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Abstract
Listeriosis is a major foodborne infection provoked by a bacterium known as Listeria monocytogenes. It is one of the pre-
dominant causes of death in pregnant women, infants, and immunocompromised persons. Despite such fatal effects, until 
now there is no proper medication or drug available for such a serious foodborne infection. One of the most promising 
ways to deal with this challenge is vaccination. This present study aims at the prediction of B cell epitopes for subunit vac-
cine designing against Listeria monocytogenes using a reverse vaccinology approach. Among screened out 299 epitopes 
of strain F2365 of Listeria monocytogenes, based on the VaxiJen score, the top 20 epitopes were selected. 3D modeling of 
epitopes and alleles was generated by PEPstrMOD and Swiss Model respectively. Molecular docking reveals 4 epitopes viz., 
MKFLFPLKL, CEETFGIRL, FLKIDPPIL, and VRHHGGGHK based on binding energy. All 4 epitopes were investigated 
for non-toxicity, binding affinity, and population coverage. After vigorous investigation, epitope FLKIDPPIL was anticipated 
as the best vaccine contender. The stability of the FLKIDPPIL-HLA DRB1 _0101 complex was proved by performing the 
simulation. Here, predicted peptide through the Insilico approach may become a potential remedy against listeriosis, after 
the wet-lab approach and clinical trials.
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Introduction

Changing food habits, advancement in technology regard-
ing the preservation of food products for a longer time, and 
the ability of microorganisms to grow in adverse conditions 
are leading to the emergence of the foodborne infection, 
known as Listeriosis. The genus Listeria consists of seven-
teen species. Only the three hemolytic species viz., Listeria 
monocytogenes, Listeria seeligeri, and Listeria ivanovii are 
considered pathogens. Of these, Listeria monocytogenes is 
consistently pathogenic and is involved in foodborne out-
breaks of listeriosis (Abdelhamed et al. 2019). Based on 
Gram-staining, Listeria monocytogenes comes under the 
category of Gram-positive. It shows extreme resistance in 
conditions like very high temperatures or very low tempera-
tures. These bacteria have a rod-like shape and can form 

small chains (Sallami et al. 2006). Listeria monocytogenes 
mainly affects women who are pregnant, infants, elders 
above 65 years of age, and immunocompromised people 
(CDC 2019). Foodborne infection in humans occurs through 
the consumption of contaminated foods, particularly unpas-
teurized milk, soft cheeses, vegetables, and prepared meat 
products. Listeria monocytogenes show completely different 
behavior in comparison to all other pathogens that cause 
food contamination. It can multiply at low temperatures 
in contaminated food. It can be easily transmitted between 
pregnant women and her newborn either at the time of preg-
nancy or during delivery (WHO 2019). Pyrexia, cough, cold, 
headache, and body ache, etc. are the usual symptoms expe-
rienced by the patients (Department of Health 2017). World-
wide many countries where food production takes place in 
absence of proper and better microbiological vigilance and 
where the percentage of immunocompromised persons are 
immensely high, Listeria monocytogenes loomed as one of 
the dominant foodborne pathogens (Thomas et al. 2020). 
Thus, poor surveillance during the production process 
affects approximately 1600 people every year, and around 
260 experience the afterlife (CDC 2019).
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Listeria  monocytogenes  consists of two genes viz., 
chiA and chiB. These two genes play an important role in 
virulence. A regulatory factor hfq plays a very important role 
in the formation of biofilm, colony formation, and virulence 
(Yao et al. 2018). The Zipper is the name of the mechanism 
through which Listeria monocytogenes get access to the 
host cell. In this process, ligands on the surface of bacte-
ria communicate with receptors of the host cells. Internalin 
A and Internalin B are the ligands on the bacterial surface 
and E-cadherin and Met are the receptors on host cells with 
which bacterial ligands interact. This collaboration leads to 
the rearrangement of actin filaments and invasion of bacte-
ria (Hamon et al. 2006). When Internalin B-Met interacts 
together, processes like ubiquitinylation and autophospho-
rylation takes place (Veiga and Cossart 2005).

