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ABSTRACT

Tissue-specific gene expression is generally regu-
lated by more than a single transcription factor (TF).
Multiple TFs work in concert to achieve tissue
specificity. In order to explore these complex TF
interaction networks, we performed a large-scale
analysis of TF interactions for 30 human tissues. We
first identified tissue-specific genes for 30 tissues
based on gene expression databases. We then
evaluated the relationships between TFs using the
relative position and co-occurrence of their binding
sites in the promoters of tissue-specific genes.
The predicted TF–TF interactions were validated by
both known protein–protein interactions and co-
expression of their target genes. We found that our
predictions are enriched in known protein–protein
interactions (.80 times that of random expectation).
In addition, we found that the target genes show
the highest co-expression in the tissue of interest.
Our findings demonstrate that non-tissue specific
TFs play a large role in regulation of tissue-specific
genes. Furthermore, they show that individual
TFs can contribute to tissue specificity in different
tissues by interacting with distinct TF partners.
Lastly, we identified several tissue-specific TF
clusters that may play important roles in tissue-
specific gene regulation.

INTRODUCTION

One of the fundamental questions in biology is to understand
how different tissues achieve specificity. Given the same
DNA template, how are different tissue types determined?
What are the different genes that are expressed and how are
these different genes regulated in different tissues? With
current high throughput technology, researchers can now

measure gene expressions in various tissues on a large scale
(1,2). However, it is still a challenge to understand the intric-
ate and complex control of these genes.

There are more than 25 000 genes in the human genome,
and they demonstrate dramatic diversity in terms of expres-
sion levels and tissue expression patterns. Despite this
tremendous diversity, all genes are controlled by <2000 tran-
ranscription factors (TFs) (3). This limited set of TFs is
thought to be able to control the larger set of expression
patterns through combinatorial regulation, in which multiple
factors work in combination to control individual genes.

To study tissue-specific gene expression, Wasserman and
colleagues employed the concept of a regulatory module
(cluster of TF binding sites) to predict muscle- and liver-
specific regulatory regions (4,5). Using known tissue-specific
TFs based on experimental evidence, they were able to not
only recover many known tissue-specific regulatory regions,
but also predict novel genes that contribute to tissue spe-
cificity. The idea of regulatory module has also been applied
to study of gene regulation in fly development (6).

Despite the success of these approaches, they cannot be
applied on a large scale to many tissues due to the limited
state of our current knowledge about TFs. One requirement
of these methods is to have a list of TFs that are known to
be relevant to the tissue of interest. For example, the analysis
of liver specific gene regulation depended upon a priori
knowledge about six TFs with experimentally determined
roles in liver gene expression (5). Biological knowledge on
individual tissues is crucial to the quality of in silico predic-
tion of tissue-specific gene regulation. Unfortunately, current
knowledge of TFs that contribute to the tissue-specificity is
limited, and this in turn has limited the large scale bioinform-
atic study of tissue-specific gene regulation.

To circumvent this limitation, we have been working to
develop computational methods to analyze tissue-specific
gene regulation that are less dependent on specific informa-
tion about individual TFs. Our approach seeks to identify
TFs that are important to tissue specificity by focusing on pat-
terns of co-occurrence of pairs of DNA binding sites. Instead
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of searching for single TFs that have a role in tissue-specific
gene expression, we look for interacting TF pairs that may
co-regulate tissue-specific genes. Our approach has been
tested in the yeast model system (7). The method is based
on the hypothesis that TF complex instead of individual TF
is the functional unit in tissue-specific gene regulation; one
can better identify TFs that contribute to tissue-specificity
in the context of TF interactions than single TFs. Such ana-
lysis not only yields a list of TFs that may play a role in
tissue-specific gene regulation, but also provides information
about interactions between specific TFs.

In this paper we describe the application of this approach
to human TF interactions. We first derived, from publicly
available gene expression databases, a list of genes that are
preferentially expressed in 30 tissues. These sets of tissue-
specific genes represent ‘signatures’ of the transcriptomes
of the tissues of interest. We then searched the upstream
regions of these genes for all known TF binding sites, and
predicted TF pairs that may co-regulate their expression.
Based on this analysis, we present several conclusions
about how non-tissue specific TFs can in combination direct
tissue-specific expression, and also develop a network model
of some of the interactions involved.

METHODS

Identification of tissue-specific genes

We utilized the NCBI EST database to obtain a set of genes
that are preferentially expressed in the tissue which are
termed as tissue-specific genes. EST sequences are clustered
into UniGene. Let ei(g) be the number of ESTs corresponding
to gene g in tissue i. The total number of ESTs in UniGene
for g is E(g) ¼

P
iei(g). Given the total size of EST libraries

in tissue i, si, the expected number of ESTs in tissue i for each
gene is proportional to pi ¼ si=

P
isi. For gene g, if it is

expressed equally across all tissues (i.e. not differentially
expressed), the expected number of ESTs in tissue i is
equal to fi ¼ E(g)pi.

