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Leveraging GPCR signaling in thermogenic fat to
counteract metabolic diseases
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ABSTRACT

Background: Thermogenic brown and beige adipocytes are recognized for their unique capacity to consume extraordinary levels of metabolites
and lipids from the blood to fuel heat-producing catabolic processes [1e7]. In humans, the functions of thermogenic adipocytes are associated
with cardiometabolic protection and improved glycemic control [8e13]. Consequently, engaging these macronutrient-consuming and energy-
dissipating activities has gained attention as a promising therapeutic strategy for counteracting metabolic diseases, such as obesity and diabetes.
Scope of review: In this review, we highlight new advances in our understanding of the physiological role of G protein-coupled receptors
(GPCRs) in controlling thermogenic adipocyte biology. We further extend our discussion to the opportunities and challenges posed by phar-
macologically targeting different elements of GPCR signaling in these highly specialized fat cells.
Major conclusions: GPCRs represent appealing candidates through which to harness adipose thermogenesis. Yet safely and effectively targeting
these druggable receptors on brown and beige adipocytes has thus far proven challenging. Therefore, continued interrogation across the GPCR
landscape is necessary for future leaps within the field of thermogenic fat biology to unlock the therapeutic potential of adipocyte catabolism.
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Brown and beige thermogenic adipocytes are catabolic fat cells capable
of taking up a range of metabolites and lipids from the blood to fuel
energy-dissipating processes [1e5,7,15e20]. Adipose thermogenesis
is physiologically activated by cold temperature and is critical for
defending body temperature in lower mammals and human infants. In
adult humans, thermogenic adipocytes appear to act more as an energy-
expending metabolic sink to buffer against potentially harmful levels of
macronutrients [6], thus improving systemic insulin sensitivity and lipid
control [9e13]. As a result of these functions, human brown adipose
tissue (BAT) activity is associated with protection from cardiometabolic
diseases [8] and excessive weight gain [21]. However, estimates vary
greatly as to how much BAT activity adults possess or can accumulate
through physiological stimulation. Magnitudes of BAT energy expendi-
ture range from 7 to 211 kcal/day depending on temperature stimula-
tion, the choice of utilized radioisotopes, and assumptions on BAT mass
used in the calculations [22]. This last variable is critical as recent ev-
idence suggests that there may be significantly more ‘recruitable’
energy-dissipating adipose depots [23] than what has been previously
proposed. Moreover, radiolabeled glucose uptake, the widely used
method for measuring BAT activity in humans, likely underestimates the
total amount of thermogenic capacity given the relative contributions of
glucose versus other substrates, such as lipids, and futile cycles to
adipose energy expenditure [22]. Consistent with this point, Chon-
dronikola and colleagues found that cold-induced BAT thermogenesis
was fueled more by circulating free fatty acids (70%) than glucose (30%)
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[9]. Given the overall preponderance of clinical evidence linking ther-
mogenic adipose to metabolic health, significant efforts have been
placed into identifying means of leveraging this energy-expending tissue
for the treatment of obesity, diabetes, cardiovascular disease, and non-
alcoholic fatty liver disease (NAFLD).
Targeting G protein-coupled receptor (GPCR) signaling represents a
promising strategy for clinically exploiting BAT. This family of cell
surface receptors are the most druggable proteins in biology
[14,24,25], accounting for approximately 20e30% of FDA-approved
pharmaceutical compounds [25]. The extraordinary druggability
stems, in large part, from their favorable targeting features such as,
cell surface accessibility and cell type specificity. GPCRs share a
conserved molecular structure comprising seven membrane-spanning
a-helixes. Intracellularly, the receptors couple to a heterotrimeric
transducer complex (G-protein) consisting of subunits: a, b, and g.
Binding of an activating ligand to the receptors trigger a conformational
change in the a-subunit, promoting the exchange of a bound GDP for
GTP. Once GTP-bound, the a-subunit is active and the receptor-
transducer-complex disassembles to initiate downstream signaling
cascades [26,27].
