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For enhanced anti-cancer performance, human serum albumin fragments (HSAFs)
nanoparticles (NPs) were developed as paclitaxel (PTX) carrier in this paper. Human
albumins were broken into fragments via degradation and crosslinked by genipin to
form HSAF NPs for better biocompatibility, improved PTX drug loading and sustained
drug release. Compared with crosslinked human serum albumin NPs, the HSAF-NPs
showed relative smaller particle size, higher drug loading, and improved sustained
release. Cellular and animal results both indicated that the PTX encapsulated HSAF-NPs
have shown good anti-cancer performance. And the anticancer results confirmed that
NPs with fast cellular internalization showed better tumor inhibition. These findings will
not only provide a safe and robust drug delivery NP platform for cancer therapy, but also
offer fundamental information for the optimal design of albumin based NPs.

Keywords: human serum albumin fragments, nanoparticle, paclitaxel, drug delivery, anticancer

INTRODUCTION

With the fast growing of material chemistry and nanomedicine, biodegradable nanoscale drug
delivery platforms, including nanoparticles, micelles (Wang et al., 2014a; Li W. et al., 2016; Qu
et al., 2017) and liposomes, have been widely utilized for biomedical diagnosis (Park et al., 2009;
Morral-Ruiz et al., 2013; Wang et al., 2014b; Hu et al., 2018) and therapy (Boussif et al., 1995; Ding
et al., 2013; Xing et al., 2013; Bertrand et al., 2014; You et al., 2016; Ge et al., 2017; Li et al., 2017;
Pan et al., 2018; Yang et al., 2018). Recently, a great number of functional delivery systems (Liu
and Lu, 2006; Cho et al., 2011; Shrestha et al., 2012; Wu et al., 2012, 2014; Li et al., 2013; Wu and
Chu, 2013; Yu et al., 2013; Hai et al., 2014; Li H. et al., 2016; Hao et al., 2017; Xu et al., 2017) have
been studied. But even the nanoparticles (NPs) based on FDA approved materials, such as the
poly-ε-caprolactone (PCL), poly(DL-lactic acid), poly(lactide-cocaprolactone), and poly(lactide-
co-glycolide) (PLGA), are still toxic for high dosage treatment (Singh and Ramarao, 2013). Then,
NP systems with improved biocompatibility are highly desired (Maiti, 2011; Wang et al., 2016,
2018).

Albumin, as a biodegradable, non-toxic and non-immunogenic protein, has been used to
prepare NPs (Elzoghby et al., 2012). Albumin based nanocarriers (Shimanovich et al., 2011; Altintas
et al., 2013; Bakare et al., 2014; Rosenberger et al., 2014; Watcharin et al., 2014) have been reported
and the albumin-bound paclitaxel (Abraxane R©) had been proved to be safe and efficient (Saif, 2013;
Cecco et al., 2014). The crosslinked albumin NPs were able to increase their physical stabilities, but
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the drug encapsulation efficiencies and sustained release still need
to be improved (Kratz, 2008; Li et al., 2010, 2014; Elzoghby
et al., 2012; Kou et al., 2018). For this goal, we hypothesized
that albumin fragments based NPs could have better drug
loading/release performance, which would result improved
anti-cancer performance. Non-toxicity, biodegradability and
preferential uptake in tumor and inflamed tissues make human
serum albumin fragments (HSAFs) an ideal drug delivery system.
Due to these advantages, it’s motivated to develop a novel and
safety nanoplatform based on HASF.

Therefore, in this report, as a model platform, a HSAF
NP platform was developed as drug carriers with different
crosslinking degrees and diameters using genipin as a very
biocompatible crosslinker (Figure 1A). HSAFs were obtained
via the degradation and the natural genipin crosslinker is
expected to significantly reduce the toxicity while keep the
similar crosslinking capability, comparing to the widely used
glutaraldehyde. HSAF NPs were screened by a quantitative
method based on FRET theory (Figure 1B) following previous
report to obtain faster cellular uptake for further evaluations
(Jiang et al., 2015).

