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Abstract

Background: The interactive effect of the IGF pathway genes with the environment may contribute to childhood
obesity. Such gene-environment interactions can take on complex forms. Detecting those relationships using
longitudinal family studies requires simultaneously accounting for correlations within individuals and families.

Methods: We studied three methods for detecting interaction effects in longitudinal family studies. The twin model
and the nonparametric partition-based score test utilized individual outcome averages, whereas the linear mixed
model used all available longitudinal data points. Simulation experiments were performed to evaluate the methods’
power to detect different gene-environment interaction relationships. These methods were applied to the Quebec
Newborn Twin Study data to test for interaction effects between the IGF pathway genes (IGF-1, IGFALS) and
environmental factors (physical activity, daycare attendance and sleep duration) on body mass index outcomes.

Results: For the simulated data, the twin model with the mean time summary statistic yielded good performance
overall. Modelling an interaction as linear when the true model had a different relationship influenced power; for
certain non-linear interactions, none of the three methods were effective. Our analysis of the IGF pathway genes
showed suggestive association for the joint effect of IGF-1 variant at position 102,791,894 of chromosome 12 and
physical activity. However, this association was not statistically significant after multiple testing correction.

Conclusions: The analytical approaches considered in this study were not robust to different gene-environment
interactions. Methodological innovations are needed to improve the current methods’ performances for detecting
non-linear interactions. More studies are needed in order to better understand the IGF pathway’s role in childhood
obesity development.
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Background

Childhood obesity is an important public health issue
due to its negative impact on individual wellbeing and
on the healthcare system [1-7]. To fully elucidate the
complex processes underlying childhood obesity, we
need to consider the joint gene-environmental basis of
this disease. Studying gene-environment (GE) interac-
tions can improve our understanding of how genetic
differences contribute to phenotype variability in the
population [8]. This is important for childhood obesity
since currently identified genetic associations can only
explain 1.45% of the body weight variation, while
heritability studies have estimated that 40 to 70% of this
variance is under genetic influence [9]. GE interactions
likely play an important role in obesity development, as
the disease is also attributed to many environmental
causes. In addition to genetic predisposition, various
environmental factors also affect energy intake and
expenditure, the two primary driving forces behind obes-
ity development. These environmental risk factors in-
clude high dietary sugar consumption, poor sleep habits,
comfortable ambient temperature, low physical activity
and large-scale social forces such as media influence
[10-12]. An example of such interactions is that physical
activity has been shown to modify the obesity risks asso-
ciated with the FTO gene variants [9]. Thus, given the
limitations in our understanding of childhood obesity, it
is important to explore GE interactions to help us clarify
the genetic basis of this disease.

The insulin-like growth factor (IGF) pathway genes,
which are intimately involved in body fat regulation,
have functional effects that can be influenced by the en-
vironment. The insulin-like growth factor-1 (IGF-1) pro-
teins can directly modulate carbohydrate metabolism
and adipose tissue growth [13, 14]. The growth hormone
(GH) and the insulin-like growth factor binding protein,
acid-labile subunits (IGFALS) regulate IGF-1 availability
by increasing its production and circulation concentra-
tion, respectively [13—18]. The effect of those proteins
can be modified by many environmental factors. In-
creased physical activity has been shown to be associated
with higher GH and IGF-1 levels [19-21]. GH produc-
tion in the body also correlates with the length of the
slow wave phase of sleep [22]. Indirectly, the IGF
pathway and daycare attendance may interact via
inflammation-related neutrophil proteases that target
the IGF proteins [23]. This is because children attending
daycare facilities are at increased risk for infectious
diseases, and consequently more frequent occurrence of
inflammatory response [24]. For example, the proportion
of children with common childhood illnesses like lower
respiratory infections and diarrhea is significantly higher
in children who attend daycare. There is also some evi-
dence that children attending daycare are at increased
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risk of obesity [25-27]. Given the IGF pathway’s involve-
ment in body fat regulation, environmental modulations
of the pathway could manifest as GE interaction effect
on obesity development. Thus in this study, we
hypothesize three potential GE interaction scenarios
between the IGF pathway genes (IGF-1, IGFALS) and
environmental factors (physical activity, daycare attend-
ance and sleep duration).

One way to evaluate potential GE interactions is by
conducting longitudinal family studies. This involves
recruiting samples of related individuals, and collecting
data repeatedly on the same participant over time. Lon-
gitudinal family data can provide additional information
and increased statistical power, but at the cost of analyt-
ical challenges due to correlated data structure. The lon-
gitudinal aspect of the study can provide information
relating to the temporal pattern of genetic contributions
to a trait, while knowledge of family structure can help
in imputing missing genotype data and determining seg-
regation patterns [28, 29]. Improvement in statistical
power comes from the fact that more reliable data are
available through repeated measurement, and the ability
to sample families rich in potentially associated genetic
variants [29, 30]. However, leveraging the benefits of lon-
gitudinal family studies requires properly accounting for
correlations due to familial relations and repeated out-
comes in data analysis. One approach involves incorpor-
ating random effects with an assumed covariance
structure to accommodate both familial and over time
correlations. This can be achieved in the linear mixed
model framework [31, 32]. Alternatively, simplified cor-
relation structure allows the application of models not
designed for longitudinal family data. Repeated out-
comes can be transformed into summary statistics (e.g.
mean over time) and analyzed using cross sectional
methods like the twin study model [33]. Familial correl-
ation can be simplified by ignoring the difference in cor-
relations due to different kinship relations within a
family. The family-wise permutation test for p-value esti-
mation represents one such approach. This permutation
procedure accounts for familial correlation by restricting
the random shuffling of outcome-predictor pairing to
each family, but without distinguishing the specific pedi-
gree relations within the family [34]. However, model
simplification by averaging over time or assuming equal
familial correlation could result in a loss of power as all
the information in the data is not being utilized.

