the biotransformation of 40%-50% of the 200 most frequently prescribed drugs [75].
CYP3A5 includes 25 allelic variants, of which CYP3A5*3 (g.6986A>G, rs776746, MAF 88.2%) is the
most studied one, followed by alleles *6 and *7 [76], whereas *3/*3 phenotype implies the absence of
expression of this enzyme. Despite the confirmed role of CYP3A5 in the clearance of tacrolimus [38],
it has not been consistently associated with the risk of acute rejection after organ transplantation
in patients treated with this immunosuppressant. However, there is a dosing equation for the use
of tacrolimus in adult kidney transplant recipients, which, together with days post-transplant and
other individual factors, includes the CYP3A5 genotype [39]. Thus, EM and IM individuals generally
have decreased dosage adjustment as compared with those who are PMs, possibly due to a delay in
achieving optimal blood tacrolimus concentrations. Therefore, EMs and IMs would require a higher
recommended starting dose [77].

3.7. CYP4F2

This enzyme affects vitamins E and K metabolism. Genetic variants in CYP4F2 gene altering the
bioavailability of vitamin K (e.g., c.1297G>A, p.Val433Met, rs2108622, MAF 28.5%) also have an impact
on the dosing of several vitamin K antagonists, such as warfarin and acenocoumarol [40].

4. Phase 2: Drug Conjugation

Several enzymes involved in the conjugation with polyatomic moieties play an essential role in
drug inactivation by the liver. Moreover, these biotransformations usually result in more polar and
hence more water-soluble derivatives, which are more easily secreted into bile or eliminated by the
kidney after being extruded from the hepatocyte across the sinusoidal membrane.

4.1. Catechol O-methyl Transferases (COMTs)

This group of enzymes is responsible for the transfer of methyl groups from S-adenosyl methionine
to catecholamines. The substrates of COMT include endogenous neurotransmitters but also drugs with
catechol structures used in the treatment of hypertension, asthma, and Parkinson’s disease [46]. For the
soluble form of COMT, there is a polymorphism affecting the amino acid 108 (c.322G>A, p.Val108Met,
rs4680) while for the membrane-associated form (with 50 additional N-terminal amino acids), this
identical polymorphism (c.472G>A) is at position 158 (p.Val158Met, rs4680). The Met allele (A) is
known as the low activity or “L” variant, whereas the Val (G) or “H” allele is the high activity one [46].
Interindividual differences in the cognitive responses to several drugs used in psychiatric illness are
related to COMT genetic variants [78]. Moreover, the effect of diuretics, calcium channel blockers, and
angiotensin receptors blockers on systolic or diastolic blood pressure is strongly associated with COMT
variants. [79]. In addition, before starting the pharmacological treatment of Parkinson’s disease, it is
important to consider the gender and the presence of genetic variants in MAO-B and COMT genes
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(MAO-B-rs1799836 and COMT-rs4680), since the outcome is affected by sexual dimorphism in genes
related to dopamine metabolism [80].

4.2. Glutathione S-Transferases (GSTs)

GSTs are a family of enzymes able to catalyze the formation of thioether conjugates between
glutathione and xenobiotic compounds. Several anticancer drugs, such as platinum derivatives,
anthracyclines, Vinca alkaloids, cyclophosphamide, and phycotoxins are substrates of GSTs [81].
The family of soluble GST enzymes is divided into eight classes designated Alpha, Kappa, Mu, Pi,
Sigma, Theta, Zeta and Omega, among which the most critical genes in liver drug metabolism are
GSTM1, GSTT1, GSTP1, and GSTA1. Common polymorphisms for GSTP1 have been described,
which are associated with the toxicity and response to several anticancer drugs and, in particular,
platinum-related agents [82]. Thus, the non-synonymous polymorphism of GSTP1 p.Ile105Val
(c.313A>G in exon 5, rs1695), sometimes referred to as GSTP1*B, is considered as a risk factor in the
early onset of neurotoxicity during the treatment of colorectal cancer with oxaliplatin [42].

