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Abstract

Background

The 2014–6 West African Ebola epidemic highlights the need for rigorous, rapid clinical trial

methods for vaccines. A challenge for trial design is making sample size calculations based

on incidence within the trial, total vaccine effect, and intracluster correlation, when these

parameters are uncertain in the presence of indirect effects of vaccination.

Methods and findings

We present a stochastic, compartmental model for a ring vaccination trial. After identification

of an index case, a ring of contacts is recruited and either vaccinated immediately or after 21

days. The primary outcome of the trial is total vaccine effect, counting cases only from a pre-

specified window in which the immediate arm is assumed to be fully protected and the

delayed arm is not protected. Simulation results are used to calculate necessary sample

size and estimated vaccine effect. Under baseline assumptions about vaccine properties,

monthly incidence in unvaccinated rings and trial design, a standard sample-size calculation

neglecting dynamic effects estimated that 7,100 participants would be needed to achieve

80% power to detect a difference in attack rate between arms, while incorporating dynamic

considerations in the model increased the estimate to 8,900. This approach replaces

assumptions about parameters at the ring level with assumptions about disease dynamics

and vaccine characteristics at the individual level, so within this framework we were able to

describe the sensitivity of the trial power and estimated effect to various parameters. We

found that both of these quantities are sensitive to properties of the vaccine, to setting-spe-

cific parameters over which investigators have little control, and to parameters that are

determined by the study design.

Conclusions

Incorporating simulation into the trial design process can improve robustness of sample size

calculations. For this specific trial design, vaccine effectiveness depends on properties of

the ring vaccination design and on the measurement window, as well as the epidemiologic

setting.
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Author summary

The urgency, as well as the logistical and sometimes ethical challenges of clinical trials for

interventions during epidemics of emerging diseases prompts the need for novel designs

and analytic strategies. The successful use of a novel cluster-randomized ring-vaccination

trial to test an Ebola vaccine in Guinea raises the general question of what circumstances

would favour the use of trials of similar design and how the properties of the population,

the vaccine and the trial would influence the necessary sample size and the expected

results. We present a generalized transmission dynamic model for a ring vaccination trial

to address these questions. This work is an example of the general phenomenon that

mechanistic, transmission-dynamic simulations can aid in the design and interpretation

of intervention trials for infectious diseases, when the trial itself can have non-obvious

effects on transmission dynamics that may not be fully captured by effect- and sample-

size calculations for noncommunicable diseases.

Introduction

The West African Ebola epidemic highlighted the need to identify a range of trial designs to

evaluate vaccine effects rapidly, efficiently and rigorously during emerging disease outbreaks.

The ring-vaccination trial approach employed in the Ebola ça suffit trial in Guinea is one inno-

vative approach [1], which produced valuable evidence that the vaccine could prevent Ebola

infection [2]. Other approaches considered include individual randomization and a stepped-

wedge design [3, 4]. In such trials it is difficult to estimate the likely effect of an infectious dis-

ease intervention because of indirect effects, and this issue is compounded by complex trial

design. Sample size calculations are based on group-level quantities such as intervention effect

and are therefore potentially inaccurate. By creating a transmission dynamic model for a ring

vaccination trial, we show that we can make sample size calculations based on disease charac-

teristics and individual intervention efficacy. With this framework in place we are then able to

examine the estimated vaccine effect and sample size under a range of assumptions about the

properties of the vaccine, the trial, and the study population.

Although the only implementation of the ring trial design has been in Guinea during the

Ebola epidemic, lessons can be learned and extended to other diseases and contexts. Here, we

examine the tail end of an epidemic of a disease with a latent and asymptomatic phase with

effective contact tracing to illustrate a more widely-applicable set of findings. In particular, we

use baseline parameters values consistent with Ebola in West Africa in 2014–6, but we vary

several assumptions over broader ranges than those occurring in the Ebola ça suffit trial, with

the aim of being relevant to a range of potential future situations.

