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Context (Background): Analysis of embryos for in vitro fertilization (IVF) involves 
manual grading of human embryos through light microscopy. Recent research shows that 
artificial intelligence techniques applied to time lapse embryo images can successfully 
ascertain embryo quality. However, laboratories often capture static images and cannot 
apply this research in a real‑world setting. Further, current models do not predict the 
outcome of pregnancy. Aims: To create and assess a convolutional neural network 
to predict embryo quality using static images from a limited dataset. We considered 
two classification problems: predicting whether an embryo will lead to a pregnancy or 
not and predicting the outcome of that pregnancy. Settings and Design: We utilized 
transfer learning techniques using a pretrained Inception V1 network. All models 
were built using the Tensorflow software package. Methods: We utilized a total of 
361 randomly sampled static images collected from four South Florida IVF clinics. 
Data were collected between 2016 and 2019. Statistical Analysis Used: We utilized 
deep‑learning techniques, including data augmentation to reduce model variance and 
transfer learning to bolster our limited dataset. We used a standard train/validation/
test dataset split to avoid model overfitting. Results: Our algorithm achieved 0.657 
area under the curve for predicting pregnancy versus nonpregnancy. However, our 
model was unable to meaningfully predict whether a pregnancy led a to live birth. 
Conclusions: Despite the limited dataset that achieved somewhat of a lower accuracy 
than conventional embryo selection, this is the first study that has successfully made 
IVF predictions from static images alone. Future availability of more data may allow 
for prospective validation and further generalisability of results. 
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an efficacious treatment modality for both male and 
female infertility, reaching peak live birth rates in 
2001–2002.[3] Nevertheless, in the past several years, 
there has been a decrease in the live birth rates from 
IVF leading to poorer patient satisfaction and increased 

IntRoductIon

T he prevalence of infertility worldwide is about 
186 million people and continues to be a large 

societal burden.[1] Recently, due to economic and 
societal uncertainty, there has been an even greater 
psychological impact on infertility patients.[2] Thus, 
it has become ever more important to improve the 
efficacy of infertility treatments. The most common 
assisted reproductive technology used to treat infertility 
is in vitro fertilization (IVF), which developed into 
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costs.[4] While the causes behind this phenomenon 
are likely multifactorial (including advanced age), the 
impact of the process of conventional embryo evaluation 
must be acknowledged.

The current methods of embryo selection for transfer in 
IVF cycles use morphological evaluations of embryos 
by trained embryologists. This is done through either 
conventional microscopic analysis or time‑lapse imaging 
systems.[4] Although the most common scale used for 
embryo grading is the Gardner scale, which takes into 
account morphology, rates of cleavage, as well as 
nutrient uptake and utilization, there is no true universal 
system that is used.[5] Thus, the traditional method of 
embryo grading has been regarded to be quite subjective 
and time‑consuming with limited inter‑observer and 
intra‑observer agreement among embryologists.[6] When 
selecting blastocysts for biopsies or cryopreservation, 
trained embryologists have had average consistency 
rates of under 60%.[7] This brings into question what 
future technologies could improve blastocyst selection 
and ultimately improve live‑birth rates. Furthermore, 
uncertainty often leads to transfer of multiple embryos 
leading to undesirable multiple pregnancies, which 
occur at a rate of up to 30% in select settings. Overall, 
a less subjective process can allow for greater success 
rates with elective single‑embryo transfers, increasing 
both the efficacy and patient satisfaction associated with 
IVF.[8]

Artificial intelligence (AI) is an emerging topic in many 
fields of medicine and has been particularly useful 
in medical imaging. For example, machine learning 
algorithms recently have been used to successfully 
diagnose fractures by analysing skeletal radiographs 
with accuracy rates comparable to that of experienced 
orthopedic surgeons.[9] Accordingly, the most recent NIH 
Roadmap for Foundational Research on AI in medical 
imaging emphasises the major impact AI will have 
on addressing medical imaging problems in the next 
decade.[10] In spite of this, there have only been a few 
groups that have investigated the use of AI in embryo 
selection and how they can improve outcomes and 
patient satisfaction during IVF. As such, the purpose of 
this study is to evaluate a novel deep learning pipeline 
that can predict live birth rates using static images from 
a multi‑clinic IVF practice.

Data
The purpose of the AI software was to build an 
end‑to‑end model that took in day 5 transferred 
blastocysts and outputted a variable representing whether 
the image taken eventually led to a live birth. Following 
Institutional Review Board Approval (#20201319) and 
in accordance with the Helsinki Declaration of 1975, 

data were collected from four clinics in South Florida 
between the years of 2016 and 2019 and included day 
5 photographs of blastocysts taken by optical light 
microscopy along with other patient features, including 
SART NUM (embryo identification number), ART 
PROC (the clinic location), PREG (binary of whether 
the patient became pregnant), TOTAL ET D5 (number of 
embryos surviving on day 5), FHB (presence of a fetal 
heart beat), SACS (the number of gestational sacs on the 
embryo), DEL (binary of whether the patient delivered 
a live baby), DEL DATE DONOR AGE, EMBRYO 
GRADE (quality of embryo), and RECIP STIM START 
(the date the patient started IVF). These were harvested 
and stored on a database to aid in evaluation.