The expression enrichment (EE) is defined as EEi(g) ¼
ei(g)/fi(g), which is the ratio between observed to expected
number of ESTs for gene g in tissue i. A large value of
EEi(g) suggests that gene g is preferentially expressed in tissue
i. To evaluate the possibility that a large EE is due to chance
rather than a reflection of true differential expression, we cal-
culated a P-value for the enrichment score. The P-value for
gene g in tissue i was calculated according to the formula

PiðgÞ ¼
XEðgÞ

x¼eiðgÞ

EðgÞ
x

� �
pxi ð1�piÞEðgÞ�x:

Pi(g) is in essence the probability of observing ei(g) or more
ESTs for a non-differentially expressed gene g in tissue
i given the total number of ESTs for gene g [E(g)] and the
size distribution of the tissue libraries (pi).

We defined the genes as tissue-specific genes if they satisfy
the two criteria (i.e. EEi(g) > 5 and Pi(g) < 10�3.5).

Promoters sequences and conservation scores

For analysis, we used only those UniGenes (used to identify
tissue-specific genes) that had corresponding RefSeq entries

(hg17). We defined the promoter region of a gene as the
1 kb non-coding sequence upstream of the gene’s TSS and
50-untranslated region (50-UTR), with the TSS defined as
the 50-most position of the RefSeq sequence. 50-UTR is
trimmed to 1 kb if it is longer than that. The average length
of a promoter is �1480 bp. Although we are aware that some
TF binding sites are located far from the transcription start
site (TSS), the promoter regions we defined have the highest
density of known TF binding sites (8), and thus it is more
likely to detect real TF interactions in these regions.

Since some genes share the some promoter sequences (e.g.
genes with alternative splicing), we removed these redundant
promoters. In total, we identified 17 859 unique promoters for
our analysis. In our calculations, we utilized information
about sequence conservation and excluded repeat element
sequences (e.g. Alu) (9). Conservation was determined from
an eight-way alignment of human, chimpanzee, dog, mouse,
rat, chicken, zebrafish and fugu sequences. The conservation
was quantified by a conservation score between 0 and 1, with
1 as highest conservation (10). The conservation score was
obtained from UCSC genome database (11). We utilized a
relatively low cutoff (0.3) so that more human-specific bind-
ing motifs would not be excluded. The combined removal of
repeat elements and the conservation constraint reduces the
average promoter length to �590 bp.

Position weight matrices and genome-wide search

We obtained human position weight matrices (PWMs) from
TRANSFAC database and literatures (12). Some matrices
are very similar to each other and not distinguishable. We
compared the similarity between matrices and removed the
redundancy according to one of the two criteria: (i) similarity
>0.95; (ii) similarity >0.90 and sharing the same name (The
details of the matrix comparison can be found in Supplement-
ary Data). Finally 306 unique matrices are used for our study.

The match scores between a matrix and a promoter
sequence were calculated for all possible positions along
the promoter. The top 0.015% matches (including non-
conservative ones) were utilized for the next stage of ana-
lysis. On average, each matrix has 3500 hits in conserved
and non-repetitive regions, which corresponds to approxim-
ately one site occurring per five promoters. This cutoff is
somewhat arbitrary and may cause some false positive hits.
The study of TF pairs is expected to increase the prediction
specificity.

Identification of tissue-specific TF interactions

We predict two TFs interacting with each other if their
binding sites have over-represented co-occurrence in the pro-
moters of tissue-specific genes and the distances (in unit
of bp) between the two sites are significantly different from
random expectation.

The P-value for two binding sites consists of two contribu-
tions. One is from the binding site pair co-occurrence and the
other is from the distance constraint. The overall P-value is
defined as:

P ¼ PoccPd

where Pocc evaluates the over-representation of a binding site
pair occurrence (g) in the tissue-specific promoters compared
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to its occurrence (G) in all promoters in the human genome,
and Pd is used to evaluate the deviation of the observed
distance distribution from a random expectation. Pocc, is
calculated according to

Pocc ¼
XG
k¼g

G
x

� �
n

N

� �x
1� n

N

� �G�x
‚

where n is the number of tissue-specific genes; N is the total
number of human genes. Note that some TF binding sites
occur multiple times in one promoter. In such cases, when
calculating g and G we counted all combinations between
the TF binding sites. An alternative option would have been
to count these cases as a single binding site pair occurrence.
We compared these two options and found that counting all
possible pairs yielded better performance (Supplementary
Data).