MATERIALS AND METHODS

HSAF NPs Preparation
Human serum albumin (HSA) was dissolved deionized water
before 70% formic acid was added. CNBr was then added to
degrade the HSA into fragment products (McMenamy et al.,
1971). HSA degradation products were separated and purified by
Superdex75 (Lapresle and Doyen, 1975; Yuan et al., 2014), and
the three main peptide fragments are Fraction A299−585, Fraction
B1−123, and Fraction C124−298 (46−48) (w : w = 3.5:1:2.2), then the
purified HSAF was used to prepare HSAF NPs. HSAF NPs were

prepared and characterized according to the published protocols
(Jiang et al., 2013). Then HSAF NPs with different crosslinking
degrees and diameters were developed using a disulfide bond
reducing method established in the previous work (Jiang et al.,
2013). Briefly, a predeterminded amount of cysteine was added
into the HSAF PBS solution under pH 8.0 at 37◦C. The final
concentration is 5 mg/mL. After dialysis, the remaining cysteine
was removed and genipin was used to do second crosslinking
(1 h). The genipin residue was cleaned by same method as
above and the HSAF NPs were collected by lyophilization. The
HSAF NP library with formulation parameters is summarized in
Table 1.

Preparation and Characterization of
Paclitaxel (PTX)-Loaded HSAF NPs
The PTX-loaded HSAF NPs with serious of crosslinking densities
and diameters (PLC40S70, PLC70S70, PLC90S70, PLC40S160,
and PLC40S260) were prepared following the same method
preparing the above NPs. Briefly, the certain amount of HSAF
was dissolved in PBS 8.0 at 37◦C, and then PTX were
dissolved in ethanol (PTX/HSAF50 mg/g) and genipin were
added. Then system was incubated for 30 min to complete the
crosslinking. The NP solution was purified and concentrated
using Amicon Ultra Centrifugal Filters (MWCO 100,000).
The size and zeta potential of PTX-loaded HSAF NPs were
evaluated by a zeta potential and particle size analyser (ZetaPlus,
Brookhaven, NY, United States). The morphology of nanoparticle
was verified by transmission electron microscope (H-7650,
HITACHI, Japan).

PTX Drug Release Profiles of HSAF NPs
Dialysis was used to determine the release behavior of paclitaxel
from nanoparticles. 3 mL of the nanoparticle suspension

FIGURE 1 | The illustration of nanoparticle preparation procedures and the related FRET phenomenon and the degradation process of NPs. (A) The fabrication of
PTX-loaded HSAF NPs. (B) The degradation process of FRET-based NPs.
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TABLE 1 | Physical and chemical properties of HSAF and HSA NPs.

Crosslinking degree (%) Diameter (nm) Zeta potential (mV) FRET Index (%)

C40S70HSAF 40.9 ± 1.5 65.9 ± 2.1 −20.86 ± 1.53 23.6 ± 0.9

C70S70HSAF 65.2 ± 2.0 68.0 ± 3.3 −24.09 ± 1.66 27.0 ± 2.8

C90S70HSAF 90.1 ± 0.9 74.7 ± 1.4 −27.12 ± 1.57 31.9 ± 0.4

C40S160HSAF 41.3 ± 1.0 157.3 ± 2.3 −23.58 ± 1.33 23.1 ± 0.3

C40S260HSAF 40.8 ± 1.1 255.9 ± 1.2 −20.13 ± 1.05 23.4 ± 1.3

C40S70HSA 38.8 ± 0.8 78.1 ± 0.3 −20.91 ± 1.51 23.7 ± 0.8

C70S70HSA 57.8 ± 1.9 80.1 ± 0.6 −23.09 ± 1.68 27.1 ± 1.7

C90S70HSA 85.8 ± 1.8 83.1 ± 1.1 −28.17 ± 1.59 30.6 ± 0.7

C40S160HSA 38.8 ± 1.1 182.7 ± 2.3 −24.11 ± 1.13 23.4 ± 0.6

C40S260HSA 37.6 ± 0.8 264.4 ± 3.1 −20.86 ± 1.53 23.5 ± 0.9

(containing 10 mg PTX) was placed in a dialysis bag (molecular
weight cut-off: 13 kDa). The dialysis bags were placed in 80 mL
of 1 M salicylic acid solution. Shaking was performed at a shaking
speed of 100 rpm and a temperature of 37◦C. 0.5 mL of dialysate
was collected at 0.5, 1, 2, 4, 6, 8, 12, 24, 36, and 48 h, respectively,
and an equal volume of fresh dialyzing media was added.

