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Protein-RNA interactions play essential roles in many biological aspects. Quantifying 
the binding affinity of protein-RNA complexes is helpful to the understanding of protein-
RNA recognition mechanisms and identification of strong binding partners. Due to 
experimentally measured protein-RNA binding affinity data available is still limited to 
date, there is a pressing demand for accurate and reliable computational approaches. 
In this paper, we propose a computational approach, PredPRBA, which can effectively 
predict protein-RNA binding affinity using gradient boosted regression trees. We build a 
dataset of protein-RNA binding affinity that includes 103 protein-RNA complex structures 
manually collected from related literature. Then, we generate 37 kinds of sequence 
and structural features and explore the relationship between the features and protein-
RNA binding affinity. We find that the binding affinity mainly depends on the structure of 
RNA molecules. According to the type of RNA associated with proteins composed of 
the protein-RNA complex, we split the 103 protein-RNA complexes into six categories. 
For each category, we build a gradient boosted regression tree (GBRT) model based 
on the generated features. We perform a comprehensive evaluation for the proposed 
method on the binding affinity dataset using leave-one-out cross-validation. We show 
that PredPRBA achieves correlations ranging from 0.723 to 0.897 among six categories, 
which is significantly better than other typical regression methods and the pioneer protein-
RNA binding affinity predictor SPOT-Seq-RNA. In addition, a user-friendly web server has 
been developed to predict the binding affinity of protein-RNA complexes. The PredPRBA 
webserver is freely available at http://PredPRBA.denglab.org/.

Keywords: protein-RNA interactions, computational approaches, binding affinity, gradient boosted regression 
tree, sequence and structural features

INTRODUCTION

Protein-RNA interactions play a crucial role in many biological processes, such as gene expression 
and its regulation (Keene, 2007; Glisovic et al., 2008). To understand the mechanisms of these 
biological processes, the three-dimensional atomic structure of proteins and RNAs in bound 
and unbound conformations is essential. However, dissecting the 3D structure of protein-RNA 
complexes by X-ray crystallography and nuclear magnetic resonance spectroscopy is difficult and 
slow to date, due to the flexibility of the interacting partners of protein-RNA complexes.
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In the past decade, many methods have been developed to 
identify protein-RNA interactions via experimental technique 
(Hafner et al., 2010) and computational prediction (Kim et al., 
2006; Zhao et al., 2010; Fernandez et al., 2011; Dror et al., 2012; 
Liu and Miao, 2016). Setny and Zacharias (2011) developed 
a coarse-grained force field for protein-RNA docking and 
identified one of seven unbound protein-RNA cases from top 100 
predicted samples. Tuszynska and Bujnicki (2011) published two 
knowledge-based scoring functions that were tested on eight 
unbound protein-RNA docking baits produced by the GRAMM 
program. Their results showed that these potentials were 
identified near the natural structure in four of the eight samples. 
Meanwhile, Li et al. (2012) raised a question about the propensity 
of residues-nucleotides, and they found that the secondary 
structure of RNA plays a crucial role in predicting residue 
nucleotide propensity potential. To evaluate the performance 
of these computational methods, Barik et al. published a 
protein-RNA docking benchmark (Barik and Bahadur, 2012), 
which significantly increased the number of experimentally 
determined protein-RNA complex structures and their unbound 
structures in the Protein Data Bank (PDB) (Berman et al., 2000). 
The protein-RNA docking benchmark dataset has been widely 
used to develop computational methods for studying protein-
RNA interactions, including docking (Guilhot-Gaudeffroy et al., 
2014; Guo et al., 2013; Iwakiri et al., 2016) and knowledge-based 
scoring functions (Huang and Zou, 2014; Yan and Wang, 2013) for 
the prediction of RNA binding sites in protein structures (Miao 
and Westhof, 2015), role of water molecules at the protein-RNA 
interface (Barik and Bahadur, 2014), and discovery of binding 
hotspots at the protein-RNA interface (Barik et al., 2015).