4.3. N-acetyl Transferases (NATs)

These are cytosolic enzymes found in numerous tissues of different species [46]. In the adult
human liver, arylamine-N-acetyltransferases are involved in the biotransformation of aromatic amines
and hydrazines [46]. NAT1 and NAT2 are polymorphic enzymes (28 alleles for NAT1 and 88 alleles for
NAT2) [83]), and such polymorphisms determine the acetylator phenotype. NAT1 activity may have
implications in the response to anticancer drugs. Thus, NAT1 polymorphisms that produce changes
in the enzymatic activity may affect the response of these individuals to chemotherapy. NAT1*4 and
NAT2*4 are the reference or wild type alleles for the respective genes [84,85]. In contrast to NAT1,
NAT2 has a high frequency of functional variation and diversity of haplotypes that differ among
ethnic groups. NAT2 genotypes can be grouped into three different phenotypes “slow acetylator” (two
slow alleles), “intermediate acetylator” (one slow and one fast one) and “fast acetylator” (two fast
alleles) [84].

4.4. Sulfotransferases (SULTs)

These enzymes catalyze the conjugation of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) with
an acceptor group (N-, O- or S) in SULT substrates [46]. Sulfonation has an essential role in the
biotransformation of many endogenous and xenobiotic compounds. Four families of SULTs (SULT1,
SULT2, SULT4, and SULT6) with at least 13 different members have been described. SULTs are
divided into membrane-linked and cytosolic enzymes [46]. The best known genetic polymorphisms
are those of the hepatic isoform SULT1A1 [46]. The most common allelic variant of SULT1A1 gene in
different populations is c.638G>A (p.Arg213His, rs9282861), known as SULT1A1*2, which is associated
with higher thermolability and lower enzymatic activity as compared to the wild-type variant [45].
SULT1A1*3, SNP 667A>G (p. Met223Val, rs1801030), is the second most frequent polymorphism,
which generates an enzyme with a higher affinity for PAPS and SULT substrates [86].

4.5. Thiopurine-S-Methyltransferase (TPMT)

TPMT activity depends on S-adenosyl methionine to catalyze the S-methylation of aromatic and
heterocyclic sulfhydryl compounds that include anticancer and immunosuppressive thiopurines, such
as 6-mercaptopurine (6-MP), 6 thioguanine (6-TG) and azathioprine, used for the treatment of acute
lymphoblastic leukemia, autoimmune disorders, inflammatory bowel disease, and recipients of solid
organ transplantation. The altered enzymatic activity of TPMT causes the accumulation of thiopurine
nucleotides and the cytotoxic symptoms leading to hematopoiesis failure [46]. TPMT is a cytosolic
enzyme with high expression in the liver and kidney, where its overall activity is determined by
the existence of genetic polymorphisms [46]. Up to 28 different alleles of the TPMT gene have been
identified [87] and associated with great interindividual variability in the therapeutic efficacy and
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toxicity of thiopurines. Among them, the molecular and clinical implications of TPMT*2, TPMT*3A,
TPMT*3B, and TPMT*3C have been well studied. The variant TPMT*2 is p.Ala80Pro (c.G238>C,
rs1800462) [88], which leads to a protein with 100 times reduced catalytic activity. When patients carrying
this allele are treated with standard doses of thiopurines, excessively high levels of these drugs may be
reached and hence they have a higher risk of side-effects due to myelosuppression [88]. The variant
TPMT*3C, p.Tyr240Cys (c.719A>G, rs1142345) is the most common allele in African-American and
East Asian populations. TPMT*3C is associated with decreased TPMT enzymatic activity due to
enhanced protein degradation [89]. TPMT*4 (rs1800584) includes a transition from G>A in the final
splice acceptor nucleotide in intron 9 of the TPMT gene. The presence of this variant results in deficient
TPMT activity in carrier subjects [90]. TPMT*3A haplotype contains two non-synonymous SNPs,
*3B and *3C and is the most common haplotype in the Caucasian population. The TPMT*3A variant
results in a significant decrease in TPMT enzymatic activity leading to a higher risk of toxicity when
a thiopurine-based therapy is administered [90].