Pharmacokinetic Studies
The PTX NPs (PLC40S70, PLC70S70, and PLC90S70) had
similar diameters of about 70 nm but different crosslinking
densities (41, 65, and 90%). And the NPs (PLC40S70,
PLC40S160, and PLC40S260) prepared with albumin had
similar crosslinking degrees around 42% but different diameters
(65.9, 157.3, and 255.9 nm). The NPs (PLC40S70, PLC70S70,
PLC90S70, PLC40S160, and PLC40S260) was i.v. administrated
to Sprague-Dawley rats at a dose of 1 mg/kg as PTX.
The blood sample was collected (100 µL) from rats into
heparinized tubes at scheduled time (0, 0.083, 0.167, 0.333,

FIGURE 2 | TEM image of C90S70 (length bar = 100 nm).

0.5, 1, 2, 4, 8, 12, and 24 h). Plasma was separated via
centrifuging (4000 rpm, 10 min) and stored under −70◦C
until analysis. The drug concentrations were measured by
LC–MS/MS (Wang et al., 2013) as previous study. For
details, the analytes were eluted with at 5% mobile phase A
methanol and 95% B water phase (containing 0.1% formic
acid). The flow rate was 0.3 mL/min, and the temperature
of column was 30◦C. Mass analysis was operated in the
positive ionization mode. Quantification was accomplished by
monitoring the transition of m/z 876.0→307.8 for paclitaxel
and m/z 830.3→549.0 for docetaxel (the internal standard).
The spray voltage, the temperature of capillary, sheath gas
pressure and auxiliary gas pressure were set at 4000 V, 350◦C,
35 and 25 Arb, respectively. The pharmacokinetic parameters
were estimated via a non-compartmental analysis (WinNon-
lin computer program, Version 4.0; Pharsight Corporation).
All the experiments were performed in accordance with the
recommendations of “guidelines of the Experimental Laboratory
Animal Committee of China Pharmaceutical University and
the National Institutes of Health’s Guide for the Care and
Use of Laboratory Animals.” The protocol was approved by
the “Experimental Laboratory Animal Committee of China
Pharmaceutical University.”

In Vivo Imaging Study of HSAF
Nanoparticles in Tumor-Bearing Mice
The NPs (C40S70, C70S70, and C90S70) had similar diameters
around 70 nm but different crosslinking densities (42, 66,
and 91%). And the NPs (C40S70, C40S160, and C40S260)

TABLE 2 | The diameters and drug loading efficiencies of the PTX-loaded HSAF
and/or HSA NPs (n = 3).

Diameter (nm) PTX loading efficiencies (%)

HSAF NPs HAS NPs HSAF NPs HSA NPs

C40S70 70.9 ± 3.3 87.2 ± 2.4 7.4 5.1

C70S70 74.0 ± 4.7 94.0 ± 3.6 7.2 5.3

C90S70 81.7 ± 3.2 95.7 ± 5.9 7.0 5.2

C40S160 172.3 ± 7.5 201.2 ± 15.8 8.3 6.5

C40S260 269.5 ± 14.6 295.1 ± 12.1 7.5 5.7
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prepared with various protein fragment concentrations had
similar degrees of crosslinking around 40% but different size
(65.9, 157.3, and 255.9 nm). DLC40S70, DLC70S70, DLC90S70,
DLC40S160, and DLC40S260 expressed (DL means Dir was
loaded) was made as the method as the NPs above, and the
crosslinking densities and diameters differs not as the NPS
without Dir. The certain amount of HSAF (Dir/protein 50 mg/g)
was dissolved in PBS 8.0, and then the ethanol Dir was added
at 37◦C water bath. 5 mg/mL Cys was added. The system was
cooled for 10 min. Genipin cross-linking was completed after
dialysis. The configuration of the concentration of 50 µg/mL
Dir which was dissolved in the polyoxyethylene castor oil and
ethanol (50:50, V/V) solution was made as a control group.
DLC40S70, DLC70S70, DLC90S70, DLC40S160, DLC40S260,
and Dir solution formulation (0.5 mg/kg) was injected into
the tumor-bearing mice via the tail vein. After intravenous
injection, intraperitoneal injection of sodium pentobarbital
solution (1%, 50 mg/kg) was given to anesthetize the mice. After
the anesthetization, the whole body fluorescence images were

acquired using small animal in vivo near-infrared imaging system
at 0.5, 1, 2, 4, and 8 h.

