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Abstract: Curcumin is known as a biologically active compound and a possible antimicrobial agent.
Here, we combine it with TiO2 and ZnO semiconductors, known for their photocatalytic properties,
with an eye towards synergistic photo-harvesting and/or antimicrobial effects. We deposit different
nanoscale multi-layer structures of curcumin, TiO2 and ZnO, by combining the solution-based
spin-coating (S-C) technique and the gas-phase atomic layer deposition (ALD) and molecular layer
deposition (MLD) thin-film techniques. As one of the highlights, we demonstrate for these multi-layer
structures a red-shift in the absorbance maximum and an expansion of the absorbance edge as far as
the longest visible wavelength region, which activates them for the visible light harvesting. The novel
fabrication approaches introduced here should be compatible with, e.g., textile substrates, opening
up new horizons for novel applications such as new types of protective masks with thin conformal
antimicrobial coatings.

Keywords: atomic/molecular layer deposition; spin coating; curcumin; titanium dioxide; zinc oxide;
multi-layered structures; absorption

1. Introduction

Curcumin or diferuloyl methane (1,7-bis(4-hydroxy-3-methoxyphenol)-1,6-heptadiene-
3,5-dione)—with the nickname “from-kitchen-to-clinic”—has been found potentially useful
in pharmacology against various viral infections [1–6], besides its traditional use as a flavor
in turmeric. The antiviral functionality of curcumin (Cur) is believed to stem from its ability
to modify the protein structure of viruses, which can depress the activity of the virus or
even prevent its entry to the target [1,7,8]. Recent reports have indicated that curcumin
could be effective even against the coronavirus by inhibiting its encapsulation [8–10]; here,
curcumin acts by suppressing the cytokine storm, thereby reducing the possibility of in-
flammation and multi-organ failure, i.e., the major reasons for the increased fatality of
the coronavirus infection [8,10–12]. Additionally, curcumin has shown anticancer activ-
ity [2,13]. The active functional groups in the Cur molecule, i.e., the antioxidant hydroxyl
group attached to a benzene ring and the bridging β-diketone group between two benzene
rings, are significant for its antiviral property [10]. Moreover, the scavenging effect of
curcumin on reactive oxygen species is considered important in its fight against various
pathogens. Having the eye on its medical applications, it is important to supply curcumin
in a way that maintains its active functional groups. Another issue is its poor bioavailability
which makes oral treatments somewhat unfavorable [14]. Here, a possible solution could
be to load, e.g., wearable masks or bandages with Cur molecules using a suitable thin-film
coating technique to maintain the activity of curcumin.

In an early study [15], curcumin thin films were fabricated by simply immersing the
substrate in a Cur-containing solution. However, this route involved amine compounds,
which is a disadvantage considering the potential use of these coatings in healthcare. The
conventional spin-coating (S-C) technique in which the thin film is grown by spinning
the substrate with a solution containing the targeted molecules could be another facile
route for the curcumin films. This technique has been extensively used for a wide variety
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of materials including metal oxides, polymers and even multilayered structures [16–18].
For bare curcumin films, little efforts have been made to exploit the S-C technique [15],
but Cur-based metal complex films have been deposited using this technique [19,20]. In
spin-coating, the film thickness can be controlled to some level by various experimental
parameters (concentration and viscosity of the precursor solution, spinning time, rotation
speed, temperature), but up-scaling and integration, e.g., with microelectronics are difficult.
Additionally, solution routes are likely to leave some solvent inclusions in the growing thin
film. Here, advanced gas-phase thin-film techniques, in particular the currently strongly
emerging molecular layer deposition (MLD) technique could provide us intriguing options
to address these challenges [21,22]. The MLD technique is an extension of the atomic layer
deposition (ALD) technology originally developed for high-quality inorganic thin films
needed, e.g., in microelectronics [23–25]. In MLD, the inorganic precursors are replaced
by two mutually reactive gaseous/vaporized organic precursors to grow purely organic
thin films of high level of controllability and quality. Similarly to ALD, the MLD technique
has the capacity to yield precisely thickness-controlled, large-area uniform and conformal
coatings on complex and/or sensitive surfaces such as biomaterials and textiles [26–29].
However, since the MLD technique is based on chemical gas-surface reactions between two
different precursors with mutually reactive functional groups, e.g., hydroxyl and amine
groups, it first of all requires a co-reactant (organic or inorganic), and secondly is likely to
induce some changes in the primary precursor molecule when this molecule is reacting
with the co-reactant to form new chemical bonds. Hence, in the case of the Cur-bearing
thin films, the possible drawback could be that these changes would destroy the functional
features of curcumin that are essential for its antiviral activity.