4.6. UDP-Glucuronyltransferases (UGTs)

This is a superfamily of membrane-bound enzymes that catalyze the formation of chemical bonds
between nucleophilic O, N, S, or C atoms with uridin-5′-diphosphate-ß-D-glucuronic acid [46]. Among
the 22 human UGT proteins, UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7, and 2B15 isoforms are considered
the most important in drug metabolism [46]. Liver UGT1A1 is the only enzyme responsible for
bilirubin metabolism [91]. The high number of UGT1A1 variants includes enzymes with reduced or
increased activity, which results in an altered phenotype [91]. Thus, the UGT1A1*6 allele p.Gly71Arg
(c.211G>A, rs4148323) has been associated with hyperbilirubinemia during the treatment with the
anti-HIV drug indinavir [92]. The UGT1A1*28 allele (rs3064744) consists of seven TA repeats in the
promoter region, which leads to ≈70% decrease in its transcriptional activity and hence diminished
gene expression [93,94]. Both UGT1A1*6 and UGT1A1*28 alleles have been extensively studied with
regard to drug toxicity in particular to irinotecan, which can produce harmful side effects such as
neutropenia and diarrhea [47]. Although the UGT1*28 allele has also been associated with a higher
risk of irinotecan-induced side effects, other studies have failed to confirm these noxious effects of
irinotecan in carriers of either *28 or *6 genotypes [95–97]. Thus, validation trials to elucidate the
usefulness of genotyping these alleles as a convenient practice before treating colorectal cancer patients
with irinotecan are still needed.

5. Phase 3: Drug Export

Among detoxification processes, phase 3 consists of the extrusion of xenobiotics from the
hepatocytes mainly through ATP-binding cassette (ABC) export pumps [8]. Most genes of this
superfamily are highly polymorphic, which has an impact on the functionality of these transporters,
resulting in increased or decreased drug concentrations in hepatocytes. These changes can alter the
pharmacokinetics of their substrates, affecting the efficacy and/or toxicity of these drugs [98]. Thus,
according to data available at the PharmGKB database [1], the presence of SNPs in ABC genes, such as
ABCA1, ABCB1, ABCB5, ABCC1-7, ABCC10, ABCG1, and ABCG2, has been associated with altered drug
response and toxicity. However, high or moderate clinical relevance (levels 1 to 2 in the PharmGKB
database classification) [1] of genetic variants has been reported only in the case of ABCB1, ABCC4,
ABCC7, and ABCG2 [98].

5.1. Multidrug Resistance Protein 1 (MDR1)

MDR1, also called P-glycoprotein (P-gp, gene ABCB1), is expressed in many epithelial cells,
where it accounts for the transport of a wide variety of drugs [99]. MDR1 is highly expressed at the
canalicular membrane of hepatocytes, where this pump mediates the secretion into bile of endogenous
and xenobiotic compounds. There is significant interindividual variability in the function of this drug
export pump, which may be due to the presence of numerous genetic variants, whose effect on the
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transport of hundreds of drugs has been studied in vitro. However, according to the PharmGKB
classification, only two SNPs in the ABCB1 gene have clinical relevance (level 2): c.2677T>G/A
(p.Ser893Ala, rs2032582, MAF 61.7% and 4.9% for G and A alleles, respectively) and c.3435T>C
(p.Ile1145Ile, rs1045642, MAF 48.8%) [100]. The presence of both variants is accompanied by high
MDR1 expression [101]. In addition, rs2032582 variant has been associated with decreased simvastatin
concentrations in hepatocytes, probably due to an increase in MDR1-mediated simvastatin secretion
into the bile. Patients carrying this variant experience lower simvastatin-induced cholesterol reduction
compared to patients with the wild-type genotype [48]. Similar MDR1-mediated enhanced hepatic
clearance accompanying these SNPs has also been reported to affect the efficacy of other drugs, such
as ondansetron [49] and fentanyl [50]. Moreover, individuals carrying the variant rs1045642 are less
likely to suffer from methotrexate-induced liver toxicity than those with the wild-type variant [51].
The presence of the rs1045642 variant also decreases the risk of hepatic toxicity induced by other drugs
such as digoxin [52]. In contrast, in children with acute lymphoblastic leukemia carrying this variant,
a relationship between lower plasma levels of methotrexate and a higher risk of neutropenia and
thrombocytopenia has been found [102].