In the year 2018, Australia had witnessed around 20 
cases of listeriosis between January to April. This minor 
outbreak had faced around 7 deaths and a single spontane-
ous abortion (WHO 2018a, b). National Institute of Com-
municable diseases (NICD) has proclaimed 978 listeriosis 
cases between 2017 and 2018 from all provinces of South 
Africa, Gauteng, Western Cape, and KwaZulu- Natal were 
mainly hit by this fatal disease known as listeriosis. Around 
78% of cases have been reported from the above-mentioned 
places of South Africa. Out of 674 affected people, 27 have 
faced death. All these data revealed about the threat of this 
bacteria and its effect on mankind and society. The per-
centage of infants that get affected during an outbreak is 
around 42% (WHO 2018a, b). Pregnant women can easily 
get infected with listeriosis through the placenta, still, the 
establishment of neurolisteriosis is completely occasional. 
Listeriosis infection in pregnant women is because of the 
alliance of the quashed immune system and the specific-
ity of bacteria for the placenta (Charlier et al. 2017). Even 
after the birth of infants infected with bacteria Listeriosis 
monocytogenes endurance is possible only with the help of 
Extracorporeal membrane oxygenation (ECMO) (Lee et al. 
2019). According to a report of WHO, in India miscarriages 
and other pregnancy-related disorders is mainly the result of 
foodborne infection known as listeriosis.

Listeriosis is still under-reported in many countries. 
The ability of Listeria monocytogenes to survive even in 
harsh conditions is one of the major threats regarding the 
outbreak of the disease. High fatality rate and frequent out-
breaks demand the designing of a vaccine against Listeria 
monocytogenes, by using the immunoinformatics approach. 
This study is mainly based on the anticipation of B cell 
epitopes for the utility of vaccine designing against listeri-
osis. Previously, a study regarding computational identifica-
tion and characterization of epitopes has been carried out in 
the case of the Zika virus, Nipah virus, and bacteria like E. 
coli (Sharma et al. 2020; Kaushik 2019; Khan et al. 2019). 
Considering this approach in this research work, all proteins 

except hypothetical, putative, and non-structural were 
retrieved from the UniProtKB database. A potential epitope 
must not possess any allergic property; therefore, first and 
foremost allergenicity was checked by using the AlgPred 
server. NETMHCII 2.3 and VaxiJen server was used to iden-
tify B cell epitopes that could bind to MHC II molecules 
with great stability. Only the top 20 epitopes were selected 
for further exploration. This selection was done based on 
the VaxiJen score. 3D modeling of both the epitopes and 
alleles was performed using PEPstrMOD and Swiss Model. 
Epitope—allele pair having low binding energy should be 
selected for the next sequential refining. To do this, molecu-
lar docking was performed using AutoDock Vina software. 
Next to check toxicity, binding affinity, and population cov-
erage Toxin Pred, MHC Pred, and immune epitope database 
tools were used. The stability of the epitope-allele complex 
was substantiated by simulation studies. The strategy of the 
development of subunit vaccines has an upper hand in com-
parison to traditional vaccines. These next-generation vac-
cines are extremely specific in eliciting the immune system 
of the host, can be produced easily in large quantities, and at 
a comparatively moderate cost. Moreover, peptides consist-
ing of epitopes can be manufactured, purified, and processed 
easily (Poland et al. 2011).

Methodology

Protein Sequence Retrieval

For computational identification and characterization of 
epitopes for the preparation of subunit vaccine designing, 
complete proteome analysis of Listeria monocytogenes 
F2365 strain (GenBank accession number AE017262.2) was 
performed using the UniProtKB database. In comparison to 
other serotype strains, Listeria monocytogenes strain F2365 
belongs to the 4b serotype group and multiplicates more 
rapidly in monocytes or macrophages (Hasebe et al. 2017). 
Presence of a virulence factor viz. ListeriolysinS (LLS) in 
the F2365 strain accelerates infection in the intestine and 
other organs (Quereda et al. 2016). Listeria monocytogenes 
F2365 strain is a member of lineage I and comprises a fac-
tor known as Internalin B which plays a crucial role in 
nonpregnant infected animals (Quereda et al. 2018). All 
these remarkable features contribute to the pathogenicity 
of this strain and hence lead to its selection for the study. 
Excluding hypothetical, putative, and non-structural pro-
teins total of 529 proteins were registered in the UniprotKB 
database, derived from the different research literature. All 
these sequences were saved in the FASTA format for further 
examination. The length of the genome of the F2365 strain 
is 3,021,822 bp, with GC content of 37.9% approximately 
(Briers et al. 2011).
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Allergenic Protein Prediction