GPCRs are integrally involved in the physiological control of BAT
metabolism. In fact, sympathetic tone and the b-adrenergic receptors
are the canonical drivers of adipose thermogenesis in mice [1] and
humans [28]. Adipocytes express all three subtypes of b-adrenergic
receptors [29], ADRB1, ADRB2, and ADRB3, which are endogenously
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activated by the hormone and neurotransmitter, noradrenaline. In ro-
dents, ADRB3 is the predominant subtype [1] in BAT, as demonstrated
extensively through both selective pharmacological compounds
[30,31] and genetic engineering [32e35]. Whereas the b-adrenergic
receptor landscape in humans is less clear. Cypess and colleagues
reported that acute treatment of the b3-adrenergic agonist, mirabe-
gron, activated BAT and increased resting metabolic rate by an average
of 200 kcal/day [36] in human subjects. Moreover, prolonged
administration significantly improved the whole-body lipid profile and
increased insulin sensitivity by 36% [37]. These clinical studies were
followed up by in vitro experiments reporting ADRB3-dependent UCP1
expression as well as lipolytic activity [38]. However, in 2021, Blondin
and colleagues found that the dose of mirabegron used previously was
capable of activating all three ADRBs, and subsequently proposed that
ADRB2 was the critical receptor for b-adrenergic stimulation of human
brown adipocytes [39]. Meanwhile, Riis-Vestergaard et al. proposed
that ADRB1 may be the primary driver of human brown fat thermo-
genesis based on the high expression of ADRB1 in human brown
adipose tissue biopsies and ADRB1-dependent UCP1 expression in an
immortalized human brown adipocyte cell line [40]. Regardless, at-
tempts to optimize the dosing of mirabegron to target BAT energy
expenditure without increasing heart rate or blood pressure [37,41]
revealed a narrow safety window of b-adrenergic agonism, thus,
necessitating alternative therapeutic strategies.
Perhaps the most straightforward approach to non-adrenergically
harness BAT activity would be to leverage the same downstream
cAMP signaling through other Gs-coupled receptors. The potential of
this approach was conceptually exemplified by using mice expressing
designer Gs-coupled GPCRs (i.e. Gs DREADD) selectively in adipocytes
[42,43]. Similar to b-adrenergic agonism, chronic activation of
adipocyte Gs-signaling in the DREADD mice reduced fat mass and
improved glucose control. Numerous Gs-coupled GPCRs have now
been shown to stimulate BAT activity in a b-adrenergic-independent
manner, including receptors for adenosine [44,45], secretin [46,47],
glucagon [48], glucose-dependent insulinotropic polypeptide [49],
adrenocorticotropic hormone [50], as well as the blue light-sensing,
Opsin 3 receptor [51], and the orphan, constitutively active receptor,
GPR3 [52]. The omega-3 lipid 12-HEPE also stimulates thermogenic
activity through Gs-coupling [53], however, the GPCR responsible for
this signaling has yet to be identified. However, the maximal thera-
peutic potential of non-adrenergic, Gs modulators likely remains to be
determined. For example, in humans, infusion of secretin increased
BAT glucose uptake by 57% and whole-body energy expenditure by
2% [47]. Yet, notably, secretin has a short half-life between 2 and
4 min [54]. A parallel could be made to the development of glucagon-
like peptide 1 receptor (GLP-1R) agonists for obesity. Whereas native
GLP-1 is similarly short-lived to secretin and provides modest effects
on bodyweight, protraction and pharmacological optimization have
now produced GLP-1-based molecules that can be administered once
weekly and achieve substantial weight loss [55].
Given the critical importance of cAMP production to BAT thermogenic
capacity, Gi-coupled receptors, which inhibit adenylyl cyclase activity,
would be predicted to impinge on adipose thermogenesis. However,
DREADD-based stimulation of global Gi-signaling in adipocytes did not
impact b-adrenergic activation of BAT function [43]. Nevertheless, Gi-
coupled receptors comprise the largest percentage of GPCRsexpressed in
brown adipocytes [56]. Thus, the possibility remains that receptors in this
class may play a role in BAT metabolism in contexts not yet resolved.