Recently we demonstrated the growth of titanium-curcumin (Ti-Cur) thin films using
titanium (IV) isopropoxide (TTIP) as the co-reactant for curcumin [30]; note that in this case,
the process is termed ALD/MLD as it involves both inorganic ALD (TTIP) and organic
MLD (Cur) precursors [22,31,32]. It was shown that the Cur moieties are bonded to the
Ti atoms via curcumin’s hydroxyl groups, but the β-diketone and methoxy groups were
left intact. An attractive aspect in this ALD/MLD approach is that it is possible to further
combine the ALD/MLD-grown metal-Cur layers with additional ALD-grown inorganic
layers into different nanoscale multilayer structures [30,33,34]. In the present study, we
will push this option forward, and also investigate the possibility to combine the ALD,
MLD and S-C techniques to take a full advantage of their complementary benefits.

For the metal oxide components we have chosen ZnO and TiO2, as these two simple
semiconducting oxides are not only non-toxic and biocompatible, but also known for their
antimicrobial and photocatalytic properties [35–37]. Additionally, they are among the
prototype materials in conventional ALD technology, hence well-behaving ALD precursors
and processes are readily available for them [38,39]. The point of improvement with these
oxides is the fact that the photocatalytic activity is limited to the UV range only, due to their
wide bandgaps (ZnO: 3.3 eV, TiO2: 3.2 eV) [40,41]. Interestingly, there are few promising
reports showing that curcumin may be used to sensitize/activate TiO2 towards longer
wavelength (420–580 nm) absorption [42,43], or loaded in ZnO nanoparticles to enhance
the antibacterial and anticancer properties [44]. Moreover, we have succeeded in tailoring
the optical bandgap of TiO2 thin films by insertion of monomolecular organic (Cur or
hydroquinone) layers into regular SL structures using ALD/MLD, such that the films were
activated for visible-light absorption [30,45].

In this work, we demonstrate multiple novel ways of combining Cur molecules with
both Ti and Zn metal cations and distinct TiO2 and ZnO layers into novel layer-engineered
hybrid materials with the anticipation of intriguing synergistic effects. Most importantly,
we fabricate well-defined superlattice (SL) structures in which monomolecular Cur layers
are embedded within the TiO2 and ZnO matrices using the ALD/MLD technique, and
also double-layer (DL) structures in which spin-coating is used to deposit nanoscale Cur
layers which are combined with an ALD-grown TiO2 or ZnO layer. We address the benefits
and challenges of each fabrication approach, regarding, e.g., the required deposition
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temperature and the resultant bonding schemes between the different layers. As one of the
highlights, we demonstrate activation of these multilayer thin films for remarkable light
absorption in the entire visible range, which could open up new horizons for a number of
exciting applications.

2. Results

By innovatively combining the S-C, ALD and MLD techniques, we were able to
deposit various layer-engineered thin-film structures based on Cur, Zn-Cur, Ti-Cur, ZnO
and TiO2 layers, as schematically illustrated in Figure 1. In the following sections, we first
describe the new deposition processes developed for S-C-grown Cur films (Section 2.1), for
ALD/MLD-grown Zn-Cur and Ti-Cur films (Section 2.2) and then for the different multi-
layer structures (Section 2.3), and finally investigate the synergistic effects of the different
layers on the UV-vis photoabsorption characteristics of these materials (Section 2.4).
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Figure 1. Thin-film structures deposited in this work: (a) Curcumin (Cur) films via S-C; (b) Metal-
curcumin (Ti-Cur or Zn-Cur) films via ALD/MLD; (c) Curcumin plus metal oxide (Cur/ZnO or
Cur/TiO2) double-layer (DL) films via S-C and ALD, respectively; (d) Metal-oxide:Cur (ZnO:Cur or
TiO2:Cur) superlattice (SL) films via ALD/MLD.

