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Abstract

Objective

To characterize a potential pathogenic role of Mycoplasma salivarium and bacterial co-

detection patterns on different implant augmentation types.

Material and methods

36 patients were non-randomly assigned to autogenous lateral alveolar ridge augmentation

with either cortical autogenous bone blocks, or healthy autogenous tooth roots or non-pre-

servable teeth. Mucosal inflammation was assessed by probing pocket depth (PD) at all

sampling sites and by bleeding on probing (BOP) in a subset of sampling sites, and stan-

dardized biofilm samples were obtained from the submucosal peri-implant sulcus and sul-

cus of a contralateral tooth at two times (t1 after implant placement; t2 after six months).

Seven bacterial species were quantified using Taqman PCR.

Results

Mucosal inflammation did not differ between augmentation groups, but peri-implant sulci

showed increased abundance of M. salivarium after augmentation with autogenous tooth

roots lasting for at least six months (t1 p = 0.05, t2 p = 0.011). In M. salivarium-positive

samples, Tannerella forsythia was correlated with PD (R = 0.25, p = 0.035) This correlation

was not observed in M. salivarium-negative samples. Compared to all other samples, PD

was deeper in co-detection (i.e., simultaneous M. salivarium and T. forsythia) positive

samples (p = 0.022). No association of single or co-detection of bacteria with BOP was

observed.
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Conclusion

Presence of M. salivarium in peri-implant sulci varies with augmentation method and is

associated with increased PD but not BOP. A potential causal role of M. salivarium in inflam-

mation through a mechanism involving co-presence of T. forsythia requires further study.

Introduction

Peri-implantitis is a pathological condition occurring in tissues around dental implants, charac-

terized by inflammation in the peri-implant connective tissue and progressive loss of supporting

bone [1]. In addition to other signs of inflammation, peri-implantitis sites exhibit increased

pocket depths compared to baseline measurements [1]. Diseased implant sites have been shown

to be predominantly colonized by gram-negative anaerobic bacteria such as Prevotella interme-
dia and therefore feature microbiological characteristics similar to those noted for chronic peri-

odontal infections [2]. Bacteria with periodontopathogenic potential have been isolated at both

healthy and diseased implant sites [3] with a similar distribution, irrespective of the clinical

implant status (i.e., healthy, peri- implant mucositis, peri-implantitis). A recent analysis of

abundance of 78 species showed increased abundance of 19 bacterial species at peri-implantitis

sites compared to healthy implant sites, most prominently Porphyromonas gingivalis and Tan-
nerella forsythia [4]. Risk factors for the development of periodontitis, a condition closely

related to peri-implantitis but affecting natural teeth, include P. gingivalis and Streptococcus
mutans [5]. P. gingivalis was shown to be the strongest indicator of generalized aggressive peri-

odontitis and T. forsythia was one of the ten best predictors of generalized aggressive periodon-

titis [6]. The concentration and incidence of Mycoplasma salivarium was higher in subgingival

biofilm samples and saliva of periodontitis patients than in healthy individuals [7, 8].

Among the mycoplasma species colonising the oral cavity, M. salivarium was detected most

frequently [9]. M. salivarium preferentially resided in dental biofilms and gingival sulci, similar

to pathogenic periodontal bacteria [10, 11] and was identified as an opportunistic pathogen in

patients with periodontitis [12].

After tooth extraction, jaw bone may degenerate and be lost to a degree that bone augmen-

tation prior to insertion of tooth implants becomes necessary [13–15]. Reconstruction with

autogenous bone material is the current standard of care [16]. Alternatively, autogenous tooth

root fragments have successfully been used to expand the volume of the alveolar ridge [17, 18].

Changes in microbial colonisation patterns and bacteria detected in peri-implantitis depen-

dent on these implant augmentation methods have not been studied to date.

The study reported on here is a sub-study to an interventional trial assessing the impact of

different horizontal ridge augmentation methods on the width of the alveolar ridge [17]. The

aim of this study was to assess whether the method of augmentation had an effect on microbio-

logical colonization patterns in general and, more specifically, to characterize presence of M.

salivarium and bacterial co-detection patterns in different implant augmentation types to

understand a potential pathogenic role of M. salivarium.