Methods

Ring vaccination trial

The simulation is based on a stochastic, susceptible-exposed-infectious-detected-removed-vac-

cinated (SEIDRV) model for individual disease events, and it represents progression of the dis-

ease in a small cluster (henceforth ‘ring’) with homogeneous mixing. The ring represents both

contacts and contacts of contacts so the assumption of homogeneous mixing is a simplifying

assumption, which we can relax by modelling ‘contacts’ and ‘contacts of contacts’ as separate

compartments with the highest transmission among the contacts. New cases arise through

direct contact between an infectious individual and a susceptible individual within the ring,
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and through external infectious pressure, denoted by F, which is constant and fixed for all

members of the ring. Members of the ring undergo surveillance by the study team, meaning

that infectious individuals are detected and isolated with a daily probability pH, ending their

infectious period. We assume in the baseline scenario that detection rate in the trial is equiva-

lent to routine surveillance, reflecting the fact that the trial doesn’t interrupt or enhance disease

control efforts. If infectiousness ends naturally, individuals can no longer be detected.

A ring is enrolled into the trial when a case is detected through routine surveillance. This

first detected case is defined as the index case for the purposes of the trial, but may or may not

be the true index case of the outbreak in the ring. Once a ring enters the trial all its members

are randomly assigned to immediate vaccination (on day 1) or delayed vaccination (on day

22). In the baseline scenario we assume no ineligibility or non-consent, so that all susceptible

and exposed individuals in the ring are vaccinated, and that there is no heterogeneity or

administrative delay affecting the day of vaccination.

The mechanism of the vaccine in an individual is as follows: multiplicative leaky efficacy [5]

increases linearly from 0 to VE (set at baseline to be 0.7) over a period of Dramp days following

vaccination, after which there is no change in efficacy over the study period [6].

Statistical analysis

Statistical analysis of the trial is based on cumulative incidence in the rings by end of follow-up

and a 95% confidence interval is calculated and reported [7]. The required sample size to test a

vaccine effect with 80% power is based on a difference in cumulative incidence [8], using

parameters output by a simulated trial with 15,000 rings. We chose this analysis method

because of the existence of simple closed-form sample size and vaccine efficacy formulae.

Because both arms receive the vaccine, cases that contribute towards the cumulative incidence

in each arm are only counted during a window in which the immediate arm is presumed to be

protected by the vaccine, and the delayed arm is not protected. The window length is set to 21

days, equal to the vaccination delay between the arms. Because the disease has an asymptom-

atic phase and the vaccine has a ramp-up period during which it is not fully efficacious, the

window starts at 16 days, the sum of the average asymptomatic period length and Dramp, in an

attempt to exclude cases in the immediate arm who were infected before they were fully pro-

tected by the vaccine. We did not explicitly implement clustering in the simulation, instead

assuming that transmission dynamics in all rings are independent. However, clustering of

cases within rings arises naturally due to dependent happenings. We measure this clustering

using the intracluster correlation coefficient (ICC), calculated as per Shoukri et al [9], adjusting

for the covariate of trial arm and accounting for variable ring size where appropriate.

In conducting the statistical analysis we assume full knowledge of the vaccine mechanism,

and that cases are only included if they are detected before their infectious period ends, and

their symptoms appeared during the window.

For additional details on the disease transmission model, ring initiation, and analysis of the

trial see the supplementary appendix.

Choice of parameters

Table 1 shows the parameters used in the model, their meanings, values under baseline

assumptions, and references or justifications.

In order to align this model with the presumed context of the Ebola ça suffit trial, we mod-

elled an entirely susceptible study population at the end of an epidemic, so that Reff has fallen

to below one due to behaviour change. To calibrate the model, we set Reff to reproduce a
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monthly detected attack rate of 2% when starting from one infected individual in a ring of 50

unvaccinated susceptible individuals, in the presence of case detection at a rate pBH.

Results

Under the baseline parameter assumptions listed above, the sample size necessary in each arm

to achieve 80% power to detect a difference in cumulative incidence between the two arms is

89 rings, each containing 50 individuals, making a total of 8,900 study participants. This trial

would on average return a total vaccine effect estimate of 69.81%, with average 95% CI (28.5,

87.2).

Determinants of vaccine effectiveness estimate

Under baseline parameters in this model, the median total vaccine effect calculated from per-

forming 100 trials with 89 rings in each arm was 70%. This value should include direct and

indirect effects, so we would expect it to exceed the direct effect of 70%. However, while direct

effects begin immediately, indirect effects are only important in the second generation of pre-

ventable cases onwards. There are cases in this generation that occur in the case-counting win-

dow because Reff is small and the window duration is not much longer than a typical disease

generation (17 days), so the indirect effects are small.

Fig 1 shows the effect of six variables on the point estimate of vaccine effect: daily probabil-

ity of detection, true individual vaccine efficacy, proportion of infections from outside the

ring, baseline attack rate in the unvaccinated population, administrative delay in vaccination,

and start day of case-counting window.