2.1. Curcumin Films via Spin-Coating

With spin-coating we were able to readily deposit pure curcumin thin films in a highly
reproducible manner. The thickness of the films could be controlled from 4 to 46 nm by
increasing the Cur-solution concentration from 1 to 10 mg/m (the highest concentration
limited by the solubility of Cur in ethanol). The XRR (X-ray reflectivity) patterns displayed
in Figure 2a for the films reveal well-defined Kiessig fringes (oscillations) indicating the high
quality of the films; from the continuously decreasing distance between these fringes with
increasing starting-solution concentration, it can be seen that the resultant film thickness
continuously increases. The inset in Figure 2a shows that this dependence of the film
thickness on the Cur concentration in the solution is rather linear. The well-controlled S-C-
growth of Cur films was further affirmed from the UV-vis absorption spectra (Figure 2b),
showing the gradual (linear) increase of the absorption peak around 430 nm (originating
from the π − π* electronic transition [46,47]) with increasing Cur concentration. From
GIXRD (grazing-incidence X-ray diffraction) measurements, the films were found to be
amorphous. The density of the films was estimated to be 2.12 g/cm3 from the XRR data.
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Most importantly, the FTIR (Fourier transform infrared) spectrum shown for a repre-
sentative sample in Figure 2c clearly reveals all the characteristic peaks due to the functional
groups of curcumin [47,48]: presence of aromatic rings is seen from the peaks at 1589 cm−1

(symmetric aromatic ring stretching) and at 970 cm−1 (trans -C-H vibrations of aromatic
ring), β-diketone groups from the peaks at 1510 cm−1 (C=O stretching) and at 1626 cm−1

(O=C-CH2-C=O moiety), methoxy groups (-OCH3) from the peak at 1030 cm−1 (C-O-C
stretching vibration), and hydroxyl groups (-OH) from the large valley around 3500 cm−1.
These features are essential for the antiviral functionality of curcumin [10].
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2.2. Zn/Ti-Cur Films by ALD/MLD

Through ALD/MLD, we were able to deposit metal-curcumin thin films with precise
thickness control. In our previous work, we had already developed and optimized the
process for the Ti-Cur films, based on TTIP (titanium isopropoxide) and Cur precursors [30].
The deposition temperature was 300 ◦C, defined by the relatively high evaporation temper-
ature needed to vaporize curcumin (260 ◦C); the precursor/N2-purge pulsing sequence
was optimized to be: 15-s TTIP/30-s N2/6-s Cur/15-s N2. In the present work, we carried
out a similar process development/optimization for the Zn-Cur films at 300 ◦C; for the
Zn precursor, the natural choice was diethyl zinc (DEZ) with the pulse/purge condition
set to 2-s DEZ/3-s N2 based on extensive previous experience [38,49]. Then, we gradually
varied the pulse length of Cur to find the length required for surface saturation; from
Figure 3a, it can be seen that the saturation was reached with a 6-s Cur pulse. For the
rest of our experiments with Zn-Cur films, we fixed the ALD/MLD precursor pulsing
sequence as follows: 2-s DEZ/3-s N2/6-s Cur/15-s N2. This sequence yielded high-quality
Zn-Cur films at 300 ◦C with a growth-per-cycle (GPC) value of 2.0 Å/cycle. In Figure 3b
we compare the growth rates of the two processes, DEZ + Cur and TTIP + Cur, by plotting
the film thicknesses as a function of the number of ALD/MLD cycles applied. For both
the processes, this dependence is linear as expected, but the film growth rates are different.
The lower growth rate (2.0 Å/cycle) for Zn-Cur compared to that for Ti-Cur (3.9 Å/cycle)
is in line with the previous results for other ALD/MLD-grown Zn-organic and Ti-organic
films [49,50].