In Vivo Anticancer Evaluation in Breast
Cancer Models
To evaluate in vivo anticancer activity of PTX-loaded HSAF and
HSA NPs, PTX-loaded HSAF and HSA NPs were made by the
method as C90S70 NPs whose particle size is the smallest and
the crossing link degree is the highest. The 1 × 107/ml MCF-7
cells were re-suspended in 9% saline, and 0.1 ml cells suspension
was injected to nude mice on the right axillary subcutaneous.
Tumor volumes were determined on alternate day by a vernier
caliper, and the tumor volumes were calculated by an equation:
V (cm3) = a × b2/2 (a: largest diameter; b: smallest diameter),
meanwhile, mice weights were monitored three times per week.
Fourteen days after tumor implantation, the volumes of tumor
size were allowed to reach no less than 0.1 cm3, and mice groups
(n = 8) were designed to have paclitaxel at dose of 5 mg/kg

FIGURE 3 | The cumulative release profiles of PTX from HSA NPs and HSAF NPs with various crosslinking degrees (A) and diameters (B) (n = 3).

FIGURE 4 | Cytoxicity of PTX-loaded HSAF NPs with different crosslinking degrees and diameters (PLC40S70, PLC70S70, PLC90S70, PLC40S160, and
PLC40S260) against MCF-7 cells at 24, 48, and 72 h. The commercial product Taxol R© was used as the positive control (n = 6). PL, paclitaxel loading.
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intravenously, (A) control group received 0.9% NaCl every 2 day
(B) PTX Injection (PTX equivalent of 5 mg/kg) every 2 day;
(C) HSA NPs (PTX equivalent of 5 mg/kg) every 2 day; (D)
HSAF NPs (PTX equivalent of 5 mg/kg) every 2 day; After
28 days of initial treatment, mice were sacrificed and tumor
tissues were collected. The tumor volume and weight were used
for assessment of the therapeutic activity.

RESULTS AND DISCUSSION

Synthesis and Characterization of
Human Albumin Based NPs
To figure out how physical and chemical properties of NPs
may affect the cellular behavior of HSAF NPs, a HSAF NP
platform was prepared using genipin as crosslinker with different
crosslinking degrees and sizes, but similar surface charge (zeta
potentials: −20 ∼ −30 mV). The physical and chemical
properties are summarized in Table 1. The NPs with different
crosslinking degrees from 40.9 to 90.1% (C40S70, C70S70, and
C90S70) were obtained by reacting with predetermined genipin.
The NPs (C40S70, C40S160, and C40S260) prepared from
different amount of albumin had similar crosslinking degrees
around 41% but different sizes (65.9, 157.3, and 255.9 nm). These
NPs are named as CxSyz: C means crosslinking; x means the
crosslinking density; S means size; y means the NP size is around
that number; z means is HSA or HSAF. A HSA or HSAF library
could be obtained by varying the x and y. Figure 2 showed the
one example of TEM image of C70S70HSAF. The FRET indices of
these NPs were in the range of 23∼ 32%, indicating that the NPs
formulated in this study have significant FRET effects.

Preparation and Characterization of
PTX-Loaded HSAF NPs
The PTX-loaded HSAF and/or HSA NPs were prepared as the
method as the NPs above. As shown in Table 2, compared to
the HSA NPs, the smaller diameters and higher drug loading
efficiencies were obtained by the HSAF NPs when using the same
formulations.

PTX Drug Release Profiles of HSAF NPs
In vitro PTX release profiles from HSA NPs and HSAF NPs
were shown in Figure 3. Palitaxel release from NPs was detected

by dialysis (Cho et al., 2004), the drug released was calculated
at scheduled time (0.5, 1, 2, 4, 6, 8, 12, 24, 36, and 48 h).
Compared with HSA NPs, PTX was released more slowly from
HSAF NPs: within 48 h less than 50% of PTX was released from
HSA NPs, but for HSAF NPs less than 25% PTX was released
within the same time, indicating HSAF NPs could provide more
possibility to delivery of PTX to specific organs and tissues
than HAS NPs. For all HSA and HSAF NPs with comparable
diameters, the increase of crosslinking degree decreased PTX
release, perhaps because the compact structure of NPs, which
was brought in by the chemical crosslink, hindered diffusion of
PTX from NPs. F or NPs with comparable crosslinking degrees,
the small NPs (C40S70 and C40S160) possessed faster PTX
release behaviors, perhaps because small NPs possessed short
drug diffusion distances.