Firstly, if there is enhanced surveillance in both arms of the trial leading to more rapid isola-

tion of infectious cases (pH>pBH), this will modestly reduce effectiveness estimates (Fig 1A).

Table 1. Meaning and choice of parameters.

Parameter Meaning Default

value

Reference

Reff Average detected secondary infections from each infected

individual in a susceptible population, in the presence of

background case detection

0.61 Calibration to 2% detected monthly attack rate with

background case detection, from a single index case

Mean (latent) Mean latent period length (days) 9.31 [10]

SD (latent) Standard deviation of latent period length (days) 5.28 [10]

Mean

(infectious)

Mean infectious period length (days) 7.41 [10]

SD

(infectious)

Standard deviation of infectious period length (days) 3.24 [10]

PBH Daily probability of detection before start of trial 0.2 Mean of 5 days to hospitalization [11]

PH Daily probability of detection after start of trial 0.2 Baseline assumption, corresponding to no change in

detection from background rate during the trial

VE Individual vaccine efficacy 0.7 Baseline assumption [6]

Dramp Days after vaccination until vaccine efficacy reaches VE 6 Baseline assumption [2]

Dstart First day of counting cases 16 Assumption (based on sum of vaccine ramp-up period

and mean incubation period)

F External force of infection 0 Assumption (following rationale of a ring vaccination trial

designed to place vaccine in areas of high local

transmission)

m Size of a ring 50 Baseline assumption of Ebola ça suffit trial [1]

Table of parameter values and meanings, and references for those parameters which were chosen using the literature

https://doi.org/10.1371/journal.pntd.0005470.t001
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Fig 1. Estimate of vaccine effect by trial design, disease, vaccine and population characteristics. Median point estimate of vaccine

effect and 95% confidence interval derived from 100 trials with 80% power to detect vaccine effect shown against: (left to right, top to bottom) A:

daily probability of detection, B: true individual vaccine efficacy, C: proportion of infections from outside the ring, D: baseline attack rate in the

unvaccinated population, E: administrative delay in vaccination, and F: start day of case-counting window. In each panel, the VE estimate

corresponding to the baseline parameter set is highlighted in red, and the grey line represents the individual vaccine efficacy of 70%. All other

parameters are set at the baseline values.

https://doi.org/10.1371/journal.pntd.0005470.g001
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Secondly, as individual vaccine efficacy properties increase the estimated vaccine effect

increases (Figs 1B and S1). Thirdly, the percentage of infections from within the ring shows a

weak negative association with the estimate of vaccine effect (Fig 1C). While the magnitude of

indirect effects is modest as discussed above, they are almost negligible when most infections

are from outside the ring, because preventing infections within the ring does not confer as

much protection to susceptible individuals. The increase in vaccine effect with higher attack

rate seen in Fig 1D is driven by the increase in indirect vaccine effects in the immediate arm.

Finally, delay between ring formation and vaccination means that by the beginning of the time

window the vaccine has had less time to prevent cases in the immediate arm. Thus the reduc-

tion in incidence in the immediate arm does not reflect the true effect of the vaccine and the

vaccine effect estimate is reduced (Fig 1E).

A major determinant of the effect estimate is the choice of time window in which to count

cases, as seen in Fig 1F. Not surprisingly, starting the window too early reduces the estimated

effects because it includes a period of time during which the vaccine cannot affect the inci-

dence of cases becoming symptomatic–many cases becoming symptomatic on day 8, for exam-

ple, will have been infected by the index case prior to isolation, or will have been infected by a

contact on (say) day 3, before the vaccine had time to induce protection.

Starting the window later than the baseline of 16 days allows the trial to capture later gener-

ations in the chain of transmission, from a vaccinated person to another vaccinated person.

This increases the vaccine effect estimate as it includes indirect effects. One might expect to see

that starting the window too late would reduce effect estimates because it would include a

period when the delayed group was also protected by the vaccine. This does not appear to be

the case, at least up to a start time of 35 days (Fig 1F)–see the supplementary material for an

explanation of this phenomenon.

Determinants of sample size

Fig 2 shows the effect of the same six variables on the required sample size: baseline attack rate

in unvaccinated population, start day of case-counting window, daily probability of detection,

true individual vaccine efficacy, administrative delay in vaccination, and force of external

infection.