One of the most eminent features in epitope-based vaccine 
design is that the particular epitope must elicit an immune 
response only against the target pathogen. Taking this point 
into consideration, the screened epitope must be non-aller-
gen and thus retrieved proteins were differentiated into aller-
gens and non-allergens by using the AlgPred server (Saha 
and Raghava 2006) This server segregates non-allergens 
from allergens and − 0.4 was selected as the cut-off value. 
Anticipation was done with high accuracy along with sen-
sitivity and specificity of 88.87% and 81.86% respectively. 
Non-allergens were chosen for another characterization 
and exploration of antigenic sites for the utility of vaccine 
designing from the proteome of Listeria monocytogenes.

B cell Epitope Prediction

B cell epitopes are typical peptide remnants that bind to 
the immunoglobulin and thus it becomes immensely impor-
tant to screen out such epitopes from complete proteome 
sequence. To accomplish this objective, NETMHCII 2.3 
server was used (Jensen et al. 2018). By making use of arti-
ficial neural networks, this server predicts the binding of B 
cell epitopes with HLA alleles. In this study, three alleles 
viz. DRB1_0101, DRB1_0701, and DRB1_1301 and locus 
HLA-DR was chosen. The peptide length was taken at 9 with 
a threshold set to − 99.9.

The potential B cell epitopes were subjected to the Vaxi-
Jen server to select those candidates that can strongly bind 
with MHC II molecules (Doytchinova and Flower 2007). 
Only epitopes with a score greater than or equal to 1.1 can 
bind with MHC II molecules with extreme affinity and be 
selected. To further proceed with the reverse vaccinology 
approach, only the top 20 peptides or antigenic sites were 
chosen. This selection was based on the VaxiJen score.

Molecular Modeling of Epitopes and Human 
Leukocyte Antigen (HLA) Alleles

Following allergenicity and prediction of B cell epitopes, 
modeling of both epitopes and HLA alleles was performed. 
For the generation of the 3D structure of the selected 
epitopes, the PEPstrMOD server was used. It offers exclu-
sive advantages to the users to predict the structures of pep-
tides having natural residues, some modified residues, post-
translational modifications, etc. (Singh et al. 2015). In this 
research work, filtered epitopes were modeled and saved in 
the Protein Data Bank (PDB) format for the next sequen-
tial investigation. The first fully automated protein homol-
ogy modeling server known as the Swiss model was used 
for modeling of HLA alleles (Waterhouse et al. 2018). The 
building of models using this server requires four sequential 

steps. These 4 steps comprise of template selection, its 
alignment with the target sequence, model building, and its 
evaluation. In this study 3D structures of three HLA alleles 
have been performed viz., DRB1_0101, DRB1_0701, and 
DRB1_1301.