Materials and methods

Augmentation methods

As part of the main trial, horizontal ridge augmentation was applied to 38 implants in 36

patients, one patient receiving three implants, in three augmentation groups using either: 1)

cortical autogenous bone blocks taken from the retromolar area (standard of care group;
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n = 11), 2) healthy autogenous tooth roots like impacted or retained wisdom teeth (n = 14), or

3) not retainable teeth, like endodontically treated or paracortical treated teeth which became

loose (n = 13). Treatment group allocation was non-random, i.e., was based on availability of

root material and investigator judgement. Preparation of tooth-derived augmentation materi-

als was conducted as described previously [17].

Implants were placed 26 weeks after insertion of the horizontal ridge augmentation. During

this interval, healing of the operational area was either open or submerged. In case of sub-

merged healing the re-entry was performed 13 weeks after implant placement. If the healing

was open, the re-entry was after 10 weeks. Afterwards the prosthetic treatment began with

abutments/gingiva former.

Study population

The patients studied were originally included into an interventional trial to which a detailed

description has been published previously [17]. All trial participants also participated in this

sub-study. Detailed eligibility criteria for the trial have been described previously [17]. In

short, patients meeting the following conditions were included in the trial: (a) age between 18

and 60 years, (b) lateral ridge augmentation necessary based on judgement of the clinician, (c)

insufficient bone ridge width at the recipient site for implant placement based on cone beam

computed tomography, (d) sufficient bone height at the recipient site for implant placement,

(e) healthy oral mucosa and (f) possibility of extraction of retainable tooth/teeth (for groups

receiving autogenous tooth roots only).

Patients were not included in the trial if they presented with any one of the following condi-

tions: (a) general contraindications for dental and/or surgical treatments, (b) inflammatory

and autoimmune disease of the oral cavity, (c) uncontrolled diabetes (HbA1c > 7%), (d) his-

tory of malignancy requiring chemotherapy or radiotherapy within the past five years, (e) pre-

vious immuno-suppressant, bisphosphonate or high dose corticosteroid therapy, (f) smokers

and (g) pregnant or lactating women.

Sample size calculation, as explained in detail in [19], was performed for the main outcome

of the intervention trial and did not include considerations for the study reported here.

Biofilm samples

At trial entry, all patients received a supra-mucosal cleaning. All samples were collected by the

same staff member of the Department of Oral Surgery, Heinrich Heine University, according

to a standard operating procedure. Submucosal peri-implant sulcus fluid samples were taken

at the deepest aspect of each implant site with sterile paper points (ISO 35–40) (VDW,

Munich, Germany) left in place for 30s (implant). The same method was applied for the collec-

tion of submucosal biofilm samples at a contralateral tooth (tooth). Samples were taken 36

weeks after implantation (i.e., Time point (t1) at beginning of the prosthetic treatment) and 6

months later (t2), both taken in the same gingival pockets. In addition, a parodontometer was

used to detect the pocket depth where samples were taken. Bleeding on manual probing (BOP)

was documented at the deepest aspect of each implant site, but not on tooth sites. The paper

points were transferred into 200μl G2 buffer solution from the EZ1 DNA Tissue Kit (Qiagen,

Hilden, Germany) and stored between -20˚C and -80˚C until transportation to the microbio-

logical laboratory for analysis.

Genomic DNA preparation

Material attached to the paper points was resuspended by vortexing in the 200μl G2 storage

buffer after addition of further 60μl G2 buffer. 200μl of the suspension was supplemented with
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12,5μl Proteinase K solution (100μg/ml Proteinase K) and incubated for 30 min at 56˚C. Pro-

teinase K was then inactivated for 5 min at 95˚C. The specimens were homogenized and cells

mechanically disrupted by bead beating with 1.4mm ceramic beads (Peclab; Pecelly lysing Kit

K14_0,5ml, VWR International GmbH, Darmstadt, Germany) for 4 min at 5.000rpm by using

the Minilys Personal Homogenizer (Bertin GMBH, Frankfurt am Main, Germany) [20]. Total

genomic DNA isolation was performed by a semiautomatic DNA preparation using an EZ1

biorobot machine (Qiagen, Hilden, Germany) with an elution volume of 50μl. The eluate was

stored at -20˚C until further use.