The third major class of GPCR signaling is through Gq/11 alpha sub-
units. GTP-bound Gq proteins increase both diacylglycerol (DAG), which
activates protein kinase C (PKC), and inositol-3-phosphate (IP3), which
2 MOLECULAR METABOLISM 60 (2022) 101474 � 2022 The Author(s). Published by Elsevier GmbH. T
stimulates the release of calcium into the cytosol. The role of Gq-
signaling in brown and beige adipocytes appears to be multi-faceted
and has been linked to both inhibition and activation of thermogenic
competence. Pharmacological or genetic approaches that directly in-
crease Gq protein signaling suppressed brown and beige adipogenesis
and decreased UCP1 expression in mature adipocytes [56]. Moreover,
RGS2, a modulator of G protein signaling, was found to promote the
development of thermogenic adipocytes by impeding Gq function [57].
These findings on Gq-signaling were further supported by more recent
work showing that acetate-mediated GPR43 activity compromised the
energy-expending capacity of human thermogenic adipocytes [58].
Additionally, the Gq-coupled neurotensin receptor 2 (NTSR2) sup-
presses brown adipocyte thermogenesis following binding and acti-
vation by neurotensin which is locally produced by lymphatic
endothelial cells [59]. Conversely, activation of Gq through GPR120, by
either polyunsaturated fatty acids [60] or a small molecule agonist [61],
boosted lipid oxidation and mitochondrial respiration in brown adipo-
cytes. Additionally, chronic stimulation of GPR35-dependent Gq-
signaling by kynurenic acid was found to enhance b-adrenergic Gs-
signaling through RGS14 [62], underscoring the complex manner in
which Gq-coupling impacts thermogenic control.
The final major class of Ga subunits is comprised of the G12 and G13
proteins and is the least-studied family. Future efforts will be needed to
evaluate a role in thermogenic adipocyte biology.
Two major factors potentially contributing to the complexities and dis-
crepancies within brown and beige fat GPCR research may be the
immense heterogeneity present in mouse and human thermogenic
adipose tissue and technical challenges with assessing Gpcr expression
[63]. While adipose heterogeneity has been successfully mined by
recent advances in single-cell and nuclei sequencing to unearth a
deeper biological understanding of specific cell populations within the
tissue [58], these technologies are currently not capable of adequately
surveying the full landscape of GPCRs, as these are typically among the
lowest-expressed transcripts in a cell. This complication even applies, to
a lesser extent, to more traditional, bulk RNA-sequencing techniques.
Currently, the most accurate method to evaluate spatial and quantitative
expression of GPCRs with cellular resolution is fluorescence in situ
hybridization (FISH). However, this technique is low-throughput and
lacks the ability to simultaneously profile the 300þ non-odorant GPCRs
in a given cell culture or tissue. Conversely, GPCR qPCR arrays enable
deep resolution of the GPCR-ome but do not provide expression data for
sub-populations of cells within a sample. Future efforts are needed to
profile the GPCR-ome of activated thermogenic adipose tissue and apply
multi-plexed FISH to determine distribution at the cellular level.

1. TARGETABLE STRATEGIES FOR GPCRS

The versality of GPCRs as drug candidates extends beyond their
plasma membrane accessibility and cell type specificity. In the
following section, we explore different features of GPCR biology that we
envision as being advantageous for clinically harnessing thermogenic
adipocytes.

i. Ligand binding

By far the largest exploited form of GPCR control is through manipu-
lation of ligand binding, thereby directly altering downstream signaling.