Although the protein-RNA docking benchmark has played 
an important role in studying multiple aspects of protein-RNA 
interactions, it is still somewhat inefficient in quantifying the 
binding affinity of proteins-RNA interaction. The standard non-
redundant dataset of protein-RNA complexes is a prerequisite 
for the development and validation of protein-RNA binding 
affinity studies. Since lack of protein-RNA binding affinity data 
sets has become a bottleneck in the development of more 
accurate scoring functions, Yang et al. (2013) developed a dataset 
of protein-RNA binding affinity in 2013, which includes the 
quantitative binding affinities of 73 protein-RNA complexes. 
However, few methods for predicting the binding affinity of 
protein-RNA complexes have been developed.

In this work, we have developed a method, referred to as 
PredPRBA, to predict the quantitative binding affinity of 
protein-RNA complexes. The flowchart of our method is shown 
in Figure 1. We classified the protein-RNA complexes into six 
categories based on the type of RNA interacting with proteins 
Bahadur et al. (2008), and set up gradient boosted regression 
trees (GBRT) (Temel et al., 2014) models for predicting the 
binding affinity of each class of complexes. For each class of 
protein-RNA complexes, we have conducted systematic analysis 
on the importance of features in predicting the binding affinity 
and found that the structural features play a vital role in governing 
protein-RNA binding affinity. Our method showed correlation 
coefficients ranging from 0.723 to 0.897 on leave-one-out cross-
validations. We have conducted a performance comparison 

of our method with several typical regression methods and 
an existing binding affinity predictive method, the empirical 
experiments have illustrated that our method achieved the best 
performance. To our knowledge, the dataset of quantitative 
binding affinity of protein-RNA complexes we built is the largest 
one to date. Also, PredPRBA is the first devoted to the prediction 
of quantitative protein-RNA binding affinity. In addition, a user-
friendly web server has been developed to predict the binding 
affinity of protein-RNA complexes.

MATERIALS AND METHODS

Dataset
We primarily collect 173 protein-RNA complexes to extract 
quantitative protein-RNA binding affinity, among which 73 
complexes come from a non-redundant protein-RNA binding 
benchmark dataset (Yang et al., 2013), and other 100 complexes 
are collected from relevant publications. In particular, all the 
complexes meet the criteria: 1) the interacting partners are proteins 
and RNAs, 2) absolute value of binding affinity is known, 3) The 
complexes containing protein chains with 30 or more amino 
acid residues and RNA chains with 2 or more nucleotides were 
retained. To reduce the redundancy, we remove the complexes 
with protein sequence similarity greater than 40% using the 
CD-HIT (Li, 2015), which can cluster the proteins by sequence 
similarities and select a representative one for each cluster. As a 
result, we obtain 103 non-redundant protein-RNA complexes, 
and build a data set of protein-RNA binding affinities (listed in 
Supplementary Table 1), along with experimental situations (pH 
value and temperature). We defined dissociation Gibbs free energy 
ΔG as the binding affinity according to the definition of protein-
RNA binding affinity proposed by Yang et al. study (Yang et al., 
2013). Moreover, the ΔG is calculated by the equation as below:

 ∆G RT Kd= − ln   (1)

Where Kd is the dissociation constant, R is the gas constant (1.987 × 
10-3kcal mol-1K-1), and T is the temperature. It can be seen that the 
binding affinity is a real-valued quantity.