The contribution of distance constraint between two sites
in promoter sequences, Pd, is calculated by comparing the
observed distance distribution with a background distribution.
For each TF pair, we calculated the distances between their
binding sites in the promoters. If one or both sites occur
multiple times in one promoter, we included the distances
between all combinations. Even though we filtered out the
sites in repetitive elements or non-conserved regions, we cal-
culated the true distance between two sites as if these regions
were not masked out.

The background distance distribution is considered to be
from random site pairs that do not interact with each other.
Since these random sites do not have any biological meaning,
they could occur in repetitive and non-conserved regions.
Given the length of one promoter sequence (L) and binding
site pair distance (d), the number of all possible arrangements
for the site pair is L � wf � wb � d + 1, where wf and wb are
the widths of the two sites. The chance of observing distance
d is proportional to the number of arrangements for a given d,
and can be normalized as

f dðLÞ ¼
L � wf � wb � d þ 1PL�wf�wbþ1

i¼1 ðL � wf � wb � iþ 1Þ
:

Given the length distribution F(L) of promoter sequences
in human, the random distribution of the binding site
distances is fd ¼

P
L F(L)fd(L). Pd was calculated by com-

paring the observed distance distribution and fd using the
Kolmogorov–Smirnov test.

In addition, we also calculated the maximum of the integ-
rated probability differences (Ad) of the observed and expec-
ted distributions (the gray area in Figure 1B). From the
comparison of positive control and random binding site
pairs, we set the thresholds for Ad to 0.24 and �log(P) to
6.2. Considering the multiple testing correction (i.e. 306 ·
307/2 TF pairs), the corresponding alpha for the P-value
threshold is �0.03.

Significance evaluation by permutation

We used an alternative method to evaluate the significance
of the predicted TF pairs. After we obtained the hits for all
TF binding matrices in conserved and non-repetitive regions
(see above), we permuted the matrix labels on the hits. With

the randomized labels, we calculated the P-values for each
TF pair as described above.

Sensitivity and enrichment

We collected a set of known direct protein–protein interac-
tions as positive controls to evaluate our prediction. Total
480 TF–TF interactions were obtained from databases of
DIP (13) and TRANSFAC (12). We measured sensitivity
and enrichment for our prediction.

The sensitivity is defined as the ratio between recovered
positive controls and total positive controls. For example,
we predicted total N interactions in 30 tissues. Np of them
are known TF–TF interactions. Since some interactions
could occur in multiple tissues, we may have N0 and N0

p

unique interactions in predicted and known interactions,
respectively. The sensitivity is therefore equal to N0

p/480:
The enrichment is defined as the ratio between observed

(Do) and expected density (De) of positive controls in the
predicted interactions. The observed density is calculated
according to Do ¼ Np/N. The expected positive density (De)
is the ratio between all positive controls and all possible
TF–TF interactions. Note that here the same TF–TF interac-
tion is considered as distinct interactions if it occurs in differ-
ent tissues. Thus, the number of all possible interactions is
M(M + 1)/2 * 30, where M is the total number of TFs in the
study (i.e. M ¼ 306). For positive controls, we have no
information about how many tissues one interaction associ-
ates with. We estimated it as Np/N

0

p. The number of all
positive controls in 30 tissues is 480 *Np/N

0
p. Therefore,

De ¼
480 � Np/N

0
p

MðM þ 1Þ/2 � 30

Expression coherence

We calculated the correlation coefficients of any gene pairs in
the entire genome to get the background distribution of the
correlations, and the value at the top highest 5% of the distri-
bution was set to be a threshold. The thresholds are different
for different microarray datasets (tissues). The expression
coherence (EC) for a group of genes is the fraction of gene
pairs with correlation coefficient higher than the threshold.
Thus, for a group of randomly picked genes, the EC value
is expected to be 0.05.

RESULTS

Identifying tissue-specific genes

We first derived groups of tissue-specific genes that are pref-
erentially expressed in a particular tissue. Using the available
5.3 millions human EST sequences, which map to 54 000
UniGene clusters (NCBI) (14,15), we calculated the gene
expression pattern for each UniGene in 30 human tissues.
The list of the tissues can be found in Table 1.

To determine whether a gene is preferentially expressed in
a tissue, we defined EE as the ratio between observed expres-
sion level in a tissue versus averaged expression level across
the 30 tissues. For each gene, 30 EE values were calculated,
one for each of the 30 tissues. We also calculated the P-value
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for each EE to evaluate its statistical significance. With these
two values, we defined a gene as ‘tissue specific’ if it had an
EE in a particular tissue larger than 5 and a P-value <10�3.5

(for details see Methods). Clearly, by this definition, ‘tissue
specific’ is a relative term and does not mean that a particular
gene is expressed only in a specific tissue. The numbers of
tissue-specific genes for each tissue are shown in Table 1.
On average, there are �290 tissue-specific genes for each
tissue. In total, we identified 7261 tissue-specific genes for
the 30 tissues.