Molecular Docking of Epitopes and HLA Alleles

To better understand the relationship between anticipated 
epitopes and their respective alleles, AutoDock Vina soft-
ware was used to perform molecular docking. It helps us 
to interpret the synergy between antigenic sites and their 
corresponding alleles (Trott and Olson 2010). One of the 
prerequisites before performing docking is certain modifi-
cations both in ligand as well as the receptor, which was 
performed by AutoDock MGL tools. HLA alleles were 
selected as receptors viz., DRB1_0101, DRB1_0701, and 
DRB1_1301. 4AH2, 3C5J, and 6CQL are the crystal struc-
ture of these receptors and were retrieved from the Research 
Collaboratory for Structural Bioinformatics (RCSB) protein 
data bank. Molecules of water were removed from these 
receptors and polar hydrogen as well Kollman charges were 
added to the structure. After modification, the molecule 
was saved in pdbqt format. Changes were also performed 
in all 20 ligands and were saved in pdbqt files. All these 
alterations were performed by AutoDock MGL tools. To 
perform molecular docking in AutoDock Vina software, 40, 
40, 40 were taken as grid box dimensions and energy was 
calculated at 0 Å. The docking result can be analyzed by a 
visualization tool called PyMol. 4 epitopes were selected 
for succeeding rounds of analysis based on negative binding 
energies where Low binding energy implies good stability.

Toxicity Prediction of the Epitopes

To evaluate the non-toxicity behavior of epitopes Toxin Pred 
server was used (Gupta et al. 2013). It is based on machine 
learning techniques and quantitative matrix scores. Along 
with toxicity prediction, calculation of physicochemical 
properties is one of the most notable features of this server.

Binding Affinity Prediction and Population 
Coverage Analysis

MHC Pred Server was used to vaticinate the binding affin-
ity of epitopes with MHC II molecules. MHC Pred is com-
posed of several models based on structures and its activ-
ity, a sturdy multivariate statistical method. Results with 
articulated by giving  IC50 values (Guan et al. 2003).  IC50 
values less than 500 are considered to be good binders and 
were chosen for the next and last analysis. Because of the 
exceptionally heterogeneous behavior of HLA alleles, their 
frequency of expression varies greatly across the globe, and 
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therefore Population coverage analysis becomes the utmost 
important step in computational vaccine designing. It was 
performed using the Immune Epitope Database (IEDB) 
Population Coverage analysis tool (Bui et al. 2006).

Molecular Dynamics (MD) and Simulation Study

It is extremely essential to understand the stability of the 
peptide- allele complex and to analyze that in this research 
work MD Web server was used (Hospital et al. 2012). Simu-
lation of 10 ns with an output frequency of 500 steps was set 
to equilibrate the system. Coarse-grained Brownian dynam-
ics were analyzed for trajectory and output was given in the 
terms of Root mean square deviation (RMSD) and B-factor 
values. Both RMSD and B-factor plots corroborate the sta-
bility of epitope- allele complex.

Results

With time, the world has acknowledged extreme advance-
ment in medicine and technology thus combating some 
deadly diseases, but still, diseases like listeriosis were left 
unnoticed. Despite several outbreaks in different parts of the 
world, there is no legitimate treatment or drug or vaccine 
available for it. Therefore, it becomes extremely important 
to predict and characterize some potential vaccine con-
tenders that can evoke a strong immune response and this 
study is one such step in this direction. Here we have used 
computational tools to predict B cell epitopes that can elicit 
an immune response. The first requirement in the reverse 
vaccinology approach of vaccine designing is to eliminate 
all non-allergic proteins from a complete proteome set of 
bacteria, Listeria monocytogenes. The AlgPred server was 
used to predict allergenicity of retrieved proteins, to get the 
most capable subunit vaccine candidate. A total of 529 pro-
tein sequences of Listeria monocytogenes F2365 strain was 
retrieved from the UniProtKB database (excluding hypothet-
ical, putative, and non-structural proteins) and were saved in 
the FASTA format for further analysis. After examination 
by the AlgPred server, out of 529, a total of 172 proteins 
were proved to be non-allergens (Table 1). The result has 
been summarized in Table 1. Table 1 consists of protein ID, 
protein names, and scores of all non-allergens.

Non-allergic proteins were analyzed further by using 
NetMHC II 2.3 server. By selecting peptide lengths 9 and 
threshold value − 99.9. B cell epitopes were selected. These 
chosen epitopes were next investigated by the VaxiJen 
server and the cut-off value was 1.1 Å total of 299 epitopes 
were found to bind with MHC II molecules (Table 2). All 
299 epitopes have a VaxiJen score of ≥ 1.1 and can bind 
with MHC II molecules with great stability. Among these 

epitopes, the majority of epitopes were found to bind with 
DRB1_1301.