Classification of Complexes
It is worth noting that previous findings have demonstrated 
that the structure of RNA molecules greatly influences the 
binding affinity between proteins and RNAs (Li et al., 2012), 
namely the binding affinities regarding different type of RNAs 
depend on different features related to RNA structure. In fact, 
the classification of protein-RNA complexes, according to RNA 
types, has been adopted in the previous study for building 
prediction models (Bahadur et al., 2008). Therefore, we divide 
the protein-RNA complexes into six groups according to the 
Nucleic Acid Database (NDB) (Coimbatore Narayanan et al., 
2013): I) complexes with single-stranded RNA, II) complexes 
with duplex RNA, III) complexes with tRNA, IV) complexes with 
RNA loop structure, V) complexes with small RNA fragment, 
VI) miscellaneous complexes.
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Features Extraction
We extract a total of 37 kinds of features to predict the binding 
affinity of the protein-RNA complexes. These features can be 
mainly separated into four categories, including features based 
on protein sequences and protein structures, features based on 
RNA sequences and RNA structures.

Protein Sequence-Based Features
We extract the protein sequences from the PDB files and then 
calculate the total molecular mass of the protein fraction 
based on the molecular weight of each amino acid. Also, the 
total number of hydrogen bonds (McDonald and Thornton, 

1994) contained in the protein-RNA complexes was calculated 
based on the number of hydrogen bonds held in each amino 
acid. Moreover, we calculate the number of hydrophilic and 
hydrophobic residues (Andersen et al., 1999) in the proteins, the 
percentage of hydrophilic residues in the protein, the percentage 
of hydrophobic residues in the protein, the number of the 
aromatic and positively charged residues and the percentage of 
aromatic and positively charged residues (Monaco-Malbet et al., 
2000) in the proteins, the number of the charged residues in 
protein, the percentage of the charged residues in protein, the 
number of the polar residues in protein, the percentage of the 
polar residues in protein.

FIGURE 1 | The flowchart of the PredPRBA method for predicting the binding affinity of protein-RNA complexes. It involves four steps: (A) collection of complexes 
with experimentally measured binding affinities from publications. (B) Classification of complexes according to the type of RNAs interacting with proteins. (C) Feature 
extraction from sequence and structure from proteins and RNAs for building a predictive model. (D) Training gradient boosting regression tree models.
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Protein Structure-Based Features
We use the DSSP algorithm (Kabsch and Sander, 1983) to obtain 
the secondary structure information of the interacting proteins. 
We obtained the secondary structure information, including 
the number of α-helix and β-sheet, the molecular weight of 
α-helix (Qian and Sejnowski, 1988; Chakrabarti and Janin, 2002) 
and β-sheet (Albeck and Schreiber, 1999), the percentage of 
α-helix and β-sheet in proteins. Meanwhile, we sum the solvent-
accessible surface area obtained from the protein amino acids 
in each complex to obtain the total value of the relative solvent 
accessible surface area (RASA) (Xia et al., 2010).

RNA Sequence-Based Features
We use the RNA sequences in the protein-RNA complexes 
to obtain the molecular mass of the RNA molecules. The 
computational formula is as below.

 W A U C GRNA = ∗ + ∗ + ∗ + ∗ +329 2 306 2 305 2 345 2 159. . . .  (2)

in which A, G, C, U represent the numbers of four types of bases 
in the RNA sequence, respectively.

RNA Structure-Based Features
A number of features based on the RNA structure are derived 
to predict protein-RNA binding affinities. We use the RNA fold 
in ViennaRNA (Lorenz et al., 2011) to predict the frequency of 
the MFE structure and ensemble diversity. Also, the features 
of cWW (Cis Watson-Crick/Watson-Crick) (Leontis and 
Westhof, 2001) and Base-Phosphate (Stombaugh et al., 2009) are 
predicted. We use the RNAVIEW tool (Bahadur et al., 2008) to 
get four features, including the number of cWW and the relative 
frequency of cWW and the number of 0BPh in Base-Phosphate 
and the relative frequency of 0BPh.