TaqMan Polymerase Chain Reaction (PCR)

In house TaqMan PCRs for the quantification of Mycoplasma salivarium [21], Veillonella par-
vula [22], Staphylococcus aureus [23], Porphyromonas gingivalis [24], Parvimonas micra [25],

Tannerella forsythia [24], and total eubacterial load (Eubacteria-PCR (Euba)) (S1 Table) were

carried out in a total volume of 25μl consisting of 1x Eurogentec qPCR MasterMix (Eurogen-

tec, Seraing Belgium) without ROX (containing buffer, dNTPs (including dUTP), HotGOld-

Star DNA polymerase, 5 mM MgCl2, uracil-N-glycosylase and stabilizers), 300 nM each

forward and reverse primer, 200 nM labelled probe, and 2,5 μl of template DNA (primer and

probes are listed in S1 Table) [26]. Amplicon carrying plasmids were used as quantification

standards in concentrations of 105, 103 and 102 copies/μl for bacterial species detections and

107, 105 and 104 copies/μl for total bacterial load. Thermal cycling conditions were as follows: 1

cycle at 95˚C for 10min followed by 45 cycles at 95˚C for 15s, and 60˚C for 1min. According to

the manufacturer‘s instructions, cycling and fluorescence measurement and analysis were car-

ried out with an iCycler from BioRad (Bio-Rad CFX Manager 3.1; Bio-Rad, Hercules, CA,).

Statistical analysis

Statistical analysis was performed using GraphPad Prism Version 5.01 (GraphPad Software

Inc., CA). The study reported here was planned as an exploratory addition to the interven-

tional trial reported previously [19] and as such, the analysis design was exploratory without

pre-specified hypotheses or a pre-study power calculation.

Bacterial loads were log transformed for analysis and graphical display. Species of bacteria

were coded as present if they were detected on qPCR regardless of their abundance and as

absent if they were not detected. A gingival pocket depth of>3mm was regarded as indicative

of disturbed milieu.

The nonparametric Kruskal-Wallis-Test was used to assess differences in bacterial loads

across augmentation groups, and the nonparametric Mann-Whitney for any comparisons

between two groups. Categorical variables as above were compared over treatment groups by

Chi square tests. Spearman correlation was used to assess the strength of association between

continuous variables, i.e., bacterial quantities and pocket depth. To assess the independent

association of bacterial species with pocket depth, we fitted (1) a (fixed-effects) linear regres-

sion model of M. salivarium bacterial load on pocket depth with T. forsythia as a co-variate

and (2) to include in this model interfering random effects from tooth or implant side, treat-

ment group and timepoint of sampling, a four-level mixed-effects model with random effects

and independent covariance in the aforementioned order. The fixed- and mixed-effects mod-

els were calculated in Stata Release 14 (StataCorp, College Station, TX).

Ethical approval

The study protocol was approved by the ethics Committee of Heinrich Heine University Düs-

seldorf (Ethics Approval Number 6247R) and all patients gave written informed consent.

PLOS ONE Association of bacterial colonisation and peri-implant gingival sulcus probing depth

PLOS ONE | https://doi.org/10.1371/journal.pone.0270962 July 8, 2022 4 / 14

https://doi.org/10.1371/journal.pone.0270962


Results

Differences between augmentation groups

Total bacterial load did not differ between augmentation groups (S1 Fig). When comparing

quantities of established paropathogens tested between the treatment groups, there were no

differences between the augmentation groups for T. forsythia (Fig 1B), Parvimonas micra,

Staphylococcus aureus and Veillonella parvula (S1 Fig).