In addition to the complex data structures encoun-
tered in longitudinal family studies, GE interaction rela-
tionships can take on many forms. This creates difficulty
when modeling the interaction effect parametrically, as
the effect pattern can be misspecified. A linear inter-
action pattern is assumed when modeling with the con-
ventional multiplicative product term in regression
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models. [35] However, many non-linear effect patterns
are also possible. For example, genetic and environmen-
tal factors may interact in an extremely non-linear man-
ner called exclusive OR (XOR) interactions. This can be
interpreted as two opposing patterns of genetic effect
under different environmental conditions. An example is
the case of sickle cell anemia, where having one copy of
the disease allele confers improved survival if the indi-
vidual lives in malaria affected regions. Similar effects
are also observed in psychiatric genetics in the case of
plasticity genes. Individuals with certain alleles are hy-
pothesized to be more receptive to environmental fac-
tors that may be either beneficial or harmful depending
on the specific environmental conditions [36]. For in-
stance, individuals with low-activity variant of the
monoamine oxidase-A (MAOA) gene have been re-
ported to be both more and less antisocial depending
whether they are exposed to childhood maltreatment
[36]. In addition to XOR relations, GE interaction effect
could manifest in a conditional dominant fashion, where
an additive pattern of genetic effect is observed when
the environmental exposure is absent. But, when the en-
vironmental exposure is present, the genetic effect is en-
hanced and immediately plateaus, producing a dominant
pattern of inheritance. A third type of non-linear GE re-
lation is the small marginal effect interaction. This GE
interaction is the most difficult to detect because modest
genetic effect (e.g. effects produced by recessive pattern
of inheritance) will be triggered only when an environ-
mental exposure is present.

It is clear that using regression product terms to
model interactions is only theoretically appropriate when
the interaction pattern is linear, and hence this is a
strong assumption that may not be suitable for
non-linear scenarios. Nonparametric approaches have
been developed to relax this assumption. For example,
the partition-based score I (PBI) test evaluates hypothe-
sized interactions between categorical factors by com-
paring data sets partitioned using different combinations
of predictor variables [34, 35]. The significance of
interactions is assessed by comparing the outcome ex-
planatory powers of different partitioning variable com-
binations, and so the test does not assume specific
interaction relationships between the factors [34, 35].

In this study, we evaluated potential GE interactions
between the IGF pathway genes (IGF-1, IGFALS) and
environmental factors (physical activity, sleep duration
and daycare attendance) in the context of a longitudinal
family study. Data were obtained from the Quebec New-
born Twin Study (QNTS) which followed a birth cohort
comprised of twin pairs from Montreal, Canada, who
were born between 1995 and 1998 [37]. A variety of so-
cial, biological and psychological measures on the QNTS
participants were obtained from shortly after birth to
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early adolescent years [37, 38]. As the analysis strategy
for this type of study is unclear due to complex
longitudinal-familial correlations and non-linear interac-
tions, we first simulated data based on the characteris-
tics of the QNTS participants, and systematically
evaluated the performances of three analytical methods
(the linear mixed model, the twin study model and the
PBI test) for detecting different GE interaction relations
in longitudinal family data. Specifically, we assessed
model performances with respect to the effect of simpli-
fying correlation structures and their robustness under
non-linear interaction scenarios. Next, we applied the
considered models to test for potential IGF pathway GE
interaction effect on body mass index (BMI) measured
longitudinally in QNTS.

Methods

The Quebec newborn twin study

Data for this study were obtained from the Quebec New-
born Twin Study (QNTS) which followed twin pairs re-
cruited from Montreal, Canada, who were born between
1995 and 1998 [37]. The studied population excluded
twins with major illness at birth or those who died before
5 months of age [38, 39]. Zygosity was determined using a
multitude of evidence including chorionicity data, physical
similarity as well as genotype data [37, 39]. QNTS collects
data on a variety of social, biological and psychological
measures through medical records, interviews, and labora-
tory assessments. The follow-up assessment is still on-
going with longitudinal data available from shortly after
birth and to early adolescent years [37, 38]. Separate data
collection personnel were assigned for each individual
within a twin pair to control for bias due to knowledge of
zygosity status [37]. Details on the QNTS study can be
found in Boivin et al. [37]. The overall structure of QNTS
data consists of repeated measures for individuals nested
within families (twin pairs).

Statistical analysis

We investigated three different analytical methods for
longitudinal family studies. Each method uses a combin-
ation of different approaches for modeling correlation
structure and interaction relationships, as outlined
below. All analyses were performed using R [40].

Twin model
The twin model refers to the path model used in clas-
sical twin studies [41]. The model equation is formulated
as follows:

Yl'j = xi,ﬁ + ﬂA,‘/ + CCl'j —+ eE,»,»

Y;; represents the BMI outcome for twin pair i, indi-

vidual j. x;f is the systematic component of the model,



Wang et al. BMIC Medical Genetics (2019) 20:9

which includes the design matrix predictor values (x;)
and its associated fixed effects (). The random variation
in the outcome is modeled by A; Cj; and E; terms,
which are mutually independent standard normal ran-
dom variables. The a, ¢, e terms are the pathway coeffi-
cients that reflect the partitioning of the outcome
variance due to background additive genetic effect (a),
common environment influence (¢) and random envir-
onment variation (e). Each of the variance components
is equal to its path coefficient squared. We used the
twinlm function from the mets R package to fit the
model [42].