Prediction Model and Validation
GBRT Algorithm
Ensemble learning algorithms are a family of powerful machine-
learning techniques that have shown considerable success many 
applications (Caruana and Niculescu-Mizil, 2005; Tang et al., 
2017; Kuang et al., 2018; Li et al., 2018; Pan et al., 2018; Wang 
et al., 2018; Zheng et al., 2019). We chose a boosting ensemble 
model, the gradient boosted regression trees (GBRT) algorithm, 
to build the prediction model for protein-RNA binding affinity, 
thanks to its ability to handle different types of data and strong 
predictive power. Precisely, GBRT is an iterative regression 
decision tree algorithm composed of multiple regression trees, 
and the predictions of all the trees are taken into account to get 
the final decision.

Without loss of generality, the features and the real-valued 
binding affinities can be described as an n-dimension vector. Let 
us denote the features by x = (x1, x2, …, xn) where xi ∈ R and 
the corresponding binding affinity by y. The goal of predicting 
binding affinity real value of the protein-RNA complexes is to 
find a function F*(x) that maps x to y, such that over the joint 

distribution of all (y, x)-values, the expected value of some 
specified loss function Ψ(y, F (x)) is minimized as follows:
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where βm and Θm are a weight and vector of parameters for the 
m-th weak regression tree h(x, Θm), respectively, and β0 is an 
initial constant. Both the weight βm and the parameters Θm are 
iteratively determined from weak learner 1 to M so that the loss 
function Ψ(y, F(x)) is minimized. Formally, βm and Θm for the 
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where Fm-1(x) is the (m-1)th additive function combined from 
the first to the (m-1)th weak regression tree.

However, it is not straightforward to solve Eq. (5). Therefore, 
GBRT separately and approximately estimates (βm, Θm) in a 
simple two-step fashion (Friedman, 2001). For the estimation 
of the parameters Θm, we determine them so that the function 
defined by the regression tree approximates a gradient with 
respect to the current function Fm-1(x) in the sense of least-square 
error as follows:
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When the m-th regression tree using the Θm has Lm leaf nodes, 
the regression tree is given by

 

h x R y l x Rlm l

L

l

L

lm lm
m

m

( , ){ } = ∈( )=
=

∑1
1

  (8)

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


PredPRBADeng et al.

5 August 2019 | Volume 10 | Article 637Frontiers in Genetics | www.frontiersin.org

where Rlm is a disjoint region that the lth leaf node of the m-th 
regression tree defines. l(). is a Boolean function that outputs 1 in 
case the argument of the function is true. ylm  is a constant for the 
Rlm th region, defined as the mean of training data that belongs to 
the lth leaf node of the m-th regression tree. The weight βm can be 
straightforwardly chosen using line search:
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Then, a new additive function Fm(x) is updated as follows:
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where 0 < v < 1 is a shrinkage parameter, also called the learning 
rate, to scale the step length the gradient descent procedure. 
Finally, the resulting binding affinity value y corresponding to 
the features x is given by: y = FM(x).

Performance Measures
The performance is evaluated using the Pearson correlation 
coefficient (Kader and Franklin, 2008) between the predicted 
binding affinities and real values. The Pearson correlation 
coefficient r is defined as the linear correlation between two 
random variables X and Y:
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in which n is the sample size, xi, yi are the single samples indexed 
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In addition, the average absolute error(MAE) (Willmott 
and Matsuura, 2005) is the average of the absolute values of the 
deviations of all individual samples from the arithmetic average. 
It can better reflect the actual situation of the prediction error. 
The coefficient of determination (R2) (Miller et al., 2006) can 
measure whether the future sample is likely to be well predicted 
by the model, with a score of 1 indicating the best effect.

Features Selection
We independently conduct iterative feature selection for each class 
of protein-RNA complexes, as the binding affinity of the different 
class of complexes is influenced by the structure of RNAs and 
proteins. In particular, we build the protein-RNA binding affinity 
prediction models iteratively using each feature and compute the 
performance measure Pearson correlation coefficient. Next, we 
sort the features in descending order according to the correlation 
coefficient and select the top 10 features for each class complex. 
Finally, we adopt the greedy algorithm to add one feature to the 
optimal feature set at each step until the performance stops to 
increase. The selected features are shown in the Table 1 for each 
class of protein-RNA complexes. Overall, the numbers of features 
included in the final optimal feature set are no more than 6 for all 
six classes of complexes.