P. gingivalis was only detected in patients of treatment groups 2 and 3, where new augmen-

tation techniques were used (Fig 1C). On the tooth side, this finding is supported by some sta-

tistical evidence (t1 p = 0.0322); t2 (p = 0.0146), whereas on the implant side the number of

positive samples was too low for the difference to be statistically significant.

There were specific differences in quantities of M. salivarium between the augmentation

groups: at t1, the amount of M. salivarium differed between augmentation groups and was

highest in group 2 where healthy autogenous tooth roots were used for augmentation (Fig 1A).

The observed pattern was similar on tooth and implant side with good statistical evidence for a

difference between groups on the tooth side (p = 0.01) and weak evidence on the implant side

(p = 0.05).

Fig 1. Abundance of bacterial species and gingival pocket depth by underlying augmentation material. Scatter plots of the bacterial quantity of (A)

Mycoplasma salivarium, (B) Tannerella forsythia and (C) Porphyromonas gingivalis; indicated as genome equivalents per sample (GE/sample) and of the (D)

pocket depth /mm in the peri-implantary sulcus compared to the opposite tooth, over time in the different augmentation groups. G1: Group 1, cortical

autogenous bone blocks; G2: Group 2, healthy autogenous tooth roots; G3: Group 3, roots from non-preservable tooth; t1: begin of the prosthetic restauration;

t2: six months after completing of the prosthetic restauration.▲ = positive patient sample at time t1;4 = negative patient sample at time t1. The bars represent

mean.

https://doi.org/10.1371/journal.pone.0270962.g001

PLOS ONE Association of bacterial colonisation and peri-implant gingival sulcus probing depth

PLOS ONE | https://doi.org/10.1371/journal.pone.0270962 July 8, 2022 5 / 14

https://doi.org/10.1371/journal.pone.0270962.g001
https://doi.org/10.1371/journal.pone.0270962


At t2, the difference between treatment groups remained constant on the implant side

(p = 0.011) but was no longer seen on the tooth side (p = 0.964) (Fig 1A). The differences

between treatment groups followed the same pattern when, instead of quantity, presence or

absence of M. salivarium was compared between groups (S2 Table).

Changes in M. salivarium abundance over time

Changes in M. salivarium abundance between time points t1 and t2 followed different patterns

between augmentation groups and between tooth and implant side. In detail, the following

observations were made:

On the tooth side, in patients of the standard of care group (group 1), the number of

patients with detectable amounts of M. salivarium increased between t1 and t2, and all patients

who were already positive at t1 were also positive at t2 (Fig 1A). In group 2, augmented with

impacted or retained wisdom tooth roots, there was a decrease in the number of positive

patients between t1 (n = 11) and t2 (n = 6). In group 3, augmented with not retainable tooth

roots, the number of samples positive for M. salivarium remained the same between t1 and t2,

but two patients who were negative at t2 became positive and vice versa.

On the implant side, the number of positive M. salivarium patients in all groups increased

between t1 and t2 (Fig 1A). There was no marked difference in the quantity of M. salivarium
in any of the three groups between t1 and t2.

To exclude that the differences in abundance of M. salivarium were due to healing proce-

dure, we compared healing procedures by augmentation groups. Open healing was not used in

the standard of care group (group1) and only in one case in study group 2 but was used in

almost half of cases in study group 3. The use of healing procedure was therefore distributed

differently from the abundance of M. salivarium.

Correlation of gingival pocket depth with different pathogens

To further characterize a possible role of M. salivarium in gingival inflammation, we investi-

gated associations between pocket depth and abundance of M. salivarium, as well as known

paropathogens P. gingivalis and T. forsythia.

Pocket depth did not differ between groups at the different points in time or between tooth

and implant side, and was mostly in a healthy range with a median depth of 3mm. Only at t2

on the implant side in the group augmented with not retainable root grafts (group 3), the

median depth was 4mm. (Fig 1D).