The effect of each parameter on the sample size can be understood through its effect on one

or more of the three factors that determine the power of this trial: the number of events, how

they are distributed between the two arms, and the level of clustering of cases within rings.

Respectively these factors are represented by the attack rate in the controls, the cumulative

incidence difference between the arms, and the intracluster correlation coefficient (ICC) [8].

Variables that decrease the incidence rate in the controls and cases will decrease the power

because for the same sample size the trial will observe fewer events. The baseline detected

attack rate among unvaccinated individuals is a simple example of such a parameter (Fig 2A).

Two other parameters act on the overall incidence in the trial. Firstly, making the start of the

case-counting window later decreases incidence in both arms because with Reff<1 the inci-

dence is on average declining, so across all rings in the trial the number of cases decreases over

the follow-up period (Fig 2B). Secondly, the case detection decreases detected incidence rate at

both extremes (Fig 2C). When case detection is high, transmission chains are interrupted by

case isolation and the true incidence decreases. When case detection is low, many cases die or

recover before they can be detected and consequently the detected incidence decreases.

Variables that make the two arms of the trial appear more different will increase the power

of the trial as the ability to differentiate between them is increased, and Fig 1 identifies such

variables. Vaccine characteristics, in particular vaccine efficacy (Fig 2D), are simple examples
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Fig 2. Required sample size by trial design, disease, vaccine and population characteristics. Number of rings per arm required to

achieve 80% power to detect a difference in cumulative incidence between the two arms against: (left to right, top to bottom) A: baseline

attack rate in unvaccinated population, B: start day of case-counting window, C: daily probability of detection, D: true individual vaccine

efficacy, E: administrative delay in vaccination, and F:proportion of infections from outside the ring. In Fig 2C, sample sizes are shown for VE

estimates based on only detected cases (black) and on all cases (blue). In each panel, the sample size estimate corresponding to the

baseline parameter set is highlighted in red. All other parameters are set at the default values.

https://doi.org/10.1371/journal.pntd.0005470.g002
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of such a parameter, since the immediate arm receives greater protection against disease com-

pared to the delayed arm. Changes to two other parameters increase the incidence difference

in this way, as explained above: reducing the delay between ring formation and vaccination

(Fig 2E) and starting the case-counting window earlier (Fig 2B).

The effect of the timing of starting to count cases thus reflects two opposing forces on the

sample size: it decreases sample size by increasing the incidence difference, and it increases

sample size by decreasing the overall incidence. When the window is early, the former of these

effects dominates as seen by the increase in sample size for early time windows in Fig 2B.

When the window is late, the latter effect dominates, as seen by the increase in sample size for

late time windows in the same figure.

Finally, the level of clustering within rings inflates the sample size, because more clustering

means that each individual case provides less information. It is often not intuitive to predict

the direction in which a parameter will cause the ICC to change, and in many cases the ICC is

not sensitive to the parameter. One exception is the infection from outside the ring (Fig 2F).

The most significant effect of introducing external infection and reducing within-ring trans-

mission is to make infection probability for one individual within a ring independent from the

infection prevalence within the same ring. This reduces clustering in incidence (making it

more Poisson-like), thus reducing the ICC and the necessary sample size.

The width of the confidence intervals is affected in the same way by the three variables

described above. In particular, low incidence in either arm, high ICC and a small incidence dif-

ference between the arms all lead to a wider confidence interval. The formula for the confi-

dence interval is different from the formula used to make the power calculation, so the trends

do not completely align because the size of the effect of each of the three factors is different for

the confidence interval and the sample size.

For an investigation of the sensitivity of the total vaccine effect estimate and sample size to

other parameters in the model, see the supplementary material. For an interactive tool to

explore the sensitivity of the trial parameters, see https://matthitchings.shinyapps.io/

ShinyApps/.

Discussion

The ring-vaccination, cluster-randomized design has two key strengths that make it a good

candidate when disease transmission exhibits spatiotemporal variation. Firstly, by including

members of the study population who are contacts of cases, the trial preferentially selects those

at higher risk of disease acquisition, leading to an increase in efficiency while preserving false-

positive rate through randomization. Indeed, when a vaccine with 0% efficacy was tested in

our simulations the false positive rate was maintained at 5%. Secondly, even those study sub-

jects who are randomized to delayed vaccination are theoretically in close contact with the

study team meaning that individuals from the source population who are at the highest risk

are followed closely and benefit from the trial even in the absence of vaccination [12].