The static images, including both high quality [Figure 1] 
and low quality [Figure 2] embryos, which were each 
from a unique patient, were taken scaled to a consistent 
resolution of 224 × 224 pixels, as required by the 
Inception neural network used by us. The blastocysts 
were rated by embryologists using a modified version 
of the Gardner scale, which is analogous to the 
morphological assessment that is typically used in 
IVF clinics. Finally, the photos of the blastocysts were 
distributed into one of three classes: Pregnant and live 
birth, pregnant and no live birth, and not pregnant.

The available data were augmented to develop a larger 
set by slightly perturbing images repeatedly and re‑adding 
them to the training set. To augment the data, images 
were first hand cropped to only show the embryo and 
exclude excess cell wells. Next, images were scaled 
to a standardized resolution of 224 × 224. Randomized 
cropping, rotation, color hue augmentation, scaling, 
and other data augmentation techniques were utilized 
to increase the dataset by a factor of 100. With this 
new, larger dataset, standard deep learning techniques 
were utilized in the analysis and ultimately two 
models were run: (i) pregnancy versus nonpregnancy 
classification (with 207 pregnant 154 not‑pregnant images), 
and (ii) pregnant‑ and‑birth, pregnant‑ and‑no‑birth, and 
not‑pregnant 3‑class classification (181, 26, and 154 
images respectively). To address class imbalance, we 
utilized resampling techniques.

Methods

STORK, a deep learning model based off of Google’s 
Inception V1, was used as the baseline model.[11] 
This model takes 224 × 224 sized images as inputs, 
and outputs a binary Class of 0 or 1 (for pregnant or 
not pregnant). This model has 27 layers and over five 
million trainable parameters. STORK’s pretrained 
weights were used, which themselves were trained off 
of ImageNet. The last layer was then retrained using the 
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data to get the final first model. The second model was 
created by modifying the last layer of the first model 
to be a SoftMax with three outputs, one for each of the 
classes (pregnant and live birth, pregnant and no live 
birth, and not pregnant).

For both models, 70% of the data was used for training, 20% 
for validation, and 10% for testing. The final model tuning 
parameters were as follows: training for 20,000 epochs, a 
learning rate alpha of 0.012, a weight decay parameter of 
0.000005, a batch size of 16, a dropout rate of 20%, and an 
Adams optimizer gradient decent algorithm. Dropout was 
computed on the train and validation sets, but not on the 
test set, and the neural network was randomly initialised  
using he initialisation.

All result metrics were computed on the test set, which 
was not touched before the analysis. The researchers 
only had access to the training and validation sets prior 
to the single run of the test set. Our AI‑based algorithm 
used pattern recognition from the training set to conclude 
the efficacy of the blastocyst in its ability to implant.

All statistical methods followed the implementation 
given in the Tensorflow Slim python library. Beyond 
this, the receiver operating characteristic curve (ROC) 
with subsequent calculation of the area under the curve 
(AUC) was used as the primary statistic to target. 

Results

A total of 361 static images were utilized in the 
algorithm. The model resulted in an area under the 
curve (AUC) of 0.657, which ranges from 0 to 1 with 1 
representing perfect classification. This suggests that the 
two‑class model was able to classify embryos 6% better 
than the baseline human classification accuracy of 60%.

Figure 3 displays the receiver operating characteristic 
curve for this model. This shows the true positive 
rate versus the false‑positive rate at various threshold 
settings. The Receiver operative curve suggests that the 
model had power to discriminate between the difference 
classes, and likely would have performed better with a 
larger dataset.

There was a dip in performance in the three‑class model 
compared to the two‑class model. Forty‑two percent of 
live births and 76.4% of nonpregnancies were accurately 
predicted. Notably, all images in the pregnant and no 
live birth category were misclassified. This is likely due 
to under sampling of this class of blastocysts in the data, 
however, and not to the strength of the model. It simply 
does not have enough images of this type to learn from. 
We discuss this limitation further in the discussion 
section. However, 85.7% of such images were classified 

Figure 1: Examples of training images of high quality embryos. The 
upper right embryo led to pregnancy and no live birth, while the other 
three led to live births

Figure 2: Examples of training images of low quality embryos that did 
not lead to pregnancy

Figure 3: Receiver operating characteristic curve for the artificial 
intelligence‑based model
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as not pregnant rather than live birth. This suggests that 
with more and better data, the model should be able to 
have predictive power to learn this decision boundary.