No correlation between pocket depth and amount of P. gingivalis was observed (R = 0.05,

p = 0.530). (Fig 2B and 2C). As expected for a known paropathogen, there was a weak correla-

tion between pocket depth and amount of T. forsythia (R = 0.22, p = 0.006). Pocket depth was

also weakly correlated with the bacterial load of M. salivarium (R = 0.18, p = 0.0305), meaning

that a higher quantity of M. salivarium tended to be found in deeper pockets (Fig 2A). The

amounts of M. salivarium and T. forsythia were borderline weakly-to-moderately correlated

(R = 0.39, p<0.001) (Fig 2D). Due to the correlation of amount of T. forsythia both with pocket

depth and with amount of M. salivarium, it was necessary to investigate whether the correla-

tion between amount of M. salivarium and pocket depth was independently observed. There-

fore, the association analysis between abundance of M. salivarium and pocket depth was

repeated adjusting for different concomitant amounts of T. forsythia, meaning that an inde-

pendent association should only be stated if abundance of M. salivarium correlated with

pocket depth in concordant direction in the co-presence of different amounts of T. forsythia.

Covariate linear regression showed that after adjusting for amount of T. forsythia there was no

evidence for an independent association of M. salivarium and pocket depth (p = 0.375).
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Fig 2. Correlation of bacterial abundance in the peri-implant sulcus with pocket depth or between bacterial species. Correlation of the load (GE/sample)

of M. salivarium (A), T. forsythia (B) and P. gingivalis (C) to pocket depth (mm); of T. forsythia to M. salivarium (D); of M. salivarium negative samples (E) or
M. salivarium positive samples (F) to pocket depth (mm). The bars represent mean.

https://doi.org/10.1371/journal.pone.0270962.g002
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Equally, allowing for random effects on the levels of side of sampling (tooth or implant), treat-

ment group and timepoint of sampling (nested in that order) showed a maintained association

between T. forsythia and pocket depth (p = 0.017) and no independent association between M.

salivarium and pocket depth (p = 0.336).

Modification of the association between abundance of T. forsythia and

gingival pocket depth by presence or absence of M. salivarium
We observed a marked difference in the association of pocket depth and the amount of T. for-
sythia depending on the presence or absence of M. salivarium. In the absence of M. salivarium
(80 samples) there was no association between the amount of T. forsythia and pocket depth

(R = 0.11, p = 0.349), while in the presence of M. salivarium (72 samples) there was a weak

association (R = 0.25, p = 0.035) (Fig 2E and 2F).

Next, pocket depth was compared between groups with different co-detection patterns,

depending on the presence or absence of M. salivarium and T. forsythia in the peri-implant sul-

cus and the contralateral tooth, i.e., detection of either both species simultaneously (co-detec-

tion), each one in the absence of the other or of neither species. Overall, no evidence for a non-

random distribution of pocket depth between groups could be found. When grouped into co-

detection positive or negative (this group encompassing all samples either negative for both or

positive only for either M. salivarium or T. forsythia), gingival pockets were deeper in co-detec-

tion positive samples (p = 0.022). Yet, between T. forsythia positive/M. salivarium negative and

co-detection positive the difference was less pronounced (p = 0.070) (Fig 3A). Between T. for-
sythia positive/M. salivarium negative and co-detection positive samples, the proportion of

deeper gingival pockets indicating inflammation was higher in the latter (30.9% vs. 38.1%) but

given the small sample size we cannot exclude that this difference occurred randomly. When

comparing the distribution of samples with M. salivarium and T. forsythia co-detection between

treatment groups, no consistent effect of augmentation group was observed (Table 1).

Bleeding on probing and how it corresponds to the previous observations

There was a weak evidence for deeper pockets in BOP-positive peri-implant locations

(p = 0.060), which can characterise a peri-implant mucositis by mucosal inflammation in

Fig 3. Association between T. forsythia and M. salivarium and clinical signs of gingival inflammations. Scatter plot of the (A) pocket depth (mm) and (B)

bleeding on probing positive (BOP+) or negative (BOP-) samples divided in groups of presence (+) and/or absence (-) of M. salivarium and T. forsythia. The

bars represent mean.

https://doi.org/10.1371/journal.pone.0270962.g003
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absence of continuous marginal peri-implant bone loss. Mucositis is considered a precursor

for peri-implantitis.