In Figure 3c, an FTIR spectrum recorded for a representative Zn-Cur film (grown with
150 ALD/MLD cycles) is shown. Most significantly, the spectrum lacks the signature of the
hydroxyl group stretching around 3500 cm−1 [48,51], indicating that the Cur molecules are
bonded to the metal atoms via the hydroxy groups. On the other hand, the other features
due to Cur are clearly visible in the spectrum, especially the peaks due to the aromatic
rings at 970 cm−1 (trans -C-H vibrations of aromatic ring) and the β-diketone groups at
1504 cm−1 (C=O stretching vibration) and 1622 cm−1 (O=C-CH2-C=O moiety). This is
important, as the deposition temperature (300 ◦C) was relatively high and could have led
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to decomposition of curcumin. The formation of the Zn-O bonds is seen from the sharp
peak appearing at 1263 cm−1 (C-O stretching), in line with the Ti-O peak seen at 1261 cm−1

in Ti-Cur films [30]. From the GIXRD patterns (not shown here), both metal-Cur films were
found amorphous, similarly to many other Zn-organic and Ti-organic thin films grown
by ALD/MLD [49]. From the XRR data, the film density values were determined to be
2.32 g/cm3 for Zn-Cur and 2.16 g/cm3 for Ti-Cur, i.e., only slightly higher compared to
value obtained for the S-C Cur films (2.12 g/cm3).
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2.3. Superlattice and Double-Layer Structures with Curcumin and ZnO/TiO2

For the fabrication of the multi-layer superlattice and double-layer structures illus-
trated in Figure 1, we combined the S-C, ALD and ALD/MLD techniques. The S-C
depositions were carried out at room temperature from a 8 mg/mL Cur/ethanol solution,
while the ALD growths of the ZnO and TiO2 layers were performed at 120 ◦C, using the fol-
lowing pulsing sequences: 1-s DEZ/1.5-s N2/1.5-s H2O/2-s N2 for ZnO, and 6-s TTIP/15-s
N2/3-s H2O/7-s N2 for TiO2 [30,49]. The ALD/MLD experiments for the ZnO:Cur and
TiO2:Cur SL films were carried out at 300 ◦C using the deposition parameters presented in
Section 2.2 for the DEZ/TTIP + Cur cycles, and repeating the precursor pulsing sequence:
[(DEZ/TTIP + H2O)m + (DEZ/TTIP + Cur)]n + (DEZ/TTIP + H2O)m, where the chosen n
value indicates the number of monomolecular Cur layers embedded within the metal-oxide
matrix in the SL films.

The intended multilayer (SL and DL) structures were verified with XRR. In Figure 4a,b
we show XRR patterns for representative TiO2:Cur and ZnO:Cur superlattice films. For the
former case, sharp and intense SL peaks are seen—as expected—between which the number
of the smaller fringes increase with increasing n (=number of Cur layers). For the ZnO:Cur
films, regular features are seen as well, but the SL peaks are less clear, indicating towards
more diffuse interfaces between the ZnO and Cur layers (in comparison to those between
the TiO2 and Cur layers). Another difference is that while the TiO2:Cur films are amorphous,
the ZnO:Cur films are (poly)crystalline of the hexagonal wurtzite structure (representative
GIXRD patterns are shown in Figure 4c). In previous works on ZnO:hydroquinone SL
films, it has been shown that the ZnO grains may partly penetrate through monomolecular
organic (hydroquinone) layers [52,53], which could be a plausible explanation here too
for the somewhat smeared interfaces between ZnO and Cur. In Figure 4d,e, we display
SEM (scanning electron microscopy) images for a representative ZnO:Cur SL film and a
similarly grown (at 300 ◦C) bare ZnO film reference; it can be seen that the ZnO grains are
of different shape in these two films, indicating some influence of the Cur layers on the
ZnO grain growth. However, no significant differences in the average grain size are seen.
The same conclusion applies to the average crystallite sizes calculated from the FWHM
values of the most intense GIXRD peaks as follows: ZnO 14 nm, ZnO:Cur (n = 5) 18 nm
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and ZnO:Cur (n = 10) 12 nm. Finally, we like to mention that a common trend for ALD and
MLD films is that amorphous films are smoother than the crystalline ones [54]. Hence, we
expect that the interface roughness could be larger for the ZnO:Cur SL films, compared to
the amorphous TiO2:Cur SL films. This could also contribute to the shallower XRR fringes
for the ZnO:Cur SL films.
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Figure 4. Characterization data for representative metal oxide:Cur SL films grown with ALD/MLD: (a) XRR patterns for
TiO2:Cur films with different n values (=number of Cur layers) [30], SL peaks marked with arrows; (b) XRR patterns for
ZnO:Cur films with different n values; (c) GIXRD patterns of ZnO and ZnO:Cur (n = 5) films, peaks from silicon substrate
marked with s; top-view SEM images for (d) ZnO, and (e) ZnO:Cur films (scale bars are for 300 nm).