Pharmacotherapies across disease indications have been developed
that enhance or impede ligand binding or are, themselves, engineered
as more biochemically favorable versions of the naturally occurring
ligand. In thermogenic adipocytes, known GPCR ligands represent a
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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diverse range of neurotransmitters [29], hormones [46e50], metab-
olites [44,58,62,64], and lipids [53,60]. Building a drug using the
endogenous ligand as a foundation is the most straightforward way to
pharmaceutically modulate signaling given that evolution has already
fine-tuned that ligand-receptor pairing. However, as underscored by b-
adrenergic agonism [36], engineered hormones or neurotransmitters
that reach the bloodstream will signal throughout the body on both
desirable (e.g. thermogenic adipocytes) and undesirable (e.g. car-
diomyocytes) cell types that express a respective GPCR. Notably,
newer studies in humans with systemic administration of secretin,
suggest that thermogenic activation is possible without eliciting
adverse cardiovascular effects [47]. In addition to hormonal regulation,
metabolite and lipid-sensing GPCRs, such as GPR120 and GPR43,
have become increasingly recognized for their importance in sampling
local nutrient environments within thermogenic adipose depots and
toggling bioenergetic and inflammatory responses [58,60,61,64]. This
class of receptors offers yet another avenue for harnessing the energy-
dissipating power of thermogenic adipose tissue. However, given that
the endogenous ligands for metabolite and lipid receptors often also
serve as catabolic substrates for intermediary metabolism, non-
metabolizable agonists, such as those available for GPR120 [61], will
likely be needed for therapeutic exploitation. A summary of ligand-
activated receptors impacting thermogenic biology is presented in
Figure 1.

ii. Receptor internalization

While ligand-binding stands as a clear first approach when targeting
GPCRs, modulating the dynamics of receptor internalization poses an
additional strategy through which to selectively manipulate GPCR ac-
tivity. Canonical regulation of GPCRs at the cell surface is mediated by
GPCR kinases (GRKs) that phosphorylate the intracellular face of re-
ceptors to recruit b-arrestins 1 or 2 (BARR), which then sterically
prohibit G protein coupling [65]. BARRs further engage clathrin and
adaptor protein-2 to promote endocytosis of the receptor and terminate
extracellular activation. Therefore, it is tempting to speculate that
compounds engineered to modulate cell surface occupancy of a
Figure 1: GPCR control of adipose thermogenesis. The capacity of brown and beige ad
control of GPCRs. GPCR signaling in thermogenic adipocytes is influenced at the level of
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specific receptor by biasing for or against interaction with BARR could
be appealing therapeutic tools [66]. This potential impact of altering
receptor internalization is exemplified by the GIP and GLP-1 dual
agonist, tirzepatide, a powerful diabetes and obesity drug candidate
[67]. Tirzepatide exhibits sustained efficacy in part due to a signaling
bias that reduces GLP-1R BARR recruitment and subsequent inter-
nalization [68].
As a proof-of-concept in adipose depots, deletion of Barr2 protected
mice frommetabolic dysfunction during HFD challenge [69]. BARR2 is a
strong negative regulator of ADRB3 and adipocyte Barr2 deficiency led
to enhanced ADRB3 signaling and beneficial outcomes on systemic
energy homeostasis. The extent to which other adipocyte receptors
were affected by Barr2 knockdown remains unknown. Another broad
means of modulating cell surface occupancy is at the level of GRKs that
phosphorylate GPCRs and prime them for internalization [70,71]. This
concept was evaluated by Vila-Bedmar et al. who reported that reducing
GRK2 levels boosted thermogenic gene expression in BAT and energy
expenditure in the animals [72,73]. However, given the whole-body
nature of the constitutive [72] and inducible [73] Grk2 loss-of-function
models, the cell autonomous contribution of Grk2 in thermogenic adi-
pocytes to the organismal phenotype could not be resolved.
Finally, targeting strategies designed to modulate receptor internal-
ization will have to account for the unique characteristics of each
GPCR. Removal from the cell surface does not automatically ensure
termination of signaling capacity. Even after internalization, certain
GPCRs can still signal from various intracellular compartments [74]
and, in some cases, this mode of signaling is actually required for the
full downstream response to receptor activation [75]. Most impor-
tantly, receptor internalization dynamics remain a largely unexplored
element of GPCR control, especially in thermogenic biology. Thus,
future investigation will be required to determine the bona fide po-
tential of targeting this regulatory paradigm for the therapeutic
exploitation of brown and beige adipocytes. Receptors in brown and
beige adipocytes that are known to be regulated by internalization are
summarized in Figure 1. However, toggling receptor cell surface
occupancy is not the only way to affect GPCR signaling activity
beyond ligand-binding itself.
ipocytes to consume and catabolize macronutrients to generate heat is under the tight
transcriptional regulation, ligand binding, and receptor internalization.