Due to the results in the second test, a grad‑cam 
visualization technique on the final layer was performed 
to visualize what the network was learning to detect. It 
seemed that grad‑cam was looking at the boundary of 
the blastocyst, as is expected.

dIscussIon

The majority of suitable deep learning algorithms 
applied to IVF have focused on capturing embryo 
images from time‑lapse incubators, which allows for 
continuous monitoring of embryo growth process over 
time.[12,13] However, many clinics rely on static images 
and do not have access to time‑lapse data. Moreover, 
the use of time‑lapse incubators for embryo grading 
adds a significant extra cost to IVF treatment. Our 
hypothesis was that similar accuracy metrics could 
be achieved with only a small, static image dataset 
combined with new data augmentation techniques. In 
a world where “big data” is a hot topic, this research 
explores the complementary “small data” question 
applied to IVF. By using image augmentation, dataset 
balancing, and other techniques, we were able to 
achieve similar accuracy results to a model with a 
much larger, feature rich dataset. Beyond having fewer 
images, our dataset images also had a lower quality, 
and came from a slightly different data distribution than 
when compared to those used in STORK. Thus, the 
main contribution of this study is achieving a suitable 
classification accuracy for the viability of blastocysts 
via a static image despite having this limited dataset. In 
addition, many of the other groups that have attempted 
to use an AI‑based algorithm to predict embryo viability 
have only measured clinical pregnancy as an endpoint, 
rather than live birth.[14]

Overall, the rapid advances in AI and its subsequent 
increase in use across many disciplines of medical 
imaging is continuing the evolve. Embryo selection, 
among the most subjective and difficult parts of IVF, is 
one area in particular where the use of AI could improve 
outcomes, reduce costs, and standardize processes. 
While the use of AI in embryo evaluation has been 
somewhat limited there have been several groups that 
have only recently begun to test the efficacy of various 
deep learning pipelines in embryo classification. The 
first and largest of the embryo selection AI‑based studies 
by Khosravi et al. used a deep‑learning algorithm that 
classified 10,148 embryos into either “poor‑quality” 
or “good‑quality” at accuracy of 96.64%.[13] Another 
study by Dirvanauskas et al. created an algorithm 

that can predict embryo development stage with 
97.62% accuracy. This is important as the time spent in 
certain cell‑stages through embryo development often 
correlates with the quality of the embryo and the overall 
likelihood of pregnancy.[12] This research fits in with the 
aforementioned studies by (i) validating their results, 
(ii) showing that a signal still exists despite a smaller 
dataset, and (iii) generalizing previous models to predict 
live births.

Although our three‑class model did not have enough 
predicative power to accurately discriminate between 
the classes: Pregnant and live birth, pregnant and no 
live birth, and not pregnant, it is clear that with a larger 
dataset such a problem will be feasible. We would benefit 
from a dataset with more class balance, and in particular, 
more images from the underrepresented classes. 
Moreover, a larger dataset can be incorporated to 
build a model without utilising transfer learning off of 
STORK. While this study was able to successfully use 
static images, which are commonly used in IVF 
centers, to make clinically relevant predictions, there 
are still several limitations to address. The samples 
were all collected from only four different IVF clinics, 
and the overall sample size was fairly modest at 
361 images. This means the model could be open to 
bias problems, requiring more diverse data. In addition, 
the blastocysts representing future spontaneous abortion 
were significantly underrepresented and the images 
were of poorer quality than many other studies. Despite 
these limitations, however, the pipeline still allowed for 
a 0.657 AUC which, while lower than some studies, is 
reasonable given the sample size and image quality. As 
such, as more images are incorporated into this study’s 
model, a prospective validation of the pipeline using a 
larger multi‑center database of higher image quality can 
be performed.

Our design is unique in both the data utilised and 
the end outcomes measured. This study is among the 
few that attempted to directly correlate static images 
to a real clinical endpoint. Furthermore, there is little 
high‑quality evidence showing differences in live 
birth, miscarriage, stillbirth, or clinical pregnancy in 
those undergoing IVF with the use of a time‑lapse 
system versus conventional incubation.[15] The majority 
of other groups measured surrogate outcomes by 
classifying embryos by quality or other factors that are 
only associated with increased chances of successful 
pregnancy and live birth. This study, therefore, serves 
as a validation of the STORK model, while also 
leaving open the possibility of improvement through 
newer models, larger datasets, and targeting a broader 
multi‑class classification problem.
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conclusIons

The use of AI in clinical medicine is continuing to 
evolve. Namely, the use of AI in embryo selection for 
IVF has the potential to reduce subjectivity and thereby 
improve outcomes and patient satisfaction. This study 
is among the first that demonstrated how AI algorithms 
could be used to predict pregnancy success by using 
static images that are so commonly used in IVF clinics 
worldwide. The availability of more data will allow for 
prospectively validation and further generalizability of 
the results.
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