In addition, vaccination of clusters when they arise allows for gradual inclusion, meaning

that this design is appropriate when logistical constraints make immediate vaccination of all

participants impossible or inappropriate. In this respect it is similar to a stepped-wedge cluster

trial, in which prespecified clusters within the study population are vaccinated in a random

order. Although we have not made a direct comparison in this study, Bellan et al [13] showed

that the stepped-wedge design is underpowered when the incidence is declining because it

cannot prioritize the vaccine for those at highest risk. The ring vaccination design, on the

other hand, is inherently risk-prioritized because all study participants should be at higher risk

than the general population.
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All trials should be correctly powered in order to avoid erroneous rejection of an efficacious

vaccine. For a trial design with several complexities such as the one presented here, a sophisti-

cated approach to sample size calculation is merited. A standard approach to sample size calcu-

lation for this trial would involve specifying the attack rate among the controls, the desired

effect of the vaccine on the population level, and the ICC. In the context of a serious epidemic,

these parameters are unlikely to be estimated with certainty; for example, the ICC requires

cluster-level data to be estimated accurately. The ICC is an important parameter in designing

cluster-randomized trials, yet in the absence of data it is often assumed to be 0.05. In our

simulations the range of ICCs observed was 0.01–0.04, suggesting that the value of this uncer-

tain parameter should not always be assumed to be fixed at 0.05. Therefore, the modelling

approach replaces assumptions about these cluster-level quantities with assumptions about

population-level parameters and disease characteristics, which are more likely to be available

through analysis of data from the outbreak.

A second advantage of the modelling approach is that, based as it is on a simulating the

transmission of disease within a trial, it is possible to explore the impact of parameters describ-

ing the design of the trial and the properties of the disease. The added detail gained from speci-

fying the disease model allowed us in this study to identify some key issues with the design that

are worth considering.

Firstly, as seen in Fig 2C, increasing case-finding efficiency above background rate has a

negative impact on power, as fast isolation of cases in both arms leads to an overall decrease in

cases observed by the trial. In future trials it is worth considering if there are alternative or

composite endpoints, if the disease in question permits, that can be used to allow for efficacy

estimates while maintaining close follow-up.

Secondly, a key design consideration in the delayed-arm ring-vaccination trial is when to

count cases. An intuitively appealing approach is to place the window so that the immediate

arm is receiving full protection and the delayed arm none. This should in theory minimize

bias caused by misclassification of unvaccinated individuals as vaccinated and vice-versa.

While this placement achieves nearly maximal power, it does not maximize the VE estimate.

Indirect effects that are important later in time increase the VE estimate for later time win-

dows, while at the same time declining incidence within each ring decreases power for later

time windows.

Finally, the above point draws attention to the fact that caution is required when interpret-

ing the VE estimate produced by the trial. As seen in Fig 1, many parameters that are not

characteristics of the vaccine can influence the estimated effect. Whether this is due to mis-

classification (for example, when the time window is too early) or due to indirect effects (for

example, when the attack rate is high enough to cause long transmission chains), the context

of the trial should be taken into account when interpreting the VE estimate. While in the base-

line scenario the trial appears to correctly estimate the individual efficacy, this is the result of

misclassification and indirect effects cancelling each other out. This claim is supported by the

fact that the median VE estimate falls below the individual-level vaccine efficacy when most

or all infections are from outside the ring (Fig 1C) and indirect effects are negligible.

The focus of this model was to explore parameters within each ring and understand how

they affect the quality of data coming from the trial. As a result, we did not consider the wider

context of the population disease dynamics, and in particular how and when the rings arise.

For example, we calibrated Reff to a secondary attack rate in a cluster was 2%, which is not nec-

essarily comparable to the monthly cumulative incidence in the population. If transmission

takes place mainly in clusters then population cumulative incidence could be somewhat lower

than cluster secondary attack rate, increasing the efficiency of a ring-vaccination trial relative

to a stepped-wedge cluster trial or individual RCT. Linking this model to a model of disease
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within the general population would allow us to make direct comparisons to other trial designs

such as the stepped-wedge cluster trial and the individually-randomized trial investigated else-

where [13, 14], but it would require detailed information about the nature of clustering of the

disease in this context, and for simplicity we focused on the within-ring dynamics only.