In order to analyze repeated measures using the twin
model, we summarized the outcome measures (BMI) for
each individual by their averages across the time points.
The variance partitioning setup of the model is able to
accurately account for the difference in correlations be-
tween MZ and DZ twins as described in the introduc-
tion. However, it is not currently possible to model the
correlation due to longitudinal measurements in the
twin model. Since the systematic component of the twin
model is formulated as a typical linear regression model,
it will assume a linear interaction relationship by using a
multiplicative term for the interaction effect. In addition
to an additive genetic model (0, 1, 2 for the number of
minor alleles), we also used a co-dominant specification
for the genetic effect. Under a co-dominant model, het-
erozygotes and minor allele homozygotes were repre-
sented using separate indicator variables with the
common allele homozygotes as the reference category.
This allows for a more flexible interaction model.

Linear mixed model

The linear mixed model approach considered in this
study was implemented using the /mekin function from
the coxme R package [43]. The linear mixed model uti-
lizes all of the repeated measures and models longitu-
dinal correlation via individual random effect [44]. Each
individual receives a random intercept to induce correl-
ation among his/her repeated outcomes. The correlation
due to different family structure is accounted for by
using a kinship matrix to specify the covariance struc-
ture of the random effect. The entries in the kinship
matrix are kinship coefficients that reflect genetic re-
latedness between individuals. These kinship coefficients
will specify the covariance of individual random effect
with self and with others (See Section S1, Additional file 1
for details on kinship matrix construction). The linear
mixed model is a regression-based method and will im-
plicitly assume linear interaction when using multiplica-
tive term to represent GE interaction effect. As with the
twin model, we specified the genetic effect using additive
and co-dominant coding. Interactions between genotype
status and the environmental variable were modeled
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using multiplicative terms. P-values for the fixed effects
were based on a Wald test or a likelihood ratio test if
the effect was coded using multiple indicator variables.

Partition-based score | test

The partition-based score I (PBI) test is a nonparametric
approach for assessing interactions by contrasting the
outcome variations explained under different ways of
partitioning the dataset, with each induced by consider-
ing different subsets of the categorical predictor vari-
ables [35]. For a given partition scheme, the dataset is
split into sub-datasets according to the levels of the con-
sidered predictor variables. Thus, a portion of the vari-
ation in the outcome will be explained by the predictor
variables that specify the partitioning. A dispersion stat-
istic that measures the amount of the explained outcome
variation by a set of partitioning variables is estimated as
follows:

The sub-datasets generated from the partitioning
process is denoted by i, where i =1, 2...k. ¥, is the mean
outcome for the i partitioned sub-dataset. n; is the
sample size for the i sub-dataset. 5 and S; are overall

outcome mean and sample variance respectively. # is the
overall sample size.

The PBI test statistic is estimated as the difference be-
tween the dispersion statistics obtained from partitioning
using both interacting variables and the maximum of
the dispersion statistics estimated when partitioning by
each variable alone. It is formularized as below:

IT = IGE_ max(IG‘IE)

To evaluate a potential GE interaction, we estimate
the dispersion statistics for a dataset that is partitioned
by both genetic and environmental variables (Igg) and
by each variable separately (Ig, Ig). The test statistic (I7)
in this case is the difference between Igz and the max-
imum of Ig, Ir. The p-value of the test is estimated using
permutation. The permutation procedure accounts for
familial correlation by constraining the permutation step
to within each family. In this study, the test p-value was
estimated with 10,000 permutation replications.

The PBI test is not designed to utilize repeated out-
come measures. In order to analyze longitudinal data
using the PBI test, we use the average BMI over time as
a summary measure for each individual. To allow dataset
division, the predictors specifying a given partition
scheme must be categorical. Any continuous predictors
would need to be categorized before applying the test.
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The PBI test is nonparametric and does not assume lin-
ear interaction relationship.

Simulation analysis

Simulated BMI trajectories for 788 individuals (226 DZ
twins, 168 MZ twins) were generated with input predic-
tors that were partially based on their corresponding
QNTS variables. Actual QNTS data on the individual’s
family structure, zygosity, sex and age were used for the
simulation input. Missing data on age were imputed by
randomly sampling the age distribution of the whole
sample at the missing time point.

Hypothetical genetic and environmental factor data
were generated using probability models. The environ-
mental factor was coded as either present (1) or absent
(0), and was sampled from a Bernoulli distribution inde-
pendently for each individual with exposure frequency
set to 0.3. The genetic factor was coded to reflect addi-
tive genetic effect (0, 1, and 2 for the number of minor
alleles). Hypothetical parental genotypes for each indi-
vidual were generated as the sum of two independent
Bernoulli random variables, thus assuming random mat-
ing. The minor allele frequency was set to 0.3. Individual
genotype data was then obtained from parental geno-
types using probabilities according to Mendelian inherit-
ance pattern.
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Longitudinal BMI data trajectories were simulated
using a linear mixed model. The model equation is for-
mulated as follow:

Yii = (Bo + Coy) + BsSi + (Br + Cry) Tije + B Ty
+B6Gij + BerGij X Tijk + BpEij + O + &

/?fo(G,;,E,;), if GE interactions

where 0 = {,BGTEh(Gii,T,v,k,E,y), if GTE interactions
and functions f{ ) and A( ) assign individual covariate
values for the interaction effect according to the speci-
fied interaction scenarios (Fig. 1).

0;jx determines the simulated GE interaction effect on
the outcome for each individual at each time point. The
effect pattern is specified using an interaction matrix de-
scribing the combined interactive effect of the genetic
factor and the environmental factor (Fig. 1). We simu-
lated scenarios corresponding to the four interaction re-
lationships discussed in the introduction. Sgg and Bgre
represent the interaction effect between gene and
environment (GE) and gene-time-environment (GTE)
respectively.