As an evaluation, we also performed an independent gene
search according to a gene’s annotated functions. Based on
the gene ontology (GO) annotation (16), we searched the
logical combination of keywords to find the known tissue-
related genes. For example, we used ‘eye or retina’ to search
eye-related genes, while we used ‘bone but not bone marrow’
to search bone-related genes. In most cases we found a large
overlap between the two sets of genes that resulted from gene
expression and function annotation. This means that many
genes with known tissue-related functions are actually
also preferentially expressed in the tissue and vice versa.
However, for some tissues, the overlap is not significant.
These tissues are often not well studied and GO information
is lacking. Therefore, using expression data from the EST
database provides a more objective and unbiased determinant
of tissue-specificity.

From our analysis, we found that most tissue-specific genes
(85%) are specific to only one tissue. However, some tissue-
specific genes are shared by several tissues. For example,
muscle and heart share 171 tissue-specific genes, which is
not surprising because skeletal and cardiac muscle have in
common a number of structural, biochemical and functional
characteristics.

Expression enrichment and occurrence enrichment

Among the identified tissue-specific genes, nearly 10% (605
out of 7261) of them encode TFs. Intuitively, these tissue-
specific TFs are likely candidates to play an important role
in regulating tissue-specific expression in their respective tis-
sues. If this hypothesis is correct, one might expect the DNA
binding sites for these TFs to be over-represented in the pro-
moters of their respective tissue-specific genes (the promoter
region is defined as 1 kb non-coding upstream to the TSS). To
evaluate this possibility, we studied TF binding site occur-
rence enrichment (OE). OE measures the enrichment of a
TF binding site in the promoters of a group of tissue-specific
genes compared to its overall occurrence in all promoters of
the genome. It is defined as the ratio between observed and
expected TFs’ binding site occurrence in the promoters of
the tissue-specific genes. To calculate OE, we searched TF
binding sites in the promoter sequences. To increase the
chance that the matched sequences are biologically func-
tional, we considered only hits in evolutionarily conserved
regions. In our calculation, we only considered the binding
sites falling in the regions with conservation scores >0.3.
In addition, we also excluded the regions annotated as repeat
elements (e.g. Alu).

We first examined the relationship between EE and OE for
the 306 TF binding sites available in TRANSFAC databases
and literature (12). A few TFs have both large EE and large

OE in a tissue; these TFs presumably play a significant role
in regulating their corresponding tissue-specific genes. For
example, CRX has large EE and OE in eye and it is known
to be a TF that regulates many retina-related genes such as
rhodopsin (17,18). Similarly, MYOD has a large EE and
OE in muscle, and it is known to play an important role in
muscle gene regulation (19). However, there is no overall
correlation between EE and OE; the TFs that are preferen-
tially expressed in a particular tissue do not necessary have
more occurrences of their respective binding sites in the pro-
moters of genes with the same tissue specificity (Supplement-
ary Figure 1). Furthermore, this observation is not affected by
our choice of the conservation threshold (Supplementary
Figure 2).

We hypothesize that many TFs without large EE and OE
are also important in regulating tissue-specific genes. For
example, MEF2 is not preferentially expressed in muscle
(its EE in muscle is 0.4), yet it is known to regulate muscle-
specific genes (20). As an additional approach to distinguish
which TFs are relevant to tissue-specific gene regulation, we
studied the combinatorial occurrence of TFs’ binding sites.
This effort was based on the assumption that tissue specificity
is likely to be achieved by a set of TFs instead of single TFs.
In order to look for this type of combinatorial specificity, we
attempted to identify TF pairs that are likely to co-regulate
tissue-specific genes based on the relationship between their
binding sites.

Distance constraint of TF binding sites can help
identifying interacting TFs

Previous bioinformatics efforts to predict interacting TFs
have often been based on the co-expression of their target
genes or co-occurrence of DNA binding sites (21–24).
Here, we have added information about distance between
two binding sites. Our argument is that if two TFs interact
with each other, the locations of their binding sites in the
promoters are not independent of each other. The distance
between their binding sites in the promoters should differ
from a random distribution. More specifically, we suggest
that the binding sites of two interacting TFs should tend to
be close to each other.

For most of TF pairs, their DNA binding sites do not show
any preference for a particular distance. The distance distri-
bution is very close to random expectation (Figure 1A). How-
ever, for some known interacting TF pairs, the distances
between their respective binding sites are not uniformly dis-
tributed (Figure 1B). The chances for the two binding sites at
short distances are significantly enriched, while at larger
distance (>200 bp) the chances are depleted compared with
random expectation. Figure 1C illustrates an example of an
interaction between multiple binding sites of the same TF,
which we call homotypic interactions. We found that multiple
copies of SP1 binding sites often occur in promoters, and that
their distance distribution indicates that these binding sites
tend to be close to each other.