To confirm if M. salivarium or T. forsythia were associated with peri- implant mucositis, we

looked at the association between BOP and bacterial load. There is no evidence for an associa-

tion between BOP and the bacterial abundance or presence of M. salivarium or T. forsythia or

the co-detection of both bacteria (Fig 3B).

Discussion

In this study, the underlying augmentation material had no effect on the total abundance of

bacteria present in the implant sulcus after lateral alveolar ridge augmentation, but did alter

the abundance of some bacterial species tested. For M. salivarium specifically, augmentation

with autogenous tooth roots led to increased abundance lasting for at least six months. Peri-

implant gingival pocket depth correlated with abundance of T. forsythia independently of

simultaneous amounts of M. salivarium, while abundance of M. salivarium was not indepen-

dently correlated with pocket depth when accounting for simultaneous amounts of T. for-
sythia. On more detailed examination, abundance of T. forsythia correlated with pocket depth

only in the presence of M. salivarium, but not in its absence. T. forsythia has previously been

established as a paropathogen and may therefore independently contribute to development of

deeper probing depth, while M. salivarium may (a) either be an indicator of increased pathoge-

nicity of T. forsythia, (b) may increase the pathogenicity of T. forsythia or (c) may itself express

pathogenic potential only in the presence of T. forsythia.

M. salivarium has previously been described as an oral colonizer, localized in the epithelial

cells of oral leucoplakia tissue [27, 28], lichen planus [29], in a submasseteric abscess [30], and

on the surface of squamous cell carcinoma [28]. The presence of M. salivarium has been

reported in root canals of patients who needed endodontic treatment [31]. The study reported

here demonstrates that after augmentation with healthy tooth roots abundance of M. salivar-
ium was persistently increased in the sulcus of root graft augmented implants. Wide anatomi-

cal variation of wisdom teeth, which among others [32] were used in this study in group 2,

could make preparation of the root grafts augmentation during lateral augmentation more dif-

ficult, and thus increase tissue residuals in the augmentation material that may facilitate bacte-

rial colonization. M. salivarium has repeatedly been shown to be more frequently present in

inflamed gingival sulci and to be present in higher amounts in inflamed sulci than in healthy,

non-inflamed sulci [9–11, 33]. A correlation between pocket depth and amount of M. salivar-
ium in patients with chronic periodontitis disease has been demonstrated [34], but simulta-

neous presence of T. forsythia was not tested for in the respective study. Based on our results, it

is likely that T. forsythia may have contributed to periodontitis in the patients described there.

Table 1. Numbers and proportions of simultaneously Mycoplasma salivarium and Tannerella forsythia positive submucosal biofilm and peri-implant sulcus fluid

samples.

Group 1/CABB (n = 11) Group 2/HATR (n = 14) Group 3/NPTR (n = 13) P
Tooth side t1 3 (27.3%) 8 (57.1%) 3 (23.1%) 0,137

Tooth side t2 5 (45.5%) 6 (42,9%) 5 (38.5%) 0,940

Implant side t1 1 (9.1%) 6 (42.9%) 3 (23.1%) 0,155

Implant side t2 6 (54.6%) 12 (85.7%) 5 (38.5%) 0,038

P-values obtained by Chi square test; Group 1: cortical autogenous bone blocks (CABB); Group 2: healthy autogenous tooth roots (HATR); Group 3: roots from non-

preservable teeth (NPTR); t1: beginning of the prosthetic restauration, t2: six months after completing of the prosthetic restauration.

https://doi.org/10.1371/journal.pone.0270962.t001
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In a C57BL/6 (B6) mouse model, induction of IL-1β in macrophages and dendritic cells

after priming of these cells with lipopolysaccharids (LPS) derived from Gram-negative bacteria

has been shown and suggested as a possible mechanism for co-pathogenicity of M. salivarium
and Gram negative paropathogens [33]). T. forsythia, a Gram-negative bacterium, was fre-

quently detected in deep periodontal pockets co-localizing with P. gingivalis and T. denticola
to the superficial layers of subgingival biofilm as microcolony blooms adjacent to the pocket

epithelium, suggesting possible inter-bacterial interactions that contribute towards disease

[35].