RESULTS

Significance of Protein-RNA Complex 
Classifications
We first conduct an experiment to check the significance of the 
classification of protein-RNA complexes based on RNA types. 
For each class of complexes, we use the top 1 and 2 features to 
train GBRT prediction models and compute the performance 
measures, respectively. As a contrast, we take all the complexes 
as a whole to train the prediction model using the top 1 and top 2 
features. The results are shown in Table 2, it can be found that the 
prediction accuracy after classification is much better than that 
of before classification of complexes. For the prediction models 
built on top 1 features, the correlation coefficients are more than 0.5 

TABLE 1 | Selected features to predict protein-RNA binding affinity of each class of protein-RNA complexes.

Class I Class II Class III Class IV Class V Class VI 

molecular weight of RNA √ 
total value of the relative solvent accessible surface area √ √ 
number of hydrophilic residues in the protein √ √ 
number of hydrophobic residues in the protein √ 
% of hydrophilic residues in the protein √ 
% of hydrophobic residues in the protein √ √ √ √ 
% of the aromatic and positively charged residues in the protein √ 
number of the aromatic and positively charged residues in the protein √ 
number of the charged residues in protein √ √ 
number of the polar residues in protein √ √ 
molecular weight of α-helix √ √ 
molecular weight of β-sheet √ 

 number of cWW √ 

 relative frequency of cWW √ √ √ 

 frequency of the MFE structure √ 
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in half of the six classes of complexes, whereas the whole set of 
complexes get only 0.178 correlation coefficient. In fact, the best 
correlation coefficient before the classification we can obtain is 
less only 0.48 using optimal feature set (not shown in the table). 
We think the reason lies in that different class of complexes have 
very weak relevance, which leads to the difficulty of modeling. 
For example, the number of hydrophobic residues in the protein 
has a positive impact on the complex that binds duplex RNA but 
causes a decrease in the correlation coefficient of the complex 
that binds the single-stranded RNA. Therefore, we highlight 
the significance of protein-RNA complex classifications before 
building practical prediction models.

Prediction of Binding Affinity
For each class of protein-RNA complexes, we train the GBRT 
model using the selected features to predict binding affinities. The 

correlation coefficients, together with MAE and R2 measures, 
are shown in Table 3. We notice that the correlation coefficients 
are more than 0.73 for all complexes classes, indicating that the 
predicted binding affinities are strongly related to real values. 
Also, we show the scatter plot in the coordinate of experimental 
vs predicted ΔG in Figure 2, from which we can find that most 
points are located close to the diagonal line.

Next, we further evaluate the performance of the method 
for predicting the binding affinity in different classes and reveal 
the features that dominate the prediction of binding affinity of 
protein-RNA complexes. The predicted and actual values of 
binding affinities for each complex in six classes of complexes are 
shown in Figure 3, respectively.

Complexes With Single-Stranded RNA
In this class of complex, proteins interact with single-stranded 
RNA molecules that are very common in vivo. There are 21 
protein-RNA complexes in this class, and the binding affinity has 
the variation of 10 kcal mol-1, with the lowest value being 5.86 kcal 

TABLE 2 | Performance of models built on the best one and two features for 
six classes of protein-RNA complexes.

Number of 
complexes 

Maximum correlation coefficient(r) 

Single property Two properties

Class I 21 0.565 0.725 
Class II 34 0.452 0.546 
Class III 8 0.567 0.669 
Class IV 9 0.616 0.663 
Class V 11 0.422 0.521 
Class VI 20 0.511 0.615 
All 103 0.178 0.332 

TABLE 3 | Performance measures of Pred PRBA on leave-one-outcrossvalidations.