In Vitro Anti-cancer Evaluation
of HSAF NPs
The cytotoxicity profiles of PTX-loaded HSAF NPs were
compared in MCF-7 cells by MTT assay over a range of
concentrations (0.25, 0.5, 1, 2, 4, 8, and 16 µg/mL). As shown
in the Figure 4, the viability of the cells was dose-dependently
decreased by the PTX-loaded HSAF NPs. Furthermore, the
inhibitory effects of the NPs were increased with the NPs
crosslinking density or diameter increasing at 24, 48, and
72 h, and this may result from the more efficient endocytosis
brought in by the increased crosslinking degree and diameter.
In comparison to the commercial product Taxol R©, the weaker
inhibitory effect of the PTX-loaded HSAF NPs was believed to
associate with the sustained release and/or the relatively slower
endocytosis of the NPs (Jia et al., 2014).

Pharmacokinetic Studies of HSAF NPs
The major pharmacokinetic parameters of i.v. administration of
HSAF PTX NPs have been summarized in Table 3. PTX NPs with
lower particle size (C40S70, C70S70, C90S70) showed an obvious
increasing in the AUC, MRT, t1/2 (P < 0.05), which correlated
with an obvious decreasing in the Cl (P < 0.05). The results could
be due to the lower particle size decrease the uptake of NPs by
the mononuclear phagocyte system (Dobrovolskaia et al., 2008).
The increasing of AUC, MRT, t1/2b and Cl could be achieved
from C40S70, C70S70 and C90S70 as compared with C40S160
and C40S260 (P < 0.05), but the increment for C40S160 was not

TABLE 3 | Pharmacokinetic parameters of PTX after i.v. administration of NPs in mice (1 mg/kg).

Pharmacokinetic parameters C40S260 C40S160 C40S70 C70S70 C90S70 C90S70HSA

AUC 0− t (µg h/L) 423.2 ± 95.3 441.2 ± 105.1 543.1 ± 95.1∗# 563.2 ± 108.2∗# 573.2 ± 115.7∗# 513.9 ± 105.1

A UC 0−∞ (µg h/L) 523.1 ± 131.3 541.2 ± 137.3 649.1 ± 147.3∗# 680.4 ± 146.1∗# 691.3 ± 141.3∗# 619.9 ± 145.4

MRT 0− t (h) 2.3 ± 0.4 2.6 ± 0.7 4.40 ± 0.9∗# 4.54 ± 1.2∗# 4.58 ± 1.3∗# 4.13 ± 1.1

Cl (L/h/kg) 1.9 ± 0.4 2.0 ± 0.5 1.4 ± 0.5∗# 1.3 ± 0.4∗# 1.2 ± 0.6∗# 1.5 ± 0.5

Vd (L/kg) 28.4 ± 9.7 29.4 ± 12.1 31.4 ± 12.4 32.48 ± 11.9 38.4 ± 12.1 30.4 ± 11.3

Cmax (µg/L) 1051.3 ± 221.9 1067.3 ± 233.9 1089.3 ± 224.3 1099.31 ± 224.6 1100.3 ± 249.2 1087.1 ± 219.8

t1/2 (h) 9.14 ± 2.9 10.1 ± 3.1 13.1 ± 3.0∗# 14.1 ± 3.4∗# 14.9 ± 3.9∗# 12.6 ± 3.2

Each value is the mean ± SD, n = 6. ∗P < 0.05, compared with C90S260; #P < 0.05, compared with C70S160.
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higher than C40S260. This result indicate that the NP size which
is lower than 100 nm may be due to the inhibiting the fast uptake
of NPs via the reticulo-endothelial system (RES) (Dobrovolskaia
et al., 2008). The HAS PTX NPs which was made by the same
method as C90S70 (C90S70HSA) was also studied, and the AUC,
MRT, t1/2 of HAS PTX NPs is lower than that of HSAF PTX NPs
(C90S70). There are significant difference between C90S70 and
C90S70HSA (P< 0.05). The drug loading rate of C90S70 is higher

than that of C90S70HSA, and the drug circulation time is longer
than that of C90S70HSA too.