Based on the high VaxiJen score, among 299 epitopes, 
only the top 20 epitopes were selected for modeling. The 
generation of 3D structures of epitopes was performed 
by PEPstrMOD. 3D modeling of the HLA allele’s viz. 
DRB1_0101, DRB1_0701, and, DRB1_1301 were per-
formed by the Swiss model (Fig. 1). For the generation 
of tertiary structures of DRB1_0101, DRB1_0701 and, 
DRB1_1301 alleles, proteins having PDB ID 4AH2, 3C5J, 
and 6CQL were used as templates, respectively. All tertiary 
structures of HLA alleles were visualized by the PyMOL 
visualization tool. 3D models have been represented in 
Fig. 1.

AutoDock Vina software was used to perform molecu-
lar docking between 20 nonallergic and antigenic epitopes 
with their respective alleles. The lowest binding energy was 
obtained for epitope FLKIDPPIL-DRB1_0101 (− 7.3 kcal/
mol) and the highest binding energy was obtained for 
epitopes MKGQAGSKK-DRB1_1301 (− 5.1 kcal/mol). 
As low binding energies imply, high stability of the com-
plex, therefore 4 epitopes based on low binding energy 
was selected viz., CEETFGIRL, MKFLFPLKL, FLKIDP-
PIL, and VRHHGGGHK (Table 3). The stable complex of 
CEETFGIRL-3C5J shows the energy of − 6.7 kcal/mol and 
6 hydrogen bonds (Fig. 2) Complexes viz. MKFLFPLKL-
4AH2 and FLKIDPPIL-4AH2 shows binding energy of 
− 6.9 kcal/mol and − 7.3 kcal/mol along with 2 and 6 
hydrogen bonds respectively (Figs. 3 and 4). The energy of 
− 6.7 kcal/mol and 6 hydrogen bonds was shown by epitope 
VRHHGGGHK along with its receptor 6CQL (Fig. 5).

Most promising vaccine aspirants must not cause any 
kind of toxicity or vigorous reaction inside the host. So, 
checking of toxic nature of epitopes is notably important. 
This prominently important step was performed by Toxin 
Pred. It was found that all 4 selected epitopes were non-toxic 
(Table 4). All epitopes along with their result of toxicity 
analysis and physicochemical properties like hydrophobic-
ity, hydrophilicity, and molecular weight were summarized 
in Table 4.

MHC Pred server was used to study the binding affin-
ity of four non-allergic, non-toxic, and antigenic peptides 
with allele’s viz., HLA DRB1_0101, HLA DRB1_0401, and 
HLA DRB1_0701. Binding affinity was depicted in terms 
of  IC50 value (Table 5). Epitopes showing  IC50 value less 
than 500 nM were considered to be good binders. Epitopes 
viz., CEETFGIRL and VRHHGGGHK were found to bind 
with HLA DRB1_0101 and HLA DRB1_0401, respectively. 
Both FLKIDPPIL and MKFLFPLKL were found to bind 
with HLA DRB1_0101 and HLA DRB1_0701.

Most eligible vaccine contenders must show satisfactorily 
population coverage in different parts of the world. Both the 
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Table 1  List of all non- 
allergic proteins of Listeria 
monocytogenes F2365 strain, 
along with their protein ID 
and the result of analysis by 
AlgPred server