5.2. Breast Cancer Resistance Protein (BCRP)

BCRP (gene ABCG2) is also expressed in the canalicular membrane of hepatocytes, where this pump
participates in the extrusion into bile of a wide variety of drugs, with a substrate specificity that partially
overlaps that of MDR1 [103]. Besides more than 100 intronic variants that lead to reduced mRNA
expression, many SNPs have been identified in the coding region of the ABCG2 gene [104]. Two common
polymorphisms are c.34G>A (p.Val12Met, rs2231137, MAF 7.0%) and c.421C>A (p.Gln141Lys, rs2231142,
MAF 10.1%). When the variant Val12Met was expressed in K562 cells, this mutation reduced the
capacity of BCRP to transport tyrosine kinase inhibitors [105]. However, clinical studies have not found
any relationship between the presence of this variant and the pharmacokinetics of BCRP substrates [103].
The variant rs2231142 affects the nucleotide-binding domain of the transporter and decreases protein
levels because it promotes its degradation. It has been recommended that patients with gout carrying
the rs223114 variant in ABCG2 take a higher dose of allopurinol than patients with the wild-type
genotype [53]. However, this recommendation should be reviewed, because the dosage of the drug is
based on urate plasma levels, which as a BCRP substrate can be influenced by changes in the expression
and activity of this pump. It has also been shown that patients taking rosuvastatin who carry the allele
rs2231142 in ABCG2 have higher plasma drug concentrations, probably due to lower secretion of this
drug into bile [54]. Higher accumulation of rosuvastatin in the liver enhances its pharmacological
effect, resulting in a more marked reduction in cholesterol levels, but also a higher risk of toxicity [106].
When this variant is present together with rs4149056 in the SLCO1B1 gene, a limitation of the dose
of rosuvastatin and atorvastatin is recommended to prevent side effects [107]. It has been suggested
that individuals carrying this variant could also have increased risk of suffering from drug-induced
toxicity during treatment with sulfasalazine, sunitinib, gefitinib, and other statins (simvastatin and
fluvastatin) [108]. Accordingly, the ITC considers this polymorphism as clinically relevant [108].

5.3. Multidrug-Resistance Associated Protein 4 (MRP4)

MRP4 (gene ABCC4) is expressed at the basolateral membrane of the hepatocytes, where it plays
an important role in preventing the accumulation of bile acids by exporting them to the blood under
cholestatic conditions [109]. MRP4 has broad substrate specificity, including among its substrates,
nucleoside analogs and antiviral drugs. Some SNPs of this highly polymorphic gene have clinical
impact [109]. For instance, when treated against HIV with tenofovir, patients carrying the very frequent
SNP c.3348G>A (p.Lys1116Asn, rs1751034, frequency of 80.2%) in the ABCC4 gene have lower plasma
levels of this drug, due to its enhanced MRP4-mediated liver and kidney clearance [55].
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5.4. Other ABC Genes

The presence of the variants c.656G>A (p.Arg219Lys, rs2230806) and g.49960C>G (rs12003906) in
ABCA1 gene results in a decreased function and expression, respectively, of the ABCA1 transporter,
which leads to an increased hepatic accumulation of hypolipemic drugs, such as pravastatin and
fenofibrate, and hence an enhanced response to these drugs [110]. However, the ability of ABCA1
to transport these drugs has not been demonstrated. Even though more than 100 SNPs have been
described in other ABC genes, especially in those of the subfamily ABCC, and for many of them in vitro
studies have shown an impact on the expression and function of these transporters, conflicting results
have been obtained in clinical studies regarding the relationship between the presence of these SNPs
and changes in drug response or induced toxicity [111].

Table 2. Genetic variants affecting genes involved in the liver response to drugs.