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iii. Transcriptional regulation

Each cell type has a unique expression signature of GPCRs that dic-
tates the particular set of ligand-mediated signals which the cell can
receive [76e78]. Classically, investigation into GPCR transcription has
focused on mapping the more static, basal receptor profiles across
tissues and cell types [56,77,79], whereas dynamic regulation of GPCR
mRNA levels, and, consequently, cell surface expression, is less
appreciated. Yet the signaling capacity stands to be dramatically
affected by acute physiological or pathological alterations of a cell’s
GPCR-ome, regardless of ligand availability. Downregulation of re-
ceptor expression would conceivably act as a more sustained regu-
latory parallel to receptor internalization and might serve to better
protect the cell against overstimulation. Indeed, activation of thermo-
genic adipose by exposure to cold temperature significantly decreased
the expression of GIP receptor, secretin receptor, and b-adrenergic
receptors 2 and 3 for periods of time ranging from 3 h up to 3 weeks
[52]. In humans, SCTR expression in BAT is negatively correlated with
body weight in fasted individuals and trends towards a decrease in the
fed state [47]. Finally, ADORA2B and GPR3 are both down regulated in
thermogenic adipose depots of overweight and obese individuals. On
the other hand, acute transcriptional induction of a GPCR would
potentially hypersensitize a given cell type to a ligand, even in the
absence of changed ligand levels. For example, cold exposure
significantly and rapidly increased the expression of the poly-
unsaturated fatty acid sensor, Gpr120 [60], and the adenosine re-
ceptor, ADORA2A [44], leading to elevated thermogenic capacity.
However, the necessity to understand transcriptional control of re-
ceptors is perhaps best exemplified by the GPCRs that possess some
degree of intrinsic signaling activity, independent of an external ligand.
Compared to purely ligand-driven GPCRs, the mRNA levels of these
receptors are strongly correlated to signaling activity [80]. Despite
nearly a third of GPCRs exhibiting some degree of intrinsic signaling
capacity [81], including the ghrelin [80] and melanocortin 4 receptors
[82], we know surprisingly little about this broadly relevant mode of
signaling control. GPR3, GPR6, and GPR12 are particularly unique
because they are fully constitutively active (e.g. GPR3 signals through
Gs proteins upon reaching the cell surface without the need for an
externally added ligand [83]). For these receptors with complete
constitutive activity, transcriptional control and receptor internalization
are the primary opportunities for regulation. Recently, a significant role
for the constitutively active receptor, GPR3, was shown in mouse and
human brown and beige adipocytes [52]. Gpr3 is transcriptionally
induced in brown adipocytes by a cold-dependent lipolytic signal, and
the receptor is sufficient to activate the thermogenic program and
counteract organismal metabolic dysfunction. A summary of GPCRs
known to be regulated at the transcriptional level in thermogenic ad-
ipocytes is included in Figure 1.
In contrast to using endogenous ligands as biochemical scaffolds for
developing drug candidates, modulating GPCR activity through tar-
geting receptor expression requires the identification and pharmaco-
logical manipulation of the endogenous transcriptional machinery. This
strategy carries more technical challenges compared to ligand-based
approaches. However, the possibility of identifying cell type specific
transcription factors that control a desired GPCR, carries the potential
to achieve more selective target engagement within an organism.
Additionally, transcriptional regulation of GPCRs in a cell type-specific
manner may be the only way to effectively harness receptors with
significant constitutive activity.