In Figure 5a, we display XRR patterns for different double-layer films, together with
the Cur, ZnO and TiO2 films for reference. The first set of DL films, Cur/ZnO and Cur/TiO2,
consist of a 35-nm thick S-C-grown Cur layer, and then a 10-nm thick ALD-grown metal
oxide layer (ZnO or TiO2) on top of the Cur layer. The DL structure is visible for both
of these films from the XRR patterns. The FTIR spectra (Figure 5b) for the same samples
confirm that the curcumin is in principle well preserved upon the ALD growth of the metal
oxide layer on top of it, judging from the FTIR bands seen for all the functional groups
expected for curcumin. To address the impact of the order of the Cur and metal oxide layers
in the DL films, we also fabricated TiO2/Cur and ZnO/Cur films for which the 35-nm
thick Cur layer was spin-coated on top of a ca. 60-nm thick ALD-grown metal oxide layer.
For these films, the FTIR and GIXRD data were essentially identical to the corresponding
Cur/ZnO and Cur/TiO2 films. Nevertheless, the UV-vis absorption characteristics turned
out to be somewhat different, as discussed in the following sub-chapter. Tentatively, we
interpret this as an indication of diffusion of TTIP precursor molecules into the underlining
Cur layer upon the ALD (TTIP + H2O) cycles. This phenomenon, called VPI (vapor phase
infiltration) is well known for some ALD precursors when applied onto porous polymer
substrates/surfaces [55].
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Finally, regarding the crystallinity, we could conclude that all the aforementioned
ZnO-based films were crystalline, whereas those based on TiO2 were amorphous. From
existing ALD literature [30,39,45], it is known that the crystallinity of TiO2 films sensitively
depends on the experimental parameters such as the deposition temperature and the film
thickness. Hence, it was not unexpected to notice that not only the TiO2 layers deposited
at 120 ◦C for the DL structures but also the SL films with ultrathin TiO2 layers between
subsequent Cur layers (even though deposited at 300 ◦C) were amorphous. To demonstrate
the impact of the deposition temperature, we carried out additional experiments to deposit
the TiO2 layers for the TiO2/Cur DL films at 300 ◦C. Indeed, in this case the TiO2 layers
were—similarly to bare 300 ◦C-deposited TiO2 films—(poly)crystalline (of the anatase
structure). The crystallite sizes estimated from the GIXRD peak FWHM values were: TiO2
33 nm and TiO2/Cur 30 nm.

2.4. UV-Vis Absorption Characteristics

In Figure 6, we have collected representative UV-vis spectra for our thin-film samples
from all the aforementioned sample categories. First of all, for the parent Cur, ZnO and
TiO2 films, the absorption maxima (λmax) are seen—as expected—at 435 nm (due to the
π − π* electronic transition of Cur [46,47]), at 360 nm [56], and at 422 nm, respectively.
The slightly different λmax value of 435 nm for our Cur film as compared to the previous
data for curcumin solutions (ca. 430 nm) [57] may be due to the more closely packed Cur
molecules in our S-C thin films. Then, the other broader absorption peak seen for Cur
comprising the wavelength region 300~550 nm originates from its phenolic groups [46].

For the two ALD/MLD grown metal–Cur hybrid films, Zn-Cur and Ti-Cur, the λmax is
seen at 380 and 410 nm, respectively, indicating “curcumin-like” contribution even in these
films where Cur is bonded to metal ions (via the OH groups). The absorption intensity is
clearly lower for Zn-Cur in comparison to Ti-Cur [30]. The SL films, ZnO:Cur and TiO2:Cur,
show similar features as the corresponding Zn-Cur and Ti-Cur films, but in a more diluted
fashion (Figure 6a,c).