Y is the BMI trait value for individual j of the i twin
pair at time point k. s with the corresponding sub-
scripts represents fixed effects for age in months (7;;),

Linear Interaction

Exclusive OR Interaction

combination of the genetic (G) and environmental (E) factors

E=0 E=1 [ E=0 | E=1
G=0 0 0 G=0 0 Boe/Bare
G=1 0 Bee/Bore 6=1  Bee/Baere 0
G=2 0 2Bee/2Bore G=2 0 2Bee/2Bore
1 A A
- ‘ -
) P Seo .o
N | & g L * X
n Environment (E)
‘8’ Conditional Dominant Interaction Small Marginal Effect Interaction :‘ E=?
E 1 =0 E=1 E=0 E=1
G=0 0 0 G=0 0 0
G=1  Be/Bore | 2Bce/2Bere G=1 0 0
G=2  2Bee/2Bore 2Bec/2Ber: =2 0 | Bee/Bere
A
e - - )
0 1 2 0 1 2
Gene (G)

Fig. 1 Effect specification for various interaction scenarios. Bce and Bere are interaction effect parameters for gene-environment and gene-time-
environment interactions respectively. Genetic (G) factor coded as 0, 1, and 2 for the number of minor alleles. Environment (E) factor coded as 1
or 0 for presence or absence of the environmental exposure. The tables in each panel present the interaction effect 0y associated with each
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sex (S;), the genetic factor (G;;) and the environmental
factor (Ej;). Bgr specifies the linear interaction effect be-
tween the genetic factor (G;) and time (7).

B Tl is used to modify the rate of change in BMI
over time to allow simulation of a segmented longitu-
dinal trend for BMI that resembles the actual trajectories
found in QNTS. Specifically, the 7" value is assigned
as follows:

Tr, — 0,if k<2
ik = T jx—6, otherwise

Based on this specification, an additional time effect
from S, is applied after 6 months of age (time point,
k> 2). This replicates the initial phases of fast growth be-
fore 6 months and the subsequent plateauing of BMI
afterwards as observed in QNTS data.

C,;j and Cpjare the random effects on the intercept
and the rate of change of BMI over time, respectively,
for each individual. The effects are simulated as compo-
nents of a bivariate normal random vector for each twin
pair. The covariance structure of the random vector is
set up to reflect the difference in familial correlation be-
tween MZ and DZ twins due to background additive
genetic effect.

o} +ok
{ofﬁ—azcifMZ

1
iaﬁJrchCifDZ

o4 +okif MZ

1

~0% +aLif DZ
Coj ~ N(0,Vy), Vo = 2

2 2
oy +0c

2 2
T, +1¢

{ %+ 1L if MZ

%+ 1L if MZ
1
ETiJrTZCifDZ
Crj ~N(0,V7),Vp =
1 2, 2
Ei"rl‘zcifDZ TA+TC

Parameters 0% and 75 represent the additive genetic

effect on BMI correlation while 0% and 72 specify the
common environmental effect on the correlation.

Simulation model parameters for genetic and environ-
mental factors were chosen to discern potential power
differences between the analytic models. Parameter
values for other variables were based on actual QNTS
data. The scenarios were broadly categorized into
models with no interaction effect, interaction effect on
the outcome average and interaction effect on the
outcome rate of change over time. For the no interaction
effect scenarios, we varied the genetic and the environ-
ment effects that were independent of each other. To es-
timate power for detecting GE interactions, we varied
the interaction effect size (5grz and Bgg). See Table 1 for
details on simulation parameterization.

For each simulation scenario, we applied the analytical
models to 2000 simulated dataset replicates. The power
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of each analysis method to detect GE interactions was
estimated as the proportion of significant results
(p-value <0.05) over the 2000 replicates. Significance
tests were performed on the interaction terms (Sgg and
Bcre) for regression-based models and on the PBI test
statistic. For null interaction scenarios, the proportion of
significant results (p-value < 0.05) was used to estimate
the type 1 error rate. For the twin and the linear mixed
models, we adjusted for sex, age, gene and environment
main effects in the model.

IGF pathway GE interaction analysis

To assess GE interactions between the IGF pathway
genes (IGF-1, IGFALS) and environmental factors (phys-
ical activity, sleep duration and daycare attendance), we
analyzed actual QNTS data on a sample of 536 individ-
uals from 292 families (143 MZ twins, 149 DZ twins).
The initial sample had 810 individuals with available en-
vironmental data, in which 682 individuals also had se-
quencing data. Details on the analysis sample selection
are in Section S1, Additional File 1.

Exon Sequencing data on the IGF-1 and IGFALS genes
were obtained using the Illumina HiSeq 2500 platform
at McGill University and Génome Québec Innovation
Centre. Molecular Inversion Probe (MIP) method was
used to construct DNA libraries for which deep sequen-
cing was carried out. We focused our analysis on
common single nucleotide polymorphism (SNP) variants
and excluded those whose minor allele frequencies
(MAF) were less than 0.05. Data quality control exclu-
sions including sequencing quality, missing data propor-
tion (>10%) and Hardy-Weinberg Equilibrium (HWE)
test (p-value < 0.01) were also applied. SNPs with highest
MAF were selected from haplotypes that are in linkage
disequilibrium (R*>0.8). The final analysis was per-
formed on 7 SNPs from the IGF-1 gene and 2 SNPs
from the IGFALS gene. Sequencing data was coded ac-
cording to the additive genetic effect model where the
number of the minor alleles is counted (0, 1, and 2).

BMI data were obtained for each individual at 6 time
points from birth to around 6years of age. Data were
collected using medical record (at birth), laboratory as-
sessment (6 month and 62 month follow-up) and inter-
view (all other follow-up) [38]. 99 individuals were
excluded for missing more than 4 out of the 6 BMI
measurements. We also filtered out 6 BMI measures
from 6 individuals that were judged to be unrealistic-
ally high/low and likely measurement or recording er-
rors. BMI data was treated as a continuous variable
without any recoding.