S. no. Protein ID Score AlgPred prediction

1 Q724L4 1.3656 Non-allergen
2 Q71WU4 1.9397 Non-allergen
3 Q71Z75 0.7278 Non-allergen
4 Q724J4 − 0.547 Non-allergen
5 Q71W17 − 0.551 Non-allergen
6 Q71Y34 − 0.54 Non-allergen
7 Q71XR2 0.4524 Non-allergen
8 Q71VT6 0.4088 Non-allergen
9 Q71ZE0 − 1.318 Non-allergen
10 Q71XX6 − 1.042 Non-allergen
11 Q71Y46 − 0.679 Non-allergen
12 Q71WT3 − 0.482 Non-allergen
13 Q71WP0 − 1.372 Non-allergen
14 Q720A5 − 0.44 Non-allergen
15 Q71WP7 − 0.675 Non-allergen
16 Q71WT2 − 0.574 Non-allergen
17 Q71ZH3 − 0.508 Non-allergen
18 Q720D7 − 1.554 Non-allergen
19 Q71VR6 − 1.317 Non-allergen
20 Q720T3 − 0.947 Non-allergen
21 Q722V6 − 0.505 Non-allergen
22 Q71YI4 − 0.578 Non-allergen
23 Q71WT9 − 0.64 Non-allergen
24 Q720J1 − 1.004 Non-allergen
25 Q71ZD3 − 0.651 Non-allergen
26 Q71ZZ0 − 1.285 Non-allergen
27 Q71XV7 − 1.047 Non-allergen
28 Q71YD8 − 1.391 Non-allergen
29 Q71XG0 − 0.986 Non-allergen
30 Q724M5 − 0.647 Non-allergen
31 Q724E9 − 0.838 Non-allergen
32 Q71YJ5 − 0.821 Non-allergen
33 Q722Y8 − 1.001 Non-allergen
34 Q71XF3 − 0.951 Non-allergen
35 Q71VR5 − 0.589 Non-allergen
36 Q71WI0 − 0.766 Non-allergen
37 Q71Z37 − 0.698 Non-allergen
38 Q71XR3 − 1.167 Non-allergen
39 Q720G2 − 0.776 Non-allergen
40 Q71Y82 − 1.037 Non-allergen
41 Q71XV6 − 1.471 Non-allergen
42 Q724M3 − 0.608 Non-allergen
43 Q724B0 − 1.957 Non-allergen
44 Q724I1 − 0.449 Non-allergen
45 Q721S2 − 0.587 Non-allergen
46 Q71XX2 − 0.928 Non-allergen
47 Q71WH2 − 0.5 Non-allergen
48 Q71VQ8 − 0.948 Non-allergen
49 Q71ZD8 − 0.829 Non-allergen
50 Q71Y59 − 1.726 Non-allergen
51 Q720E4 − 0.977 Non-allergen
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Table 1  (continued) S. no. Protein ID Score AlgPred prediction

52 Q71ZU1 − 0.488 Non-allergen
53 Q720A3 − 0.482 Non-allergen
54 Q720D3 − 0.466 Non-allergen
55 Q71YM4 − 0.874 Non-allergen
56 Q720A7 − 1.041 Non-allergen
57 Q724H7 − 0.885 Non-allergen
58 Q720J2 − 0.5 Non-allergen
59 Q71YJ0 − 1.126 Non-allergen
60 Q722Y2 − 0.645 Non-allergen
61 Q71XU1 − 0.474 Non-allergen
62 Q71WU5 − 1.035 Non-allergen
63 Q71YA9 − 1.006 Non-allergen
64 Q721B5 − 0.439 Non-allergen
65 Q71WN3 − 0.872 Non-allergen
66 Q724F0 − 0.73 Non-allergen
67 Q71WP3 − 1.021 Non-allergen
68 Q71WF9 − 1.887 Non-allergen
69 Q722W7 − 0.595 Non-allergen
70 Q71YH0 − 0.671 Non-allergen
71 Q71WB6 − 1.955 Non-allergen
72 Q71YB9 − 0.633 Non-allergen
73 Q71VR4 − 0.492 Non-allergen
74 Q71W89 − 1.05 Non-allergen
75 Q71W91 − 0.849 Non-allergen
76 Q721K3 − 0.808 Non-allergen
77 Q71WP8 − 0.707 Non-allergen
78 Q71YH8 − 0.796 Non-allergen
79 Q71WG3 − 1.08 Non-allergen
80 Q725C1 − 0.66 Non-allergen
81 Q71Z71 − 1.736 Non-allergen
82 Q71ZV5 − 0.599 Non-allergen
83 Q722Y1 − 0.452 Non-allergen
84 Q720E1 − 0.419 Non-allergen
85 Q724K0 − 0.41 Non-allergen
86 Q71WF2 − 1.603 Non-allergen
87 Q724K2 − 0.421 Non-allergen
88 Q722Y9 − 0.81 Non-allergen
89 Q71ZA5 − 0.444 Non-allergen
90 Q71VW1 − 0.761 Non-allergen
91 Q71WF7 − 0.62 Non-allergen
92 Q71ZZ2 − 1.919 Non-allergen
93 Q71W69 − 1.29 Non-allergen
94 Q71WF1 − 1.529 Non-allergen
95 Q71WE7 − 1.644 Non-allergen
96 Q71WU6 − 0.49 Non-allergen
97 Q71ZP6 − 0.605 Non-allergen
98 Q71WF3 − 2.172 Non-allergen
99 Q71WE9 − 1.315 Non-allergen
100 Q71WB7 − 2.462 Non-allergen
101 Q71WH0 − 1.831 Non-allergen
102 Q724G4 − 0.778 Non-allergen
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Table 1  (continued) S. no. Protein ID Score AlgPred prediction