More significantly, we found that some TF pairs display
enhanced preference for short distances in the context of
certain tissue-specific genes. For instance, MYOD and
MEF2 are both known to be involved in muscle gene regula-
tion and interact with each other (25,26). If we searched for
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their binding sites in the promoters of the entire genome,
there is a slight enrichment for shorter distances. However,
when we restricted analysis to the promoters of the 326
muscle-specific genes (Table 1), we found considerable
enrichment for short distances (Figure 1D). This observation
suggests that the interaction between MYOD and MEF2 may
be muscle-specific.

Inspired by such observations, we examined the distances
between all possible 46 971 (306 * 307/2) TF binding site
pairs between the 306 TFs in the 30 groups of tissue-specific
genes. To quantify the short distance enrichment between two
sites, we calculated the area between the observed and expec-
ted distance distributions (Figure 1B). Larger areas indicate
greater deviation from random expectation, and hence stron-
ger interactions, while area close to 0 indicate little or no
interaction. In addition, we calculated the P-value (for Pd

see Methods) to evaluate the significance of the difference
between two distributions. In conjunction with the informa-
tion of co-occurrence of the binding sites (for Pocc see Meth-
ods), we predicted tissue-specific interactions between TFs.

Prediction of tissue-specific interactions

Based on the co-occurrence and distance distribution of
their binding sites, we calculated P-values for all possible
pairs of TFs. Each TF pair is associated with 30 P-values,
one for each of the 30 tissues. Figure 2A shows the P-values
for the pair of MYOD and MEF2 (both factors are known to
regulate muscle-specific genes); in support of the fidelity
of our approach, the highest P-value occurs in muscle
(P < 10�26). Besides the known TF interactions, we also

made predictions on novel interactions. For example, the
interaction between PAX2 and FOXJ2 is predicted to be
eye-specific, as the P-value for their binding sites is most
significant in the eye (P < 10�14).

Overall, we predicted 9060 tissue-specific TF interactions
(�300 for each tissue). The detailed numbers and the top
three most significant predictions are listed in Table 1.
Most of the interactions (76%) are specific to only one tissue.
We made schematic interaction networks for each individual
interactome (Supplementary Figure 2). The difference
between these networks is striking. Although the number of
participating TFs is limited (306), the connectivity in each
networks are clearly different. These unique interactomes
might contribute to the unique behavior of the individual
tissues.

Evaluation by known protein–protein interactions

We undertook several approaches to assess the validity our
TF pair predictions. One was to compare our predictions to
known information about protein–protein interactions.
Although we realize that our predicted interactions between
TFs do not necessary reflect direct physical interaction (for
example, interaction could be mediated through another co-
factor), we felt that this comparison would provide a useful
rough assessment. We collected known protein–protein inter-
actions from TRANSFAC (12) and DIP (13) databases, and a
recent large scale yeast two hybrid screen (27). In total, we
collected 480 known TF–TF interactions for our analysis.

Sensitivity and specificity are widely used statistics for
evaluation of a predictive method. However, in our case,

Figure 1. Distance distributions between TF binding sites in promoters. (A) shows an example of two TFs without preferential distance between their binding
sites in promoters. (It should be noted that here is currently no published data implicating interaction between E2F and FOXJa/b.) The line of y ¼ 1 represents the
expected distribution. (B and C) show the distance distributions for two examples with interacting TFs. (D) is an example for tissue-specific interaction. The short
distance enrichment is enhanced in muscle specific genes (open squares) compared with that in entire genome (filled diamonds). The gray area in (B) was used to
quantify the difference between observed and expected distributions.
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because the majority of the TF interactions are unknown, we
could not derive a reasonable estimate for specificity. Instead,
we calculated the enrichment for known interactions in the
prediction. Enrichment is defined as the ratio between
observed and expected fraction of known protein–protein
interactions in the predicted set (Methods). In order to get
an overview of the behavior of the enrichment and the sens-
itivity, we plotted them as a function of P-value (Figure 3A).
As expected, if more stringent P-value thresholds are used,
the number of known TF interactions recovered decreases.
At the same time, the enrichment of known interactions in
the prediction increases with more stringent thresholds.
This indicates that the known interactions are not randomly
distributed in the prediction set and tend to have more signi-
ficant P-values from our prediction. With the information
from the plot, we chose an arbitrary threshold of P ¼
10�6.2 for our prediction of TF interactions. At this threshold,
>40% of the known interactions are recovered, with 84-fold
enrichment for known interactions. Note that this approach
may underestimate the sensitivity of the method because
the known protein–protein interactions may also include
non-tissue-specific TF interactions, which is not the focus
in this study.