Correlation 
coefficient(r)

Mean absolute 
error(MAE) 

Coefficient of 
determination(R2) 

Class I 0.818 1.215 0.623 
Class II 0.731 1.145 0.518 
Class III 0.894 1.270 0.288 
Class IV 0.803 0.749 0.489 
Class V 0.768 1.425 0.255 
Class VI 0.762 0.879 0.531 
Average value 0.796 1.114 0.451 

FIGURE 2 | Scatterplot in the coordinate of experimental vs predicted binding affinities of six classes of protein-RNA complexes.
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mol-1 and the highest value of 15.2 kcal mol-1. Our model built on 
four types of features has achieved the correlation coefficient of 
0.818 by leave-one-out cross-validations. As shown in Table 1, we 
can see that the features based on RNA sequence and structure, 
especially the molecular weight of RNA and the frequency of the 
MFE structure, play the dominant role in predicting the binding 
affinity of this class of complexes. In addition, the number and 
the relative frequency of cWW are also significant factors for 
predicting the binding affinity of complexes associated with 
single-stranded RNA. These RNA-related features indicate that 
RNA molecules play a major role in interacting with proteins in 
this class of complexes.

Complexes With Duplex RNA
The interacting partners in this class of protein-RNA complexes 
are protein and double-stranded RNA. The binding affinities 
follow the range of 6–14 kcal mol-1. Three selected features are 
used to build the prediction model that obtain the correlation 
coefficient 0.731. The physicochemical properties of the protein 
fraction play most important role in the prediction of the 
binding affinity of this class of complexes. In particular, the 
number of hydrophobic residues in the protein and the number 
of the polar residues in proteins are also features of importance, 
which demonstrate that the physicochemical properties of the 
interacting proteins have a major impact on the interaction 
between proteins and double-stranded RNA.

Complexes Wth tRNA
This class of complexes is composed of proteins and tRNA 
molecules, and four features enable our model to achieve a 
correlation coefficient of 0.872. From Table 1, we find that the 

four selected types of features are all related to proteins. The 
physicochemical properties of the proteins are critical to predicting 
the binding affinities, including the number of hydrophobic 
residues, the percentage of hydrophobic residues and the number 
of the charged residues in the interacting proteins. Among the 
structural features of proteins, the molecular weight of the α-helix 
also plays an important role in predicting the binding affinity. 
These indicate that the interacting proteins mainly determine the 
binding affinity of the complexes with tRNA.

Complexes With RNA Loop Structure
RNA loop structure includes many types, such as hairpin loops, 
internal loops, etc. (Bahadur et al., 2008). Our prediction model, 
based on five features, can obtain a high correlation coefficient 
of 0.803. Among 37 features, the protein-related features play 
a major role in predicting the binding affinity of complexes 
with loop-structure RNAs. The physicochemical properties of 
proteins still play an important role, including the percentage 
of hydrophobic residues, the percentage of the aromatic and 
positively charged residues and the number of the polar residues 
in the protein, are the top three dominant features. Meanwhile, 
the secondary structural features of proteins and RNAs, including 
the total value of the relative solvent accessible surface area and 
the relative frequency of cWW, are also two essential factors 
in predicting the binding affinity of this type of complex. The 
structural features of RNA also play a key role in the prediction 
of the binding affinity of the complex.

Complexes With Small RNA Fragment
One interacting partner of this class of protein-RNA complexes is 
the small RNA fragment. There are 11 complexes in our dataset, 

FIGURE 3 | The predicted and actual binding affinities, represented by ΔG, of each protein-RNA complex in six classes of complexes.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


PredPRBADeng et al.

8 August 2019 | Volume 10 | Article 637Frontiers in Genetics | www.frontiersin.org

and the average binding affinity is 9.78 kcal mol-1. As shown in 
Table 1, we see that all selected features for this class of complexes 
are extracted from proteins. Among the protein sequence-based 
features, the physicochemical properties play the most important 
role, including the number of hydrophilic residues, the percentage 
of hydrophobic residues and the number of the charged residues 
in the protein. Among the protein structure-based features, the 
total value of the relative solvent accessible surface area and the 
molecular weight of β-sheet have an essential function in the 
interaction between proteins and small RNAs.