103 Q71WF8 − 1.611 Non-allergen
104 Q724G2 − 0.644 Non-allergen
105 Q71XE5 − 0.913 Non-allergen
106 Q71XX1 − 0.625 Non-allergen
107 Q71YK6 − 0.683 Non-allergen
108 Q71WE5 − 2.321 Non-allergen
109 Q71ZR7 − 0.454 Non-allergen
110 Q71WF6 − 1.29 Non-allergen
111 Q71WF5 − 1.581 Non-allergen
112 Q71WH1 − 2.223 Non-allergen
113 Q71WG5 − 1.192 Non-allergen
114 Q725B8 − 2.188 Non-allergen
115 Q71WV5 − 1.028 Non-allergen
116 Q71WG0 − 1.557 Non-allergen
117 Q71WG2 − 1.87 Non-allergen
118 Q71WE8 − 0.989 Non-allergen
119 Q71YD4 − 2.112 Non-allergen
120 Q71YN5 − 2.041 Non-allergen
1 21 Q71YJ3 − 1.036 Non-allergen
122 Q721R7 − 0.737 Non-allergen
123 Q71WX8 − 1.06 Non-allergen
124 Q71WF0 − 2.159 Non-allergen
125 Q71WN0 − 1.611 Non-allergen
126 Q725C0 − 0.638 Non-allergen
127 Q71ZZ5 − 0.527 Non-allergen
128 Q71ZG8 − 0.898 Non-allergen
129 Q71ZJ0 − 1.318 Non-allergen
130 Q71XH4 − 1.281 Non-allergen
131 Q71WL5 − 0.848 Non-allergen
132 Q720A8 − 0.628 Non-allergen
133 Q721Y1 − 0.988 Non-allergen
134 Q71YM9 − 1.733 Non-allergen
135 Q71WG4 − 2.217 Non-allergen
136 Q71YN4 − 2.371 Non-allergen
137 Q71WH3 − 2.224 Non-allergen
138 Q71ZY7 − 0.968 Non-allergen
139 Q71XW7 − 1.979 Non-allergen
140 Q720A1 − 0.577 Non-allergen
141 Q723G3 − 2.038 Non-allergen
142 Q71WV3 − 0.925 Non-allergen
143 Q71ZJ5 − 0.952 Non-allergen
144 Q721N6 − 0.586 Non-allergen
145 Q71ZK1 − 1.532 Non-allergen
146 Q71ZD0 − 1.746 Non-allergen
147 Q71WF4 − 0.935 Non-allergen
148 Q71YL9 − 2.126 Non-allergen
149 Q71WG9 − 1.537 Non-allergen
150 Q71YK0 − 2.221 Non-allergen
151 Q71WI2 − 2.143 Non-allergen
152 Q71VQ6 − 1.957 Non-allergen
153 Q724G8 − 1.5 Non-allergen
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epitope MKFLFPLKL and FLKIDPPIL shows population 
coverage of 28.63% worldwide (Fig. 6).