Group Gene Variants Drugs Affected Consequences References

Cholesterol
lowering drugs

HMGCR

rs17244841
Pravastatin Reduced response [112]

rs17238540

rs17671591 Atorvastatin Increased response [113]

APOE
rs7412 Simvastatin, Pravastatin,

Atorvastatin Increased response [114–116]

rs449647 Lovastatin, Bezafibrate Altered response [117]

LDLR
rs2738466

Pravastatin Increased response [118]
rs1433099

CETP rs1532624 Statins Reduced response [119]

Antidiabetic
drugs

ATM rs11212617 Metformin Reduced response [120,121]

IRS1 rs1801278 Sulfonylureas,
Metformin Reduced response [122]

PPARG rs1801282 Pioglitazone Increased response [123]

Anticoagulant
drugs VKORC1

rs9923231

Warfarin
Increased response

Toxicity [124,125]rs9934438
rs8050894
rs2884737

rs7294

Warfarin Reduced response [126,127]rs61742245
rs2359612
rs17708472

Anticancer
drugs

KDR

rs1870377 Sorafenib Reduced response
Toxicity [128,129]

rs2305948 Sorafenib Increased response [128]

rs2071559 Sorafenib Reduced response [128]

VEGFA rs2010963 Sorafenib Reduced response [130]

VEGFC rs4604006 Sorafenib Reduced response [130]

eNOS3 rs2070744 Sorafenib Reduced response [131]

ANGPT2 rs55633437 Sorafenib Reduced response [131]

HIF1A rs12434438 Sorafenib Increased response [132]

ERCC1 rs11615 Gemcitabine, Cisplatin Increased response [133]

SLC31A1 rs12686377 Platinum derivatives Impaired response [133]

IDH1
rs121913499

Ivosidenib Increased response [134]
rs121913500
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6. The Liver as the Target Organ for Drugs

To carry out their therapeutic effect, several important families of drugs act upon targets located in
liver cells and the existence of genetic variants affecting the genes encoding these targets may, therefore,
alter the individual response to these drugs.

6.1. Cholesterol-Lowering Drugs

Statins are the most widely used lipid-lowering drugs due to their efficacy in the management
of dyslipidemias. Among the genes involved in their mechanism of action are: HMGCR, which
encodes 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase); APOE, which encodes
apolipoprotein E involved in the transport of cholesterol through the bloodstream; LDLR, which
encodes the LDL receptor, and some others. The existence of genetic variants in these genes has
important clinical implications on the effects of statins [135,136].

Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of the
biosynthesis of cholesterol by hepatocytes. There are two frequent and tightly linked intronic SNPs
in the HMGCR gene: SNP12 g.74642855A>T (rs17244841) and SNP29 g.74655498T>G (rs17238540).
Although their effects on the expression and activity of this enzyme are unknown, they have been
associated with a lower efficacy of pravastatin therapy regarding the decrease in both total cholesterol
and LDL-cholesterol [112]. Genotypes CT and TT of the g.74615021C>T (rs17671591) variant have been
associated with increased response to atorvastatin (greater reduction in LDL-cholesterol) in patients
with hypercholesterolemia, as compared to genotype CC [113].

Conflicting results have been reported by studies assessing the effect of APOE variants on the
lipid-lowering efficacy of statins [136]. This gene is expressed as one of the three alleles, which, in order
of increasing affinity for the LDL receptor are: E2, E3 (wild-type) and E4. Carriers of the APOE E2
allele (c.526C>T, p.Arg176Cys, rs7412) have a greater reduction of total cholesterol, LDL-cholesterol
and triglycerides levels when treated with simvastatin [114], pravastatin [115] or atorvastatin [116].
Some studies have reported that lovastatin therapy was less effective in people carrying the APOE E4
allele (c.388T>C, p.Cys130Arg, rs429358) [137]. However, other authors have not found any impact of
these variants on the response to this drug [138]. The c.-491A>T (rs449647) polymorphism produces
a significant decrease in APOE promoter activity as the result of altered interactions with transcription
factors. This can also influence the response to statin treatment, as carriers of the T allele treated
with atorvastatin showed a significantly higher reduction in LDL-cholesterol levels than carriers
of the wild-type allele [117]. On the contrary, T carriers present a less satisfactory response to the
lipid-lowering drug bezafibrate [117].

Genetic variants in the LDLR locus can affect lipid homeostasis, cardiovascular disease risk, and
drug response to statin treatment. Thus, patients with vascular diseases carrying the GG genotype of
the genetic variant g.11242765A>G (rs2738466) or the TT genotype of the genetic variant g.11242658T>C
(rs1433099) have a better response to pravastatin as compared with those carrying the more frequent
AA and CC genotypes, respectively [118].