Miscellaneous Complexes
The complexes that do not fall into the above five categories are 
assigned to miscellaneous. The reason is that the structure of 
RNA in this class of complexes is uncertain and software available 
cannot determine their specific structures, we thereby assumed 
that the features influencing the binding affinity of this class of 
complexes might be different from other classes. This class consists 
of 20 complexes, and the binding affinities range from 6 to 15 kcal 
mol-1. The set of four features are included in our model to predict 
the binding affinity, and the correlation coefficient is 0.76 on 
leave-one-out cross-validations. The molecular weight of α-helix 
and the number of the aromatic and positively charged residues 
in the protein are identified as important factors influencing the 
binding affinity. Moreover, among the protein sequence-based 
features, the percentage of hydrophilic and hydrophobic residues 
in the protein also play a vital role.

Utilization of Both Protein-Based 
and RNA-Based Features Improve 
Performance
To verify that the utilization of both protein-derived features and 
RNA-derived features improve the performance of our prediction 
models, we build other two GBRT prediction models, referred to 
as protein-based and RNA-based prediction models, using only 
protein-derived features or RNA-derived features alone. Next, 
we compare their performance to that of PredPRBA that takes 
advantage of both protein-derived features and RNA-derived 
features. Table 4 shows the performance of three prediction 
models on six classes of complexes. We find that the models 
using only features derived from proteins or RNAs achieve fairly 
good performance for some classes of protein-RNA complexes, 
while utilization of the features derived from both proteins and 
RNAs yields to the best performance.

Performance Comparison to Sequence 
Feature-Based and Structure Feature-
Based Models
Inspired by the study of protein-RNA interactions by Liu et al. 
(Liu and Miao, 2016), we compare the performance of PredPRBA 
to the models built on sequence feature-based or structure 
feature-based alone. In particular, we use only 20 sequence-based 
features extracted from protein and RNA sequences to train the 
sequence feature-based GBRT prediction model, and use only 
17 structure-based features from proteins and RNAs to build 

the structure feature-based GBRT prediction models for each 
class of protein-RNA complexes, respectively. Table 5 shows the 
performance measures of PredPRBA, the sequence feature-based 
models, and structure feature-based models. It can be seen that 
sequence feature-based and structure feature-based models also 
achieve fairly good performance on all six classes of protein-RNA 
complexes, while PredPRBA performs even better by virtue of 
the inclusion of both structural features and sequence features.

Performance Comparison With Typical 
Regression Methods
We evaluate PredPRBA by conducting performance comparison 
with several other typical regression methods, such as Linear 
Regression (LR) (Jammalamadaka, 2003), K-nearest Neighbor 
Regression (KNNR) (Kramer, 2011; Kuang et al., 2019), 
SVM Regression (SVR) (Cherkassky and Ma, 2004), Decision 
Tree Regression (DTR) (Xu et al., 2005), Random Forest 
Regression (RFR) (Biau and Devroye, 2010) and Extremely 
Randomized Regression Trees (ERRT) (Geurts and Louppe, 
2011). As shown in Table 6, we find that PredPRBA performs 
significantly better than other regression methods for all classes 
of complexes. Furthermore, Figure 4 shows the mean values of 
the performance measures, including correlation coefficients, 
MAE and R2 values, for different regression methods over six 
classes of complexes. For instance, the average correlation 
coefficient of PredPRBA achieves 0.80, which is much greater 
than other methods. Accordingly, we can see that by the 
PredPRBA model has the least mean MAE value, as well as the 
largest mean R2 value. The experimental results show that the 
GBRT algorithm empowers better performance to our method 
than other regression methods.