For the DL structures in which the ALD metal oxide layer was grown on top of the
S-C Cur layer (Figure 6b,d), the absorption intensity of the characteristic Cur peak around
435 nm is decreased in intensity for Cur/TiO2, but is essentially intact for Cur/ZnO; in
the latter case, instead, an additional peak appears at 365 nm due to ZnO which results in
overall in a broad UV-vis absorption region (330~565 nm). Most interestingly, for Cur/TiO2
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the 435 nm peak due to Cur strongly red-shifts, and as a consequence, the absorption edge
of the Cur/TiO2 film extends far towards the visible end, up to ca. 650 nm. This feature
looks similar to the absorption characteristics of the Ti-Cur films. Hence, we speculate
that the possible penetration of TTIP precursor molecules into the underlining Cur layer
upon the application of the ALD (TTIP + H2O) cycles on top of the spin-coated Cur layer
could cause the formation of Ti-Cur bonds in the Cur/TiO2 DL films somewhat similar to
those in the ALD/MLD grown Ti-Cur films. Note that we already shortly mentioned this
possibility in Section 2.3. For the reverse-piled TiO2/Cur DL film, the penetration of the
TTIP precursor molecules into the Cur layer naturally does not happen, and accordingly
the UV-vis features are clearly different. Indeed, for the two reverse-piled DL films,
TiO2/Cur and ZnO/Cur, it is seen that the Cur absorption feature persists and the 435-nm
peak intensity increases from 0.34 for the bare Cur film, to 0.55 and 0.53 for TiO2/Cur
and ZnO/Cur, respectively. Apparently, anchoring curcumin over the metal oxide layer
(TiO2 or ZnO) enables additional photosensitization of Cur such that in overall enhanced
absorption characteristics are seen for Cur-capped TiO2/Cur and ZnO/Cur DL films.
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SL (n = 5), (b) Cur and TiO2, and their DL combinations, Cur/TiO2 and TiO2/Cur (c) Zn-Cur and
ZnO:Cur SL (n = 5), (d) Cur and ZnO, and their DL combinations, Cur/ZnO and ZnO/Cur.

3. Materials and Methods

All the thin films were deposited on both 2.5 × 2.5 cm2 silicon and borosilicate glass
substrates. For the spin-coating, the source solution was prepared by dissolving different
amounts of curcumin (MERCK; curcumin for synthesis) in 99.5% ethanol (Altia) to vary the
concentration of curcumin from 1.0 to 10 mg/mL. The spin-coating (WS-650SX-6NPP/LITE
by Laurell Technologies) was carried out at room temperature by spinning the substrate at
2000 rpm for 2 min after dropping 0.25 mL of the Cur/ethanol solution.

For the ALD/MLD experiments, a commercial flow-type hot-wall ALD reactor (F-
120 by ASM Ltd., Tsing Yi, Hong Kong) was used. The precursors were (sublimation
temperatures in parentheses): curcumin (260 ◦C), deionized water (RT), titanium(IV)
isopropoxide (25 ◦C) and diethyl zinc (RT). Both TTIP (Aldrich, 97%) and DEZ (Aldrich,
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52 wt% Zn basis) were commercially purchased. It should be noted that we selected the
less reactive TTIP instead of the more common TiCl4 as the precursor for titanium to avoid
the unwanted side reactions that could arise from the interaction of TiCl4 with sensitive
substrates, such textiles in the intended future applications. Two of the precursors, Cur
and TTIP, were placed inside the reactor in open boats while the DEZ and deionized water
cylinders were kept outside the reactor. Nitrogen (99.999%; flow rate at 300 SCCM) was
used as both the carrier and purge gas. The reactor pressure was kept at 2–4 mbar. The
ALD/MLD processes, DEZ/TTIP + Cur, were carried out at 300 ◦C, and the ALD processes,
DEZ/TTIP + H2O, at 120 ◦C.