As with every model, there are limitations to these simulation results. The strength of the

modelling approach compared with a standard approach is that it better estimates the parame-

ters on which the sample size depends. However, some of the model parameters might still be

uncertain in a situation in which such a model might be useful. For example, we may have lim-

ited information about the characteristics of a disease, in particular its latent and incubation

period, and its Reff. The simulation results are dependent on these assumptions, and so they

cannot be used at the very outset of epidemic, or else they risk being highly inaccurate. Even at

the end of the West African Ebola epidemic, there were no more than four or five reliable esti-

mates of the latent and infectious periods of EVD, and indeed there is perhaps evidence that

our understanding of the natural history of the disease remains limited [15]. In addition, we

have considered only the simplest method of analysis for the trial–a comparison of attack rates

between the two arms after correction for clustering of cases within rings. More sophisticated

methods, including time-to-event analyses incorporating ring-level random effects, as per-

formed in the Ebola ça suffit trial, would have somewhat different sample size requirements.

However, we believe that the trends seen here would be similar for other methods, because the

VE estimates returned by various methods will be similar for a rare outcome [5]. In building

the model we made some simplifying assumptions, and although we tested the robustness of

the results to these assumptions (see supplementary material) it is possible that a more sophis-

ticated model would provide more accurate results, particularly if superspreading events are

not rare in this study population.

For a vaccine trial in an epidemic, when the level of indirect effects is hard to predict, power

calculations can be sensitive to parameters about which very little is known. Simulations such

as these can be important aids in understanding a range of values for these parameters before a

trial is carried out, and thus ensuring that the trial has sufficient power to detect an efficacious

vaccine. In this trial, a finding significantly different from the null likely indicates one or more

types of vaccine efficacy at the individual level, but the magnitude of the effect and the power

to detect the effect will vary across settings.

Supporting information

S1 File. Appendix. Additional detail on methods, including disease transmission model and
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S1 Code. R code. Code to estimate required sample size and vaccine effect from a ring vaccina-

tion trial for a chosen set of parameters. The computations in this paper were run on the Odys-

sey cluster supported by the FAS Division of Science, Research Computing Group at Harvard

University.

(DOCX)

S1 Fig. Log incidence rate in simulated trial populations. Simulated log incidence rate of

detected disease in the trial, in the immediate arm (black circles) and delayed arm (blue cir-

cles), with linear fit in the immediate arm (black line) and piecewise linear fit in the delayed
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arm (blue line). The change in rate in the delayed arm corresponds to the direct effect of the

vaccine. Circles represent means over 15,000 simulations.

(TIFF)

S2 Fig. Estimate of vaccine effect by trial design, vaccine and population characteristics.

Median point estimate of vaccine effect and 95% confidence interval derived from 100 trials

with 80% power to detect vaccine effect shown against: (left to right, top to bottom) A: post-

exposure vaccine efficacy, B: days to maximum individual vaccine efficacy, C: average vaccine

coverage in a ring, D: range in ring size, and E: ring size. In each panel, the VE estimate corre-

sponding to the baseline parameter set is highlighted in red, and the grey line represents the

individual vaccine efficacy of 70%. All other parameters are set at the baseline values.

(TIFF)

S3 Fig. Required sample size by trial design, vaccine and population characteristics. Num-

ber of rings per arm required to achieve 80% power to detect a difference in cumulative inci-

dence between the two arms against: (left to right, top to bottom) A: post-exposure vaccine

efficacy, B: days to maximum individual vaccine efficacy, C: average vaccine coverage in a

ring, D: range in ring size, and E: ring size. In each panel, the sample size estimate correspond-

ing to the baseline parameter set is highlighted in red. All other parameters are set at the

default values.

(TIFF)

S4 Fig. Estimate of vaccine effect and required sample size by disease latent period. Rela-

tionship between the start day of case-counting window and A: the median point estimate of

vaccine effect derived from 100 trials with 80% power to detect vaccine effect, and B: required

sample size for 80% power to detect vaccine effect, for a disease with a short, baseline and long

latent period. In Fig S4A, the grey line represents the individual vaccine efficacy of 70%. All

other parameters are set at the baseline values.

(TIFF)

S5 Fig. Estimate of vaccine effect and required sample size by disease infectious period.

Relationship between the start day of case-counting window and A: the median point esti-

mate of vaccine effect derived from 100 trials with 80% power to detect vaccine effect, and B:

required sample size for 80% power to detect vaccine effect, for a disease with a short, base-

line and long infectious period. In Fig S5A, the grey line represents the individual vaccine

efficacy of 70%. All other parameters are set at the baseline values.

(TIFF)
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