Cholesteryl ester transfer protein (CETP) is involved in the transport of cholesteryl esters to the
liver. The g.57005479C>A (rs1532624) polymorphism on the CETP gene has been associated with the
response to statin therapy in a cohort of elderly patients. Thus, individuals with hyperlipidemia and
AA and AC genotypes had a poorer response to HMG-CoA reductase inhibitors than patients with CC
genotype [119].

The CYP7A1 gene encodes cholesterol 7-hydroxylase, the rate-limiting enzyme in the neutral
pathway of bile acids synthesis from cholesterol. Patients with the GG and GT genotypes of the SNP
c.-267C>A (rs3808607) have a decreased response to atorvastatin as compared to patients with the TT
genotype. However, contradictory findings have been reported, which prevents these genetic data
from this gene from influencing clinical decisions on statin administration [116,139].
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6.2. Antidiabetic Drugs

Oral antidiabetic drugs used for the treatment of type 2 diabetes mellitus belong to different
families of compounds (biguanides, sulfonylureas, thiazolidinediones, meglitinides, and others). There
is a considerable amount of information on the role of genetic variants in the response to diabetic
medications [140–142]. Although the main targets of many oral antidiabetic drugs are located in the
pancreas and adipose tissue, to fully accomplish their therapeutic effect, the mechanisms of action of
some of these drugs also involve targets located in hepatocytes.

Ataxia-telangiectasia mutated (ATM) serine/threonine kinase, known to be involved in DNA
repair and cell cycle control, plays a role in the effect of metformin upstream of AMP-activated protein
kinase. The C allele of the frequent (57%) variant g.108283161C>A (rs11212617) has been associated
with a better response to metformin of type 2 diabetes mellitus patients as compared with individuals
carrying the A allele [120,121].

In the liver, insulin receptor substrate 1 (IRS1) and IRS2 are essential in insulin-dependent
regulation of glucose and lipid metabolism. When the role of IRS1 variants in the failure of treatment
with oral antidiabetic drugs (mostly sulfonylureas and metformin) was investigated, a significant
association with the loss-of-function SNP c.2911G>A (p.Gly971Arg, rs1801278) was found [122]. Thus,
treatment with oral antidiabetic drugs has >80% higher risk of failing in homozygous individuals for
the A allele than in homozygous G carriers [122].

Thiazolidinediones are a therapeutic option for patients with type 2 diabetes mellitus by improving
their sensitivity to insulin and β-cell secretory function. The target of thiazolidinediones is PPAR
gamma (PPARG gene), a nuclear receptor acting as a lipid sensor. The most frequent variant of PPARG
is c.34C>G (p.Pro12Ala, rs1801282, MAF 9.9%), which has been associated with a better response to
pioglitazone and has been proposed as a biomarker for identifying patients more likely to respond to
this drug [123].

6.3. Antiviral Drugs

Most drugs used to treat viral hepatitis act on the replicative machinery of the virus. However,
SNPs in IMPDH2 gene encoding the enzyme inosine 5′-monophosphate dehydrogenase type II have
been found to affect the response of patients receiving antiviral hepatitis drugs, such as ribavirin,
taribavirin, merimepodib, and mycophenolate mofetil [143,144]. This gene has low genetic diversity,
but the non-synonymous variant c.787C>T (p.Leu263Phe, rs121434586) has a significant impact on
IMPDH2 activity, which can hence contribute to the interindividual variability regarding the antiviral
efficacy of ribavirin [145].

6.4. Anticoagulant Drugs

Oral anticoagulants, such as warfarin, acenocoumarol, phenprocoumon, and phenindione are
structurally similar to vitamin K and act as competitive inhibitors of the enzyme VKORC1. However,
many patients do not satisfactorily respond to these drugs. In the case of warfarin, differences in
the genotype contribute to the interindividual variability in the dose required to reach therapeutic
anticoagulant effects [146,147]. The presence of four frequent and tightly linked SNPs located at the
VKORC1 gene regulatory regions, i.e., c.-1639C>T (rs9923231), at the promoter, and c.173+1000G>A
(rs9934438), c.173+1369C>G (rs8050894) and c.173+324A>C (rs2884737), at intron 1 [124,148], increases
the expression of the enzyme and thus the response to warfarin. These SNPs are very frequent, with
MAF ranging from 21% to 38%, although this varies according to ethnic factors [149]. Homozygous and
heterozygous genotypes of these SNPs have been associated with high or intermediate sensitivity to
warfarin, respectively. Accordingly, in c.-1639C>T carriers, it has been recommended to adjust warfarin
dosage. Thus, to effectively inhibit clotting factor activation, a higher warfarin dose is needed in
patients with CC genotype than in TC genotype carriers, whereas a lower dose is needed in individuals