Zygosity status was coded dichotomously as either 0
(DZ twins) or 1 (MZ twins). Individual age was recorded
as number of months allowing decimals to account for
partial month. We did not differentiate between different
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Table 1 Parameter configuration for simulation scenarios
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Parameter®  Gene-environment interaction effect modeled?
No Effect Effect on Average Effect on Change
No Effect on Average® No Effect on Change® Linear Interaction  Non-linear Interaction®  Linear Interaction  Non-linear Interaction®
Bo 11 Inl 11 11 Inl Il
Bs 05 05 0.5 05 05 0.5
Br 0.8 08 08 0.8 0.8 0.8
Br -08 -08 -08 -08 -08 -038
Ba 0to1 0 0.25 0 0 0
Ber 0 0to 003 0 0 001 0
Be 0to2 0to12 05 0 05 0
o’a 3 3 3 3 3 3
o’c 15 1.5 15 15 15 15
T 0.001 0.001 0.001 0.001 0.001 0.001
TZC 0.001 0.001 0.001 0.001 0.001 0.001
0% 15 15 15 15 15 15
Bee 0 0 01to 1 01101 0 0
Bore 0 0 0 0 0.001 to 0.03 0.001 to 0.03

A range of values was simulated for some parameters, effect sizes varied at 0.1 increments for Bge when the interaction effect was on the average. For
interaction effect on the rate of change scenarios, Bgre varied at an increment of 0.003 before reaching 0.01 and then by 0.005 afterwards. Under no interaction
effect scenarios, B varied at the same increments as Bge (no effect on average), and Bgr varied at the same increments as Bgre (no effect on change). Bg varied at
0.2 increments (no effect on average) or was inflated by 40 times relative to its corresponding Bgr value (no effect on change)

bBo: average BMI at baseline predictor level; Bs: sex effect; By, Br: time effect; B¢: genetic effect; Bgr: gene-time (GT) interaction effect; Bg: environmental effect;
0% additive genetic effect on random intercept correlation; o’c: common environmental effect on random intercept correlation; T°4: additive genetic effect on
random slope correlation; c: common environmental effect on random slope correlation; 0% common effect on BMI variance; Bge: gene-environment (GE)

interaction effect; Bgre: gene-time-environment (GTE) interaction effect

For no interaction effect models, the scenarios refer to the trends where there are no GE interaction effect on genetic main effect (no effect on average) or

gene-time interaction effect (no effect on change)

9Non-linear interaction scenarios included exclusive OR (XOR) interaction, conditional dominant interaction and small marginal effect interaction

gestational ages among individuals, and set all ages to be
zero at birth. Sex was coded as binary with 0 being fe-
male and 1 being male.

Interviews were conducted at the follow-up time
points to obtain information on environmental expo-
sures. We collapsed them into a single summary meas-
ure per individual, as described below. Physical activity
level was assessed only at 32 and 50 months follow-up
where parents were asked to rate the physical activity
level of the study participant relative to his/her peers of
same age and sex. Since the majority of responses
remained unchanged between the two assessments, we
only used the 32-month follow-up data in our analysis
as it is the midpoint of the follow-up period. The re-
sponses were collapsed into a 3-level categorical variable
(“more or a lot more”, “equal” and “less or a lot less”)
with the most active category as the baseline. Extreme
categories were combined due to low counts.

Information on daycare attendance was obtained
through parental interview at 4 time points (6, 20, 32,
50 months of age). Attendance status was assessed by
asking the parents whether the participant was using
daycare or other babysitting services including care by
relative at the time of interview. We summarized the

overall daycare attendance for an individual by the pro-
portion of his/her follow-up time where the individual
attended daycare service. If the response was “yes” at
any given time point, we assumed that the participants
attended daycare service for the full duration of time
until the next follow-up point. Attendance status was ex-
cluded if we could not calculate the time between two
follow-up points due to missing data for age. The ana-
lysis variable was a continuous proportion ranging from
0to 1.

Individual sleep time was measured by two parental
interview questions on day and night sleep times, in
which parents were asked to describe the amount of
time the participants slept during day and night time.
An individual’s overall sleep time at each time point was
calculated as the sum of his/her day and night sleep du-
rations in hours (See Section S1, Additional file 1 for de-
tails on deriving total sleep time data). We then scored
each individual on whether his/her total sleep time met
the minimum recommended level from the American
Academy of Sleep Medicine (See Section S1, Additional
file 1) and endorsed by the American Academy of
Pediatrics [45, 46]. Finally, since sleep time data were
available for 4 follow-up time points (6, 20, 32, 50



Wang et al. BMC Medical Genetics (2019) 20:9

months of age), we summarized individual sleep dur-
ation status as the proportion of follow-up time where
the subject’s total sleep time met the minimum recom-
mended level. Follow-up proportion was calculated simi-
larly as daycare service attendance.

We used individual’s reported race as a measure of
their ethnic background. 8% of the responses did not
consider themselves to be Caucasian (“white”). The
MATF for the IGF-1 and IGFALS SNPs were markedly
different for Caucasian and non-Caucasian individuals
(See Section S1, Additional file 1). We thus excluded 47
individuals with non-Caucasian ethnicity from our ana-
lysis in order to control for confounding due to ethnicity
(population stratification).