We also compared the P-value distribution for known TF
interactions and unknown pairs (Figure 3B). One can see
that on average known TF interaction pairs have more sig-
nificant P-values compared to the other TF pairs. However,
it is also clear that the two distributions have a large overlap,
indicating that the unknown TF pair set actually includes
many interacting TF pairs that have not yet been determined.
We performed a random simulation by permutation (Meth-
ods). The P-values obtained from this simulation are further
shifted toward the left (less significant).

Evaluation by co-expression of target genes

As a second independent evaluation of our TF interaction pre-
dictions, we analyzed the expression patterns of the potential
target genes of the TF pairs. Our working hypothesis was that
the expression profiles of a set of genes controlled by com-
mon TFs are more likely to be correlated and behave simil-
arly than those of randomly selected genes (28). Therefore,
if we observed significant co-expression of their target
genes, we inferred that the TF pair is regulating the target
genes; otherwise, the TF pair is likely to be inactive. We
used EC as a measurement of similarity between the expres-
sion profiles of a group of genes (21). Note that the EST data
used for identification of tissue-specific genes show the aver-
age expression level of a gene, while the expression profiles
we used here are the detailed expression fluctuation across
various conditions. The gene expression profiles analyzed
were based on microarray experiments obtained from SMD
database (29). We collected expression profiles in five tissues,
including brain (30–32), eye (33), liver (34), lymph node (35)
and pancreas (36). The experimental conditions are quite het-
erogeneous for different tissues. For example, the expression
levels in various compartments of eye (e.g. retina, corneal)
were measured; while for the liver, different tumor samples
were used for expression.

We first examined whether the target genes of detected TF
pairs are mainly tissue-specific. For a given interacting TF
pair that is specific to a tissue (e.g. eye), we first identified
a set of genes whose promoter sequences contain both bind-
ing sites. Among these genes, some of them are tissue-
specific (e.g. eye-specific), and some are not. We calculated
the EC for the two groups. For example, we identified CRX
and NRL as an eye-specific TF pair. A whole-genomic scan
resulted in 569 genes with both binding sites in their
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promoters and EST database analysis identified 18 of them as
eye-specific. For this set of the 18 eye-specific genes, we
calculated the EC to be 0.36 which is significantly higher
than the value of the non-eye-specific gene group (0.06) or
the general background (0.05). Interestingly, the average dis-
tance between the two binding sites in the eye-specific genes
is shorter than that in non-eye specific genes (394 versus
553 bp). The results of both the co-expression and position
analyses indicate that CRX and NRL may mainly regulate
eye-specific genes. This conclusion is not only true for this
specific example. In fact, the same observation was made
for most of the predicted TF pairs: the ECs for non-tissue spe-
cific genes are narrowly distributed �0.05; while the ECs for
tissue-specific genes are much higher (Figure 4A).

We next checked whether the tissue specific genes are also
co-expressed in other tissues. For example, we examined if
the 18 target genes of CRX and NRL are co-expressed in tis-
sues other than eye. By using microarray data measured in
four other tissues, we obtained the EC values for these 18
genes in these tissues (Figure 4B). The co-expression levels
in other tissues are lower than that in eye, indicating that
the TF pair preferentially exerts its effect on targets in the
eye. Similarly, we performed this evaluation with the 365
predicted eye-specific TF pairs and found that the average
ECs for the target genes of these TF pairs are higher in the

eye than in four other tissues (Figure 4C). Conversely, if
we calculated the ECs for all tissue-specific TF pairs using
microarray data set measured in eye, we found that eye-
specific TF pairs have the highest co-expression
(Figure 4D). In summary, we found that (1) the target
genes of tissue-specific TF pairs are mostly the genes with
the same tissue specificity, and (2) the TF pairs regulate
their target genes predominantly in the tissue of interest.

General properties of the TF–TF interaction networks

One notable feature of the predicted TF interaction network is
that most TFs involved in tissue-specific regulation are them-
selves not preferentially expressed in the tissue of interest,
i.e. non-tissue-specific TFs can regulate tissue-specific gene
expression. As one illustration of this point, of the 98 TFs
involved in eye specific interactions, only 11 of them
are themselves eye specific. As a specific example of this

Figure 4. Evaluation of prediction by gene expression. (A) The expression
coherence (EC) distributions for tissue specific genes and non-tissue specific
genes. (B) The EC of the target genes of eye-specific pair CRX and NRL in
different tissues. (C) The average EC of the target genes of all eye specific TF
pairs in different tissues. (D) For all tissue specific TF pairs, we calculated the
co-expression of their target genes using the microarray data set obtained in
eye. The eye specific TF pairs have the highest co-expression in eye.