Int. J. Mol. Sci. 2020, 21, 2884 14 of 25

with TT genotype. In support of this concept, patients carrying this SNP have increased risk of bleeding
when treated with warfarin [125].

Other VKORC1 SNPs, such as c.106G>T (p.Asp36Tyr, rs61742245), c.173+525G>A (rs17708472,
at intron 1), c.174-1133A>G (rs2359612, at intron 2), and c.*134C>T (rs7294, at 3′-UTR), are associated
with lower sensitivity to coumarin derivatives due to decreased expression of this enzyme. Accordingly,
to achieve therapeutic effects in patients carrying these SNPs, an increase in the dose of these drugs
has been recommended [126,127].

Non-synonymous variants in the VKORC1 coding region such as c.85G>T (p.Val29Leu,
rs104894539), c.134T>C (p.Val45Ala, rs104894540), c.172A>G (p.Arg58Gly, rs104894541) and c.383T>G
(p.Leu128Arg, rs104894542) also contribute to the differential response to warfarin and coumarin
derivatives [150,151].

6.5. Anticancer Drugs

Although a few patients with hepatocellular carcinoma (HCC) can benefit from chemotherapy,
many others do not respond. In that respect, several SNPs in a variety of genes belonging to target
pathways of anticancer drugs can predict the lack of response to pharmacological treatment of HCC.
For instance, SNPs in genes of the vascular endothelial growth factor (VEGF) signaling pathway have
clinical relevance in patients receiving sorafenib. Thus, the missense variant c.1416A>T (p.Gln472His,
rs1870377, MAF 22.1%) in the KDR gene (also known as VEGFR2) affects the fifth NH2-terminal Ig-like
domain within the extracellular region of the receptor and has been reported to decrease the ability of
KDR to bind VEGF [152]. In a Chinese HCC cohort, homozygous patients for the wild-type allele (AA)
of this variant showed better response to sorafenib and longer time to progression than patients with
heterozygous (TA) or homozygous (TT) genotype [128]. This SNP has also been associated with a higher
risk of adverse reactions to sorafenib, which include hypertension and hand-foot skin reaction [129].
The c.889G>A (p.Val297Ile, rs2305948) variant, which affects the third NH2-terminal Ig-like domain
within the extracellular region of the VEGFR-2 receptor, also has an impact on the ligand binding
efficiency [152]. The AA genotype of this variant was associated with a longer time to progression [128].
The promoter variant c.-604T>C (rs2071559) alters the binding site for the transcription factor E2F,
resulting in a decreased KDR expression [152]. A homozygous genotype for the C allele has been
associated with shorter overall survival in HCC patients treated with sorafenib [128].

A relationship between the response of HCC patients to sorafenib and the presence of SNPs in
VEGF genes, which encode ligands of VEGF receptors, has been reported. Thus, the combination of
GG genotype of the SNP c.-94C>G (rs2010963) at the 5′-UTR region of the VEGFA and CC genotype of
the intronic SNP c.1422+200T>C (g.176687621T>C, rs4604006) in VEGFC was associated with worse
outcomes in HCC patients receiving sorafenib. However, it remains unclear whether those SNPs are
associated with changes in circulating levels of VEGF [130]. Although there is no information on
the relationship between the presence of VEGF variants and the response of HCC to other targeted
therapies, these variants have been related to regorafenib response in patients with metastatic colorectal
cancer [153]. The results from genotyping angiogenesis-related genes show that only VEGFA variant
rs2010963 maintains an independent correlation with progression-free and overall survival in these
patients [153], which has led researchers to propose VEGFA rs2010963 genotyping as a useful tool for
a more accurate selection of optimal candidates for regorafenib therapy among metastatic colorectal
cancer patients [153].