Univariate analyses were conducted to obtain sample
distributions for the variables. We compared the distribu-
tions of environmental exposures and other covariates be-
tween the filtered sample used in our analysis and the
initial QNTS data sample. Depending on the variable type,
Chi-squared test or ANOVA test were applied to BMI,
age, zygosity, sex, physical activity, daycare attendance,
sleep duration and race. The previously described twin
model and the linear mixed model were fit to assess po-
tential GE interactions between each SNP-environmental
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factor pair. The interaction was modeled with a multi-
plicative term in the regression equation. Both the twin
model and the linear mixed model adjusted for sex in
addition to genetic and environmental predictors. The
time effect was modeled as a segmented trend in the lin-
ear mixed model with a knot placed at age = 6 months
(approximately the 2nd follow-up time point). The PBI
test was performed to evaluate interaction effects between
each SNP-environmental factor pair. Continuous environ-
mental exposures were categorized according to their
quartile levels to allow dataset partitioning with the PBI
test. For each method, Bonferroni multiple comparison
adjustment was made for GE interaction tests involving
the same environmental exposure (number of tests =9).
Goodness of fit for the twin model and the linear mixed
model was assessed by their residual plots. Sensitivity ana-
lyses were conducted to assess the effect of excluding im-
possible BMI values and non-Caucasian individuals on
our conclusions.

Results

Detecting GE interactions in longitudinal family data

We simulated two sets of scenarios, where the inter-
action effect was either on the average or on the rate of

QNTS Data

No Interaction

Linear Interaction
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175 [T<204

15.01 /
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15.0

1251 4

|
1254 |
,) — Mz
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- :2’E=O
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62 06 20 32
Average age at baseline and follow-up (month)
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Fig. 2 Trajectories of average BMI over time for actual ONTS data and simulated gene-environment interaction scenarios. Example datasets from
each simulation scenario having an interaction effect on the BMI average are compared to the actual QNTS data. Trajectories of average BMI at
each time point based on actual QNTS data are grouped by zygosity status; MZ (monozygotic twin) and DZ (dizygotic twin). Averages of
simulated BMI at each time point and their trajectories are grouped by genetic (G) and environmental (E) factor levels. Genetic factor coded as 0,
1, and 2 for the number of minor alleles. Environment factor coded as 1 or 0 for presence or absence of the environmental exposure. Simulated
data generated for both interaction effect on the average scenarios and no interaction effect null scenarios




Wang et al. BMC Medical Genetics (2019) 20:9

change in BMI over time. In this section, we present re-
sults from the additive genetic effect coding for the lin-
ear mixed model and the twin model. The additive and
co-dominant model specifications yielded qualitatively
similar results and thus similar conclusions regarding
the comparison of the analytical methods. Results from
the analysis using the co-dominant specification are
shown in Supplementary Section S2.

Figures 2 and 3 show average BMI trajectories from
the QNTS data compared to those from one simulated
dataset from each GE and GTE interaction scenario.
Compared to the actual QNTS trajectories, simulated
trajectories were in the same general range for BMI
values. Differences in the averages between the simu-
lated trajectories for each gene-environment factor level
demonstrated the intended interaction effect for each
simulation scenario.

Figure 4 shows the estimated type 1 error rates for
simulation scenarios without interaction effects. Both
the twin and linear mixed models controlled the type 1
error rate well (estimated type 1 error rate < 0.05). The
linear mixed model appeared to be more conservative in
comparison to the other tests. The PBI test met the 0.05
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threshold only when there was no main effect simulated.
As the magnitude of genetic and environmental main ef-
fects increased in the null GE interaction scenario, the
PBI test type I error rate exceeded 0.05 briefly (8 from
0.1 to 0.4 and fBgfrom 0.2 to 0.8). At higher main effect
sizes (Sg >0.4 and Sz >0.8), the false positive rate de-
creased, and the test became more conservative in those
scenarios. For the null GTE interaction scenario, the PBI
test’s estimated type 1 error rate increased as the GT
interaction and the environmental factor effects in-
creased. This increase in false positives plateaued when
Ber = 0.015 and Bg = 0.6, and stabilized at a false posi-
tive rate of around 0.5.

The twin model was more powerful compared to the
linear mixed model and the PBI test, except when the
interactive relationship was extremely non-linear (Exclu-
sive OR interaction or XOR) (Fig. 5). When the interactive
relationship was XOR, the PBI test had the best perform-
ance. For linear interaction scenarios, regression-based
models (twin and linear mixed models) performed well,
while the PBI test had almost no power even at larger
interaction effect sizes. All methods had lower power
under small marginal effect and conditional dominant

15.01 /

|
12,51 ,’
i

QNTS Data No Interaction Linear Interaction
225
20.01
4 SN
17.5 s

BMI

Exclusive OR Interaction

Conditional Dominant Interaction

Small Marginal Effect Interaction

06 20 32 50 62 06 20 32

null scenarios

Average age at baseline and follow-up (month)

Fig. 3 Trajectories of average BMI over time for actual QNTS data and simulated gene-time-environment interaction scenarios. Example datasets
from each simulation scenario having an interaction effect on the rate of change of BMI over time are compared to the actual ONTS data.
Trajectories of average BMI at each time point based on actual QNTS data are grouped by zygosity status; MZ (monozygotic twin) and DZ
(dizygotic twin). Averages of simulated BMI at each time point and their trajectories are grouped by genetic (G) and environmental (E) factor
levels. Genetic factor coded as 0, 1, and 2 for the number of minor alleles. Environment factor coded as 1 or 0 for presence or absence of the
environmental exposure. Simulated data generated for both interaction effect on the rate of change over time scenarios and no interaction effect

50 62 06 20 32 50 62
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interaction scenarios, when compared with their respect-
ive best case scenarios with highest power.

The power analysis results for scenarios where the inter-
action effect acted on the rate of change were similar to the
scenarios where the interaction effect acted on the average
(Fig. 6). Regression-based methods (twin and linear mixed
models) performed well for linear interaction situations (top
right panel), but were less powerful for non-linear scenarios
(other panels). The PBI test was powerful only when the re-
lationship was significantly non-linear (XOR). The twin
model had higher power compared to the PBI test and the
linear mixed model except when the interaction was XOR.
For the conditional dominant and small marginal effect
interaction scenarios, all three methods had more difficulty
detecting the true effects when contrasted with their re-
spective best case scenarios.