Figure 3. Evaluation of prediction by protein–protein interactions. (A) Two
curves represent the sensitivity and enrichment in function of P-values.
(B) P-value distributions for known protein–protein interaction, TF pairs
without known interactions, and pairs from permutation simulation. The
vertical line indicates the threhold chosen for this study.
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dichotomy between TF expression and target specificity,
MYOD and MEF2 were predicted to interact specifically in
muscle (Figure 2A). While MYOD is preferentially expressed
in muscle, MEF2 is not muscle specific at all (Figure 2C and
E). As another example, PAX2 and FOXJ2 interact with each
other in the eye, yet neither of these factors is highly
expressed in the eye (Figure 2D and F). These examples
indicate that tissue specificity might be achieved by combina-
tion of multiple TFs. By interacting with other TFs, non-
tissue specific TFs can co-regulate tissue-specific genes.

Another interesting feature we observed from our TF
analysis is that an individual TF can contribute to tissue
specificity in different tissues by interacting with different
TFs. We demonstrate this characteristic with an example in
Figure 5. FOXO4 and PBX1A are predicted to interact in
an eye-specific manner based on their binding site distribu-
tion and co-expression of their target genes. Similarly,
FOXO4 and FOXO1A demonstrate a specific interaction in
liver. Therefore, FOXO4 can contribute to tissue specificity
in both eye and liver, depending on whether it interacts
with PBX1A or FOXO1A, respectively. This example again
indicates that the ‘function’ of a TF is better defined by its
interactions with other TFs (‘the company it keeps’) rather
than by the characteristics of individual TFs. In our Supple-
mentary Data, we present other examples of single TFs
participating in multiple tissue specificity.

Tissue-specific interaction clusters

A predicted interaction map provides an opportunity to exam-
ine the local and detailed interactions specific to various tis-
sues. Figure 6A shows a global view of the interaction
network generated from our predictions. In the figure, the dif-
ferent colors of nodes (TFs) and edges (interactions) indicate
different tissue types. The thickness of edges reflects the sig-
nificance of the predicted interaction. From the overall net-
work, we can appreciate the complex inter-relations and see
hints of modularity in the network. If we focus upon the

most significant interactions (interaction with P < 10�20), a
clear pattern emerges (Figure 6B). Interestingly, interactions
with the same tissue types form tissue-specific clusters. This
type of clustering is not expected to occur spontaneously
from a random network. To illustrate the properties of the
network, we discuss five clusters in detail.

Muscle and heart clusters. Muscle- and heart-specific interac-
tion clusters are interconnected, which is not surprisingly due
to the biological similarity of skeletal and heart muscle. The
clear centrally controlling TF is MEF2 which is a well known
TF in muscle (25). MEF2 is in fact the most connected node
(hub) both in muscle- and heart-specific interactions; these
hubs presumably represent the most central TFs in these
tissues (Table 1 lists the top three hubs for each tissue).
The interaction between MEF2 and MYOD is essential for
inducing myogenesis in transfected fibroblasts (25). Besides
MYOD, most of predicted interaction partners for MEF2
are known to be in involved in muscle and heart gene regu-
lation (e.g. MYOD, SRF, RSRFC4 and AP1) (4,19). MEF2 is
also predicted to work with LF-A1, PAX2 and ARP1 to con-
trol transcription in muscle. These three TFs’ interactions
mostly occur in other tissues instead of muscle and heart.
This means that even though some TFs may mostly be
involved in transcription in other tissues, depending on the
partner, they may regulate different tissues.

Kidney and liver clusters. The interaction clusters for kidney
and liver are linked through HNF1, which is known to be pre-
dominantly expressed in liver and kidney and regulate a vari-
ety of liver-specific genes (37). Based on our predictions, it is
in fact found to function as a hub in four tissues: kidney,
liver, small intestine and colon (Table 1). Our results suggest
possible important regulatory roles in these tissues. HNF1 is
known to function as a dimer (38), consistent with our pre-
diction of a homotypic interaction for this factor. We also
recovered two known liver-specific regulators, HNF4 and
HNF3 (5,39). Both are found to interact with HNF1. Our ana-
lysis of TF interaction not only provides a collection of TFs

Figure 5. One TF participating in multiple tissue specificity. (A) Both the binding site co-occurrence and target gene co-expression indicate that FOXO4 and
PBX1A have eye-specific interaction. (B) FOXO4 and FOXO1A have liver-specific interaction. (C) FOXO4 can participate in regulation of eye- and liver-
specific gene expression by interacting with PBX1A or FOXO1A.
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involved in tissue-specific gene regulation, but also reveals
the relationships between them.

Bone cluster. In bone-specific interaction cluster, there are
seven TFs: EF-C, MAZ, MIF1, GATA1, GATA2, GATA3
and RFX1. Among them, EF-C and MIF1 are the bone-
specific hubs (Table 1). Interestingly, they also form two
homotypic interactions. MAZ1 participates also in a co-
regulatory interaction with SRF in heart. Most of these TFs
and interactions are previously unknown and our results pro-
vide new hypothesis for experimental testing.