Finally, another strategy to manipulate GPCR expression in thermo-
genic adipocytes would be virally delivered gene transfer [84]. This
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area is rapidly developing and, in 2019, the US Food and Drug
Administration released a report predicting that 10e20 new cell and
gene therapy products will be approved per year by 2025 [85]. The
improvements in cell specific viral serotypes and customized pro-
moters provide an even greater degree of selectivity. In thermogenic
adipocytes, Sveidahl Johansen et al., showed that a one-time delivery
of either adeno-associated or lentiviral particles expressing Gpr3
directly into thermogenic fat depots was sufficient to significantly boost
energy dissipating capacity in mice [52]. In an earlier study, delivery of
viral particles expressing the adenosine receptor, ADORA2A, into
subcutaneous white adipose depots was effective at promoting the
formation of energy-expending beige adipocytes [44].

2. FUTURE PERSPECTIVES

From a therapeutic consideration, BAT activity is often decreased in the
target population of older, obese adults, thus raising the question as to
whether human BAT activity can be leveraged to counteract metabolic
diseases. However, multiple studies have indicated that BAT activity
can be stimulated even in aged or metabolically diseased individuals.
Hanssen et al., were able to recruit BAT in obese subjects upon short-
term cold acclimation [12] and Jespersen et al. detected UCP1 positive
adipose depots in subjects up to 84 years of age with BMIs up to 31
[86,87]. Moreover, in a comprehensive retrospective analysis of
134,529 PET-CT scans, Becher et al. found that the metabolic benefit
of BAT was more pronounced in individuals who were overweight or
obese compared to individuals with a normal weight BMI [8]. Even with
the presence of recruitable thermogenic adipose in older, obese adults,
significant challenges remain with regard to safely engaging this
catabolic tissue. This not only includes avoiding increases in heart rate
or blood pressure but also body temperature to a degree that nega-
tively impacts sleep quality and overall quality-of-life. The 7e211 kcal/
day range of BAT activity may actually be an ideal window through
which to avoid dangerous increases in cardiac output and body tem-
perature while still providing enough energy-expending capacity to
meaningfully provide cardiometabolic protection, glucose and lipid
control, and prevent weight gain (based on the 30 kJ/day estimate
from Hall et al. [88]). Importantly, until there is a protracted, safe, and
selective activator of thermogenic adipose, we won’t know the
maximal degree of energy expenditure and glucose and lipid uptake
that can be achieved by sustained pharmacological stimulation over
the current estimates attained by physiological cold exposure or
administration of mirabegron or secretin. Nevertheless, considering
the advances made in appetite-suppressing therapeutics [55] and the
energy difference necessary to exert substantive weight loss [88], we
believe it is unlikely that any amount of BAT activation would represent
a standalone therapeutic to reverse obesity without a food intake
modulating component. Therefore, from an obesity standpoint, we
speculate that BAT-stimulating drugs would instead make a more
profound impact in combination with appetite suppressants and used
as means of off-setting the homeostatic decrease in energy expen-
diture often associated with reduced food intake and weight loss.
Yet there is still a lack of robust pharmacological tools to safely exploit
these catabolic fat cells. From the array of autocrine, paracrine, and
endocrine factors that physiologically activate adipocyte macronutrient
uptake and energy expenditure [89e91], we have focused on the
highly druggable GPCR family given their successful application in
numerous disease indications, including obesity. While significant
leaps have been made in understanding brown and beige adipocyte
GPCRs, several mechanistic and translational knowledge gaps remain
that prevent the true assessment of the therapeutic potential of these
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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cells. First, thermogenesis-inducing Gs-coupled receptors must be
more thoroughly examined for viable nonadrenergic alternatives to
safely mimic the potent energy-expending power of sympathetic
activation. Additionally, roles for receptors signaling through the other
G proteins, Gi and Gq, need to be clearly resolved. Finally, focusing on
more untapped elements of GPCR biology beyond ligand-binding,
including receptor internalization and transcriptional control, may
offer complementary approaches that boost specificity and efficacy of
small molecule or peptide drug candidates. Collectively, we believe
that these continued explorations across the GPCR landscape in
thermogenic adipocytes will reveal key insights for novel treatment
strategies to mitigate the global challenges of metabolic disease.
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