From our simulation analysis, we observed unusual be-
havior for the PBI test. The test was either too conserva-
tive or very prone to false positives under different
scenarios. Since the PBI test statistic is dependent on the
dispersion statistic values (Igg, I and Eg) calculated for
different ways of partitioning the dataset, we monitored
the values of those statistics for different simulation

parameter values. In scenarios where the PBI test behaved
erratically, partitioning the dataset by either genetic or en-
vironmental factor alone achieved comparable or higher
outcome explanatory performance than partitioning by
both gene-environment variables. Subsequently this af-
fected the PBI test statistic and its significance. Detailed
results can be found in Section S2, Additional file 1.

IGF pathway GE interaction effect on BMI

Figure 7 shows the BMI distributions of all QNTS indi-
viduals included in our analysis at each time point. The
trend demonstrated a phase of rapid increase before the
first follow-up point (average age = 6 months). This was
followed by a plateauing phase of moderate decline in
average BMI. When stratified by genetic and environ-
mental variables, some subgroups showed large devi-
ation from the aforementioned overall pattern (See
Section S3, Additional file 1). Table 2 displays the de-
scriptive statistics for the distributions of environmental
exposure variables and other factors of interest (individ-
ual average BMI, age, zygosity and sex). Mean BMI over
the follow-up was 15.09 (SD =1.59). Zygosity was bal-
anced between MZ and DZ twin pairs, but most of the
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pairs had the same sex. Over half of the individuals were
judged to have equal level of physical activity compared
to peers. On average, study participants attended daycare
and had adequate sleep for around half of the available
follow-up time. Only Caucasian individuals were in-
cluded in the final analysis to control for potential popu-
lation stratification.

We examined the significance of potential GE interac-
tions as well as each factor’s main effect using the twin
model, the linear mixed model and the PBI test. The PBI
test evaluated interaction effects only. As shown in Fig. 8,
none of the effects were significant after correcting for
multiple comparisons among SNPs interacting with the
same environmental factor (number of tests =9). Interac-
tions between physical activity and IGF-1 12:102791894
SNP or between daycare attendance and IGFALS rs17559
SNP were significant before adjustment. In this case,
physical activity and IGF-1 12:102791894 interaction was
detected by the twin model, while daycare attendance and
IGFALS rs17559 interaction was captured by the linear
mixed model.

Discussion

In this study, we assessed the theoretical performance of
three longitudinal family methods for detecting GE in-
teractions, and we applied these methods to data from
QNTS in order to evaluate the joint effect of the IGF

pathway genes (IGF-1, IGFALS) and environmental fac-
tors (physical activity, daycare attendance and sleep dur-
ation) on childhood obesity. Both the simulation analysis
and the QNTS data analysis have produced results
highlighting the challenges of modeling complex correl-
ation and interaction relationships. When reasonable ap-
proximation of the differences between individual BMI
trends was achieved, simplification of longitudinal data
structure by averaging the outcomes over different time
points did not negatively impact the performance. The
analytical models had different detection powers when
the GE interactions were non-linear. This pattern of
performances suggested that our methods were not ro-
bust to interaction model misspecification, and fitting
the correct interaction relation in a given model is im-
portant to its performance. The analysis of the QNTS
data did not reveal any statistically significant GE inter-
actions for the IGF pathway genes after correction for
multiple testing. The suggestive interaction between
the IGF-1 variant at position 102,791,894 of chromo-
some 12 and physical activity may serve as hypothesis
for further studies.

Longitudinal correlation was modeled by the linear
mixed model as this model allows use of all of the avail-
able data points from each individual. However, we
found that summarizing the repeated outcomes by their
mean and applying the cross sectional twin study model
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Table 2 Characteristics of the analysis sample

No. of Proportion or
individuals Mean (SD)
Individuals 536
Individual average BMI 536 15.09 (1.59)
Age
At birth 536 0(0)
Follow-up #1 536 6.28 (0.74)
Follow-up #2 531 19.49 (0.75)
Follow-up #3 497 31.77 (0.96)
Follow-up #4 435 49.85 (1.82)
Follow-up #5 478 62.25 (3.23)
Zygosity®
DZ twin 149 0.51
MZ twin 143 049
Sex?
Female-female twin 122 042
Male-male twin 102 035
Female-male twin 68 0.23
Physical Activity
More 156 0.37
Equal 253 0.59
Less 17 0.04
Individual proportion of follow-up 530 042 (0.37)
attending daycare facility
Individual proportion of follow-up 524 0.57 (0.31)
with sufficient sleep
Race
Caucasian 518 1
Other 0 0

?Analysis conducted with respect to each twin pairs instead of individuals
No number, SD standard deviation, BMI body mass index, MZ monozygotic,
DZ dizygotic

had higher power to detect GE interactions. Other stud-
ies have also demonstrated good power for detecting
genetic main effects using methods that summarize indi-
vidual longitudinal outcomes with their averages [33,
47]. Mechanistically, the high power of using the aver-
aging method may be attributed to the fact that the
mean statistic can retain relevant information while re-
ducing random noise. This is because of its formulation
as a weighted sum of data points, the mean statistic can
therefore account for the effect from each repeated
measure and produce better representation of any sys-
tematic pattern. An example to illustrate the importance
of this averaging procedure to method performance is
contrasting with analysis using only one of the repeated
outcomes, which has resulted in lower power [32, 47,
48]. This difference in performance between the two
simplification approaches could be due to the fact that

Page 13 of 16

when compared to a single time point, using the mean
over time was able to preserve more information from
the original longitudinal measures while minimizing ran-
dom noise. At the same time, using mean statistics can
simplify the longitudinal correlation structure while
retaining important information from the original data
set. In this way, averaging repeated outcomes can be an
optimal compromise between accuracy and parsimony
when modeling longitudinal data, and may contribute to
its better performance over the more accurate linear
mixed model. Considering these results, it appears that
simplifying longitudinal correlation with mean statistics
is able to achieve good performance in scenarios with
simple longitudinal data pattern. At the same time, it is
possible for more complex longitudinal trajectories to
occur in nature. Genetic and environmental effects on
outcome may be variable across time. In these cases,
averaging outcome values across time could lead to loss
of information and a decrease in statistical power.