DISCUSSION

In this paper, we have demonstrated that one can predict
tissue-specific TF interactions based on the observed non-
random distribution of their respective DNA binding sites
within the upstream regions of genes. The predicted TF inter-
actions are likely to co-regulate tissue-specific genes, and
thus contribute to the tissue specificity of gene expression.
Our predictions were evaluated by comparison to known
protein–protein interactions and by assessing the degree
of gene expression correlations between target genes. We
found that TFs that themselves are not preferentially

Figure 6. Network of predicted TF interactions. (A) The predicted TF interaction network. (B) The most significant interactions with �log(P) > 20. The colors of
nodes (TFs) and edges (interactions) indicate different tissue types. If the majority of interactions through one TF are from one tissue type, the node is colored
with that tissue type. Otherwise, the node is blank. The size of nodes indicates the numbers of interactions through this TF. The thickness of edges indicates the
significance of interactions.
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expressed in a tissue can combine with other factors to con-
tribute to tissue specificity. In addition, individual TFs can
participate in tissue-specific interactions in multiple tissues
by interacting with distinct partners in the different tissues.
These findings are consistent with and strengthen the
rationale for ongoing experimental transcription studies that
are beginning to focus on transcription complexes as the
functional unit in gene regulation. Our large scale study
demonstrates in detail that biological function can be better
defined in terms of TF interactions rather than in terms of
single TFs alone.

To identify the interaction between TFs, we examined the
distance distribution between their binding sites within the
upstream regions of genes. From our previous analysis on
yeast promoter regions (7), we discovered that many interact-
ing TF pairs display strong preferences in terms of the dis-
tances between their binding sites. We termed the preferred
distances as characteristic distances. In this study on a mam-
malian system, we did not find evidence for characteristic dis-
tances between two interacting TFs. The lack of particular
characteristic distance in the mammalian system can be
attributed to both biological and technical reasons. Biologic-
ally, the mammalian system is much more complex. One TF
may have many interacting TFs. The sum of many character-
istic distances could cancel out single or several peaks in the
distance distribution. Technically, the signal to noise ratio of
identifying functional TF binding sites is much lower in the
mammalian system. Although we used evolutionary conser-
vation to increase the specificity of our prediction of TF
binding sites, it is likely that our analysis still included
many non-functional matches. This is in contrast to the situ-
ation in yeast where the chance of identifying ‘true’, biologic-
ally active, TF binding sites is much higher. One reason for
this is that promoter structure is much simpler in yeast.
Another reason is that we were able to integrate the large
scale chromatin-immunoprecipitation on microarray (ChIP-
chip) dataset (40,41) in our analysis, and such large scale
ChIP-chip data is not available for the mammalian system.

Based a similar approach, Zhu et al. (42) identified inter-
acting TF pairs based on over-represented co-occurrence of
binding motifs in the promoters of entire genome. Their
approach may miss many tissue-specific TF interactions as
identified in our study. In addition, the interactions detected
in their work may be not as statistically significant as the
tissue-specific interaction described here. For instance, for
an eye specific interaction, many non-eye specific genes
also contain their binding sites in the promoters, and they
will introduce noise in the prediction. Other methods have
been proposed to find cooperative TF pairs. One of such pro-
gram is Co-Bind (24), which utilizes a Gibbs sampling
approach to identify the interactions between two TFs. The
difference between our method and Co-Bind is that we stud-
ied the interactions between known TF binding sites while
Co-Bind detects interactions between novel sites. However,
Co-Bind has not yet been tested on mammalian systems.

As one of our future directions, we could predict TF inter-
actions for more specific gene groups such as cell-type spe-
cific expression patterns. For instance, we detected eye
specific interactions in this study. We could further break
down genes according to the specific cell type in which
they are expressed, such as photoreceptor versus ganglion

cell. However, we are aware of some of the technical chal-
lenges that would be associated with such an approach.
One is data availability. Currently, we do not have sufficient
datasets for this type of work. However, the increasing avail-
ability of large in situ hybridization studies (43), as well as
ongoing advances in laser capture microscopy and cell puri-
fication methods, coupled with microarray and other gene
profiling methodologies suitable for small sample prepara-
tions, may soon make such studies possible. A second tech-
nical problem that will have to be addressed relates to
statistical issues that may arise from the availability of only
small groups of genes specific to particular cell types.

Our analysis provides a global picture of TF combinatorial
regulation of tissue-specific genes. In addition, we made spe-
cific predictions in various tissues for experimental testing.
However, it is worthy to note that only 306 TF binding
sites are currently available and included in this study.
Thus, the predicted interaction network is far from complete,
and will need to be further developed and modified as more
experimental data accumulates related to the nature and
specificity of TF–DNA interactions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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