Polymorphisms in other genes directly related to the VEGF-dependent angiogenesis pathway,
such as c.-813C>T (g.150992991C>T, rs2070744) in eNOS3, c.714G>T (p.Thr238Thr, rs55633437) in
ANGPT2 and c.1065+2924G>A (g.61730580G>A, rs12434438) in HIF1A have also been linked to
sorafenib efficacy in HCC patients [131,154]. In these studies, homozygous for the eNOS3 SNP and
patients carrying at least one T allele of the ANGPT2 SNP had worse overall and progression-free
survival [131,154]. Another element that plays a key role in angiogenesis is the hypoxia-inducible
factor 1-alpha, a transcription factor encoded by the HIF1A gene and involved in VEGF expression.
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The presence of the A allele of the HIF1A rs12434438 variant has been related to a better outcome in
patients receiving sorafenib. Accordingly, this variant has been proposed as an independent predictor
for a favorable response of HCC to sorafenib [131,154].

Regarding cholangiocarcinoma (CCA), several variants have been associated with the efficacy of
drugs commonly used in the treatment of this cancer. The combination of two single polymorphisms,
c.354T>C (p.Asn118Asn, rs11615) in ERCC1, a DNA repair gene, and c.136-14361C>A (g.113241753C>A,
rs12686377) in SLC31A1, encoding CTR1, one of the main transporters of platinum derivatives, has been
proposed as a potential biomarker to predict the response to the combined treatment of gemcitabine
with cisplatin, which is the first-line chemotherapeutic regimen for CCA patients [133]. In addition,
a higher expression of the truncated ∆N isoform ∆133p53 of the TP53 gene detected in tumor tissues
has been associated with worse outcomes in CCA patients [155], but no clinical correlation with drug
response has been reported. A relationship between high levels of that p53 variant and the resistance
to 5-fluorouracil, the second-line therapy for CCA, has been confirmed by an in vitro study [156].

Since conventional therapy for CCA has limited effectiveness, new strategies based on the tumor
mutational profile are being studied. The investigation of targeted therapies to treat this cancer has been
focused on somatic mutations frequently occurring in CCAs, such as the gain-of-function mutations
c.394C>T/A/G (p.Arg132Cys/Ser/Gly, rs121913499) and c.395G>T (p.Arg132Leu, rs121913500) in the
IDH1 gene and several FGFR2 fusions or translocations [157]. A recent phase III study with ivosidenib,
an inhibitor of the mutant IDH1 protein, has shown improved progression-free survival in CCA
patients with mutated IDH1 [158]. The results of a phase II trial for pemigatinib, an FGFR inhibitor,
in CCA patients harboring FGFR2 fusions or rearrangements are also promising [159].

In addition to the alterations in its intracellular targets, sorafenib requires crossing the plasma
membrane to reach them. This is hampered by the reduced function of OCT1, which frequently occurs
in HCC and CCA cells. Among the reasons accounting for this loss-of-function, which have recently
been elucidated [160,161], is the existence of up to seven inactivating somatic mutations identified both
in HCC and CCA [56]. In a series of 23 HCC and 15 CCA, the probability of containing at least one of
these mutations was 48% in HCC and 40% in CCA [56].

7. Conclusions and Perspectives

The existence of genetic variants affecting a high number of genes expressed in liver cells or
mutations generated in liver tumors has important clinical repercussions due to the role of this organ
in drug handling but also because, for many drugs, the liver is the target for their mechanism of
action. The present review has highlighted the importance of defining the genomic profile concerning
drug-related genes to predict the outcome of treatments based on these drugs as well as to develop
more efficient and selective agents able to overcome the lack of effect associated with the existence of
genetic variants, which may affect the hepatic handling of drugs in many ways, such as (i) impaired
uptake, (ii) enhanced export, (iii) altered metabolism due to decreased activation of prodrugs or
enhanced inactivation of active compounds, and (iv) altered molecular targets located in the liver due
to genetic changes or activation/downregulation of alternative/compensatory pathways. In conclusion,
the advancement in this field of modern pharmacology, which allows one to predict the outcome
of the treatments and to develop more effective and selective agents able to overcome the lack of
effect associated with the existence of some genetic variants, is required to bring forward a more
personalized medicine.
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