TABLE 4 | Performance comparison of PredPRBA to protein-based and RNA-
based prediction models.

Protein-based 
model

RNA-based 
model

PredPRBA 

Class I 0.562 0.818 0.818 
Class II 0.652 0.436 0.731 
Class III 0.894 0.634 0.894 
Class IV 0.642 0.621 0.803 
Class V 0.768 0.547 0.768 
Class VI 0.762 0.635 0.762 
Average 0.71 0.62 0.80 

TABLE 5 | Performance comparison of PredPRBA to sequence feature-based 
and structur efeature-based models.

Sequence-based 
model

Structure-based 
model

PredPRBA 

Class I 0.661 0.711 0.818 
Class II 0.618 0.635 0.731 
Class III 0.883 0.765 0.894 
Class IV 0.696 0.735 0.803 
Class V 0.661 0.697 0.768 
Class VI 0.736 0.665 0.762 
Average 0.71 0.70 0.80 
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Performance Comparison With Existing 
Approach
The SPOT-Seq-RNA (Yang et al., 2014) is another method for 
predicting binding affinity. It is worth noting that there are quite a 
few existing methods developed to predict protein-protein binding 
affinity, but these methods cannot be applicable for the prediction 
of protein-RNA binding affinity, as they do not take the RNA-
related features into account. Therefore, we include only SPOT-
Seq-RNA for performance comparison and run this method to 
predict the binding affinity of the complexes in our dataset. Table 7 
shows a comparison of the correlation coefficients of PredPRBA 
and SPOT-Seq-RNA, from which we can see that our approach 
greatly outperforms SPOT-Seq-RNA. In fact, the performance of 
SPOT-Seq-RNA is not steady over the six classes of protein-RNA 
complexes, i.e., it obtains fairly good performance on class I and V 
complexes, but performs poor on other classes of complexes.

TABLE 6 | Comparison of correlation coefficients between PredPRBA and other regression algorithms.

SVR DTR LR KNNR ERRT RFR PredPRBA 

Class I 0.541 0.356 0.604 0.411 0.760 0.641 0.818 
Class II 0.356 0.621 0.456 0.476 0.685 0.695 0.731 
Class III 0.708 0.449 0.634 0.628 0.458 0.535 0.894 
Class IV 0.389 0.669 0.696 0.602 0.588 0.724 0.803 
Class V 0.366 0.395 0.432 0.492 0.215 0.343 0.768 
Class VI 0.157 0.377 0.374 0.636 0.519 0.400 0.762 
Average 0.42 0.52 0.53 0.54 0.54 0.56 0.80 

FIGURE 4 | Comparison of mean correlation coefficients over six classes of protein-RNA complexes between PredPRBA and typical regression methods.

TABLE 7 | Comparison of correlation coefficients between SPOT-Seq-RNA 
method and Pred PRBA.

Number of 
complexes 

Correlation coefficient(r)

SPOT-Seq-RNA PredPRBA 

Class I 21 0.442 0.818 
Class II 34 -0.044 0.731 
Class III 8 -0.038 0.894 
Class IV 9 0.172 0.803 
Class V 11 0.756 0.768 
Class VI 20 0.386 0.762 
Average 17 0.276 0.796 
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CONCLUSION

In this paper, we propose a method for predicting the binding 
affinities of protein-RNA complexes using the sequence-based and 
structure-based features. As far as our knowledge, the data set of 
binding affinities of 103 protein-RNA complexes we built is the 
largest dataset to date. For each class of protein-RNA complexes, we 
have conducted systematic analysis on the importance of features 
in predicting the binding affinity and found that the structural 
features play a vital role in governing protein-RNA binding affinity. 
We also compared our method with several typical regression 
methods and the existing binding affinity predictive method, and 
the performance comparison has verified that our method achieved 
the best performance. In addition, we have also developed a web 
server for predicting the binding affinity of protein-RNA complexes, 
which is free and open to the academic community.
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