The present study has some important limitations. We detected M. salivarium and T. for-
sythia at increased abundance in deeper pockets, but their presence or abundance was not

associated with BOP. While pocket depth�4mm is a strong and commonly used marker of

periodontitis, previous studies showed no significant difference in BOP positivity between

peri-implant and contra-lateral dental sites when controlling for the difference in PD [36].

Bleeding on probing was agreed as the primary measure of acute inflammation [37, 38].

Deeper pockets did not indicate acute mucositis, which is characterised as BOP on at least one

aspect of the implant but without concomitant increases in PD compared to baseline [39]. A

peri-implant mucositis is considered a precursor for peri-implantitis [39]. In BOP-positive

peri-implant locations weak evidence for deeper pockets could be found, which is also weak

evidence for peri-implantitis, characterized by inflammation in the peri-implant connective

tissue and progressive loss of supporting bone [1]. In our study, there was no evidence for an

association between BOP and the bacterial abundance or presence of M. salivarium or T. for-
sythia or co-detection of both.

Any possible causal contribution of M. salivarium and T. forsythia acute gingival inflamma-

tion cannot be derived from the presented data. An inflammation can, however, precede the

deeper pockets, and thus create a good environment for the bacteria in deeper pockets through

bone breakdown. It remains to be investigated whether the BOP of the implants compared to

the tooth side behaves differently due to the underlying augmentation material.

Further, assignment of augmentation method was not random, therefore uncontrolled con-

founding may have influenced the results. However, clinical characteristics of the augmenta-

tion groups in this study have been presented before [40], and clinically important differences

between the augmentation groups were not seen. Therefore, although randomization would

have been preferable, we believe that the augmentation groups were clinically similar enough

to allow the comparisons made in this report. Further, the sample size of the study was primar-

ily chosen for clinical comparisons and although statistical power in this study was high

enough to generate good statistical evidence for the microbiological findings reported here,

additional and less pronounced microbiological differences between the augmentation groups

may have been missed due to the small sample size.

The results presented here on co-localization of M. salivarium and T. forsythia, including

the evidence for an interaction between these species, and the subsequent implications on

probing depth are observational. However, for an experimental design in vivo, it would be nec-

essary to specifically alter presence and abundance of one or the other species. Specific human

infections studies would be ethically unacceptable and specific depletion of one or the other

species is unfeasible. We therefore conclude that an observational approach, as the one

described here, is the only feasible way to study these interactions in vivo in humans. The find-

ings we describe are consistent across the different comparisons and statistical tests presented

in this report and fit in with previous studies. A subsequent experimental study, e.g., in an ani-

mal model, should measure BOP in all sampling locations and ideally involve radiographic

assessment of implant status and could thereby confirm our findings and present a clearer

understanding of the mechanisms involved.
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Clinical success of lateral root graft augmentation has already been demonstrated in previ-

ous studies [17, 18] and a previous report from this study confirms that the implants were

healthily retained until the end of follow-up, i.e. 37 to 54 weeks after Implantation [40]. How-

ever, none of these reports described microbiological colonization at implantation sites.

The present study is, to the best of our knowledge, the first to demonstrate differences in

microbial colonization dependent on implant augmentation methods. The reported associa-

tion between co-detection of M. salivarium and T. forsythia in deeper pockets suggests that M.

salivarium may be of importance in the development of peri-implantitis in addition to its pre-

viously suggested role in periodontitis. Future studies on implant augmentation methods

should include microbiological parameters and could be extended to use of metagenomic

sequencing techniques to gain more comprehensive insights into the peri-implant micro-

biome. Especially, further mechanistic research into co-pathogenesis between M. salivarium
and T. forsythia is warranted. Understanding of these patho-physiological processes will have

the potential to improve long-term success of implantation methods by providing a basis for

adjunct prophylactic or therapeutic interventions.
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