Because of GE interaction’s potentially complex nature,
we should consider how much information would be lost if
a simple interaction model is imposed on data from a more
complex gene-environment relationship. Unlike single fac-
tor effects, GE interactions represent multi-dimensional re-
lationships between several factors. The multiplicative term
commonly used in regression models to represent interac-
tions will not be reflective of all possible relationships, since
it only accurately portrays linear trends. Including add-
itional higher order quadratic interaction terms in the
model may capture a specific type of complex GE interac-
tions, but this type of modeling is not always done [49]. In
our analysis, the performance of regression approaches (the
twin model and the linear mixed model) dropped whenever
the interaction scenario was not linear. This suggested that
the erroneous assumption of a linear relationship was not
reasonable, and may result in loss of power when imposed
on a non-linear scenario.

In addition to the loss of power observed for regres-
sion methods under non-linear interactions, the non-
parametric PBI test also had low robustness to different
interaction relations. Lower detection power was ob-
served for the PBI test when the underlying interaction
model differed from its best-case scenario (XOR inter-
action). This means that the performances of all three
methods tested in this study were sensitive to changing
interaction relations in the data. Specialized methods
may be needed for specific interaction scenarios in order
to achieve adequate detection power.

An interaction that was significant before adjustment
was between a variant in IGF-1 at chromosome 12 pos-
ition 102,791,894 and physical activity. It was detected
by the twin model (p =0.034) and had near significant
p-value under the linear mixed model (0.065). This SNP
was not documented in the dbSNP database, and is
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positioned outside the protein coding region of the
IGE-1 gene. If there is an actual interaction effect, the
variant may influence IGF-1 through gene regulation
mechanisms. The effect of physical activity on the IGF
pathway may be non-linear, since there is evidence for a
threshold-dependent pattern of stimulation on the GH
signaling by physical activity [19, 20]. If physical activity
interacts with the IGF-1 gene in a similar manner,
then the joint effect pattern may not be adequately
captured with the methods used in this study. Thus,
further characterization of this variant and its inter-
play with physical activity is required before making
any concrete conclusions.

Our study had limitations that should be noted when
considering the result. For simulation scenarios, we
made several simplifying assumptions that could poten-
tially limit the generalizability of our findings. For ex-
ample, the environmental exposure and the genetic
effect were simulated to be either constant or monotone
changes over time. In reality, it is possible for more
complex longitudinal trajectories. In this study, we fo-
cused our simulation design effort on the variability of
the GE interaction relationships. We had considered sev-
eral representative and plausible interaction relationships
that might be encountered in nature. Scenarios such as
the XOR relationships are not commonly examined in

the context of GE interactions. The result of our study
highlighted the poor robustness of the studied methods
to non-linear interactions and could serve as starting
point for future investigations with different GE inter-
action or longitudinal effect patterns. The analysis of the
actual QNTS data was also limited by data constraints.
For example, environmental exposure data were col-
lected using interview questionnaires. Potential measure-
ment error on environmental factors due to the usage of
interview questionnaire can influence statistical power
to detect GE interactions. Wong et al. (2003) showed
that studies with repeated and precise measurements of
exposure and outcome variables can have as much
powerful to detect GE interactions as studies with 20
times the sample size [50]. Thus, the statistical power of
our study may be limited by its moderate sample size
and potentially imprecise measurements of environmen-
tal exposures. Because of the gaps in the available data
and lack of adequate statistical models, we were also not
able to assess the environmental effects as time-varying.
At the same time, the analysis procedure taken by this
study has low potential for significant selection bias, as
our analysis sample was not statistically different from
the whole QNTS data (See Section S1 Table S1.1,
Additional file 1). Population stratification was also con-
trolled via restricting analysis to Caucasian individuals.
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Thus the results should be treated as exploratory in na-
ture, and the putative GE interaction between the IGF-1
variant and physical activity represents an interesting hy-
pothesis that warrants further investigation.

Conclusion

Using longitudinal family studies to investigate GE interac-
tions holds great potential for increasing our understanding
of childhood obesity etiology. However, when analyzing
longitudinal family data, the methodological issues raised in
this study should be considered. Although simplifying the
over time repeated outcomes with their averages worked
fairly well, all of the methods considered in this study were
not robust to misspecification of the interaction relation-
ship. This highlights the need for more robust methods
when studying GE interactions in the longitudinal family
context. Equally important, characterization of how differ-
ent GE interaction relationships influence method perform-
ance is also needed. Future study design should give more
consideration to the inherent complexities of GE interac-
tions. These lessons could be applied when performing fur-
ther studies on the putative interaction between the IGF-1
variant and physical activity, as suggested by our result.

Additional file

Additional file 1: Supplementary Information and Results. Appendix S1
contains additional information on 1) Constructing kinship matrix when
fitting linear mixed model; 2) Data quality control filtering process
overview; 3) Deriving the daily sleep time data and the American
Academy of Sleep Medicine guideline; 4) Minor allelic frequencies of IGF-
1 and IGFALS SNPs. Appendix S2 contains 1) Results for the linear mixed
model and twin model with co-dominant genetic effect coding; 2) Be-
haviour of the PBI Test during simulation analysis. Appendix S3 contains
trajectories of average BMI at each follow-up time point. (DOCX 1030 kb)
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