In Vivo Imaging Study of HSAF NPs in
Tumor-Bearing Mice
As shown in Figure 5, most of the HSAF NPs containing the near-
infrared fluorescent probe Dir clearly enriched in the liver after

FIGURE 5 | Paclitaxel plasma concentration profiles after intravenous administration of 1 mg/kg drug to Sprague-Dawley rats (A) and in vivo distribution of Dir
labeled HSAF nanoparticles DLC90S70 (A), DLC70S70 (B), DLC 40S70(C), DLC40S160 (D), DLC40S260 (E), and Dir solution (F) in tumor-bearing mice (B). Results
are expressed with the mean ± SD (n = 6). DL, Dir loading.

FIGURE 6 | Picture of tumor and tumor size of four groups, (A) control group received 0.9% NaCl every other day (B) PTX Injection (PTX equivalent of 5 mg/kg)
every other day; (C) HSA NPs (PTX equivalent of 5 mg/kg) every other day; (D) HSAF NPs (PTX equivalent of 5 mg/kg) every other day.
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three kinds of HSAF NPs were delivered to tumor-bearing mice
in vivo, indicating that the liver is still the barrier for NP system
to achieve maximum efficient drug delivery to tumor, and how to
avoid the NPs to be taken up by the liver is still priority problem
for the drug delivery systems. The NPs with higher crosslinking
densities or particle size distribute more to the liver. In addition
to the liver, the right forelimb solid tumors in mice are the main
distribution area of the HSAF NPs. From the graph, it could be
observed that DLC40S70, DLC70S70, DLC90S70, DLC40S160,
and DLC40S260 significantly concentrated in the tumor site at
4, 1, 0.5, 1, and 0.5 h, respectively. This difference suggests that
NPs with higher size and the degree of crosslinking have the
higher biodistribution to the tumor site. In this experiment,
polyoxyethylene castor oil and ethanol (50:50, V/V) were used
for preparing solutions. Dir was used as control, and we find Dir
solutions distribute quickly to the mouse head, limbs, and solid
tumors. The Dir solutions disappeared in the mice quickly and
much faster than the nanoparticles.

In Vivo Anticancer Evaluation of HSAF
NPs for Breast Cancer Models
After 14 days of tumor inoculation, the average tumor volume
was around 101 ± 23.19 mm3. Then administration was
continued for a total of 28 days after tumor implantation.
The results (Figure 6) showed that tumors were significantly
(∗P< 0.01) inhibited after being treated with HSA NPs and HSAF
NPs compared to PTX injection. Tumor inhibitory rate (tab.) in
mice treated with HSA NPs and HSAF NPs were 63.3 and 71.4
respectively, which showed a significant (∗P < 0.01) compared
to PTX injection and control groups. There was observed a non-
significant (P > 0.05) change in tumor inhibitory rate for HSA
NPs and HSAF NPs, and the tumor Inhibitory rate of HSAF NPs
is higher than that of HSA NPs. There is no observable weight loss
or other cytotoxicity in HSA NPs and HSAF NPs mice groups.
Also, the tumor volume showed the same trend as the tumor
weight, and the tumor volume of HSAF NPs group is the smallest.
The dose of HSAF used in the NPS is lower than that of HSA, but
the effect is better.

CONCLUSION

In this report, a HSAF NP system with controllable crosslinking
density and size were developed for better biosafety and

anticancer efficacy. The HSAF NP library with a series of
crosslinking degrees and particle sizes were developed, and
the results showed that the similar particle size of HSAF
NPs had different crosslinking densities, and the highest
crosslinking density combined with the smallest particle size.
This may lead to a higher drug loading rate and longer
drug circulation time and further higher biodistribution in
tumor site. Drug loading and release tests confirmed that the
HSAF NPs have better drug loading and release performance
than HSA NPs. In vivo anticancer evaluations confirmed
that the NPs with fast cellular uptake showed better tumor
accumulation and tumor inhibition. The results provide basic
information not only for the biochemical effects and biosafety of
albumin based NPs, but also for regulating the physicochemical
properties which are important for the in vivo delivering of
drugs.
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