X-ray reflectivity (XRR; PANalytical X’Pert PRO Alfa 1; X’Pert Reflectivity software)
were carried out for the verification of the multi-layer structures and for the determination
of film thicknesses and densities. From the film thickness, the growth-per-cycle (GPC)
value was calculated by dividing it by the number of deposition cycles applied. Film
densities were calculated based on the critical angle θc dependency on mean electron
density ρe of the film material, ρe = (θc

2π)/(λ2 re), where re is the classical electron radius
and λ is the X-ray wavelength [45]. The same diffractometer device was used to collect the
grazing incidence X-ray diffraction (GIXRD) patterns for the films, with an incident angle
of 0.5◦. Crystallite sizes were calculated from the FWHM (full width at half maximum)
values of the diffraction peaks using the Scherrer equation (Match software). The surface
morphology and the grain sizes/shapes were studied with scanning electron microscopy
(SEM; Hitachi S-4700). For the SEM analysis, the sample was mounted on a carbon tape
and sputtered using an Au–Pd mixture. A current of 15 µA and voltage of 10 kV was used
during the measurements.

For the identification of the different functional groups of the organic component
and the metal-organic bonding features, Fourier transform infrared (FTIR, Bruker alpha
II) spectroscopy was used. The interference from the silicon substrate was removed by
subtracting the FTIR spectrum of the bare silicon substrate from the FTIR spectra of the
samples. Finally, the UV−vis absorbance spectra (Shimadzu UV-2600 spectrometer) were
recorded for the films deposited on glass plates in the wavelength range of 200–800 nm.

4. Conclusions

We have developed a set of approaches to deposit various curcumin-bearing thin films
and multi-layer structures. Ultrathin curcumin films could be grown at room temperature
in a highly reproducible way using the spin-coating technique. The valuable features
of this process are: (i) the precise control on the films thickness (4~46 nm) by varying
the concentration of curcumin solution, and (ii) the preservation of all the active func-
tional groups of native curcumin, i.e., the β-diketone (O=C-CH2-C=O), methoxy (−OCH3)
and the hydroxyl (−OH) groups. These are important considering the possible antiviral
applications.

Another approach was to combine curcumin molecules with metal ions using the
gas-phase ALD/MLD technique for the growth of metal-curcumin hybrid films; in these
Zn-Cur and Ti-Cur thin films the curcumin moieties were found to bond to the metal
atoms through their hydroxyl groups, but the β-diketone and methoxy groups were
left intacted. The ALD/MLD technique allowed also to manipulate the metal-bearing
and curcumin precursor supply sequences to grow superlattice structures in which the
monomolecular curcumin layers are embedded within ZnO or TiO2 matrix. The UV-vis
absorption characteristics observed for both the hybrid and superlattice thin films revealed
promising synergistic effects beyond those seen for bare ZnO and TiO2.

Finally, we combined S-C-grown curcumin layers with ALD-grown ZnO or TiO2
layers for double-layer structures where the individual layers were of several tens of
nanometers thick. Compared to the ALD/MLD approach, here the depositions could be
carried out at significantly lower temperature (RT for S-C and 120 ◦C for ALD, while 300 ◦C
for ALD/MLD), which is an advantage in case of temperature-sensitive substrates. Another
advantage of the S-C plus ALD approach is the fact that this left the Cur layers intact so
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that we can expect them to show the antiviral functionality. The most interesting result was
that even these separated layers mutually influenced the UV-vis absorption characteristics
such that the absorption was not just a simple sum of the individual components. Most
importantly, for the Cur/TiO2 DL film the absorption edge could be extended far towards
the visible end, up to ca. 650 nm. This could be of considerable interest for the visible-
light harvesting applications including photocatalysis. For Cur/ZnO DL film, a similar
extension of the light absorption range to cover both UV and Vis ranges (330~565 nm)
was seen, but the effect was less pronounced than in the case of Cur/TiO2. Finally, we
observed that the order of the layer piling had a meaning as well. For example, in the case
of Cur/TiO2 reversing the order of layers to TiO2/Cur enhanced the absorbance, indicating
the positive effect of having curcumin as the top-layer.
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