Epitope CEETFGIRL and VRHHGGGHK shows popula-
tion coverage of 11.53% and 11.21% worldwide respectively 
(Figs. 7 and 8).

The final selection of best and most promiscuous vaccine 
bidders depends on two main factors, one is low binding 
energy and another one is high population coverage world-
wide. Based on these two factors, epitope FLKIDPPIL was 
refined. To check the stability of complex FLKIDPPIL-
4AH2, molecular dynamics simulation was performed by 
MD Web simulation. RMSD value of FLKIDPPIL-4AH2 
was given in between 0.1 and 1.0 Å (Fig. 9) and B factor 
scores between 1 and 25 Å2 (Fig. 10). Both RMSD values 
and B factor plot of complex viz., FLKIDPPIL-4AH2 con-
firm the stability of the epitope.

Discussion

Reverse vaccinology is known by different names like com-
putational biology, immunoinformatics, and many more. 
It is a combination of immunological research as well as 
experimental and computational science. It includes com-
putational tools and software to study the immune response 
of the host against various infectious diseases. Immunoin-
formatics helps us to understand antigen presentation in host 
cells, the behavior of the host during the infection cycle, and 
thus enriches the knowledge about the disease that affects 
the immune system and its control (Brusic and Petrovsky 

2005). With the help of Insilico tools, antigenic regions can 
be mapped easily (Davies and Flower 2007). Previously, 
finding these antigenic regions are extremely costly and 
time-consuming methods like Nuclear Magnetic Resonance 
(NMR) were used. But today, computational vaccinology 
had made it possible to predict these antigenic regions in a 
short period and also with extreme accuracy (Potocnakova 
et al. 2016). In this exploration and investigation, the predic-
tion of B cell epitopes has been performed by the authors 
for the designing of the vaccine against listeriosis by using 
a reverse vaccinology approach.

This research work started with the retrieval of a com-
plete proteome sequence of Listeria monocytogenes F2365, 
from the UniProtKB database. Most promiscuous B cell 
epitopes must not show allergic properties. Therefore, to 
remove all allergic proteins from the investigation AlgPred 
server was used. A total of 529 proteins of the F2365 strain 
of Listeria monocytogenes have been proclaimed from the 
UniProtKB database. Out of 529 proteins, 172 have shown 
non-allergenicity. These 172 non-allergic proteins have been 
used to find out the best antigenic regions or peptides that 
can provoke great immune inflammation in the human body, 
by using NETMHCII 2.3 server. 299 epitopes have been 
identified by the VaxiJen server that could bind with MHC 
II molecules with great stability. Based on the VaxiJen score, 
only the top 20 B cell epitopes were selected for succeeding 
refining. 3D modeling of all 20 epitopes has been performed 
by PEPstrMOD and all these tertiary structures have been 
saved in PDB format. Tertiary structure modeling of alleles 
was generated with the help of HLA alleles were performed 

Table 1  (continued) S. no. Protein ID Score AlgPred prediction

154 Q722D6 − 1.506 Non-allergen
155 Q71XL9 − 0.743 Non-allergen
156 Q720B5 − 0.934 Non-allergen
157 Q71XA1 − 1.344 Non-allergen
158 A6X137 − 0.435 Non-allergen
159 Q71Z99 − 0.409 Non-allergen
160 Q71YM0 − 1.017 Non-allergen
161 Q724P3 − 0.613 Non-allergen
162 Q71XW0 − 0.917 Non-allergen
163 Q720B7 − 0.621 Non-allergen
164 Q721A0 − 0.643 Non-allergen
165 Q71ZL4 − 0.912 Non-allergen
`166 Q721A5 − 0.545 Non-allergen
167 Q71YW0 − 0.48 Non-allergen
168 Q2N761 − 1.386 Non-allergen
169 L9WZX9 − 0.694 Non-allergen
170 A0A0X1KHF9 − 0.575 Non-allergen
171 Q1KT30 − 0.508 Non-allergen
172 Q1KT48 − 0.458 Non-allergen
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Table 2  List of B cell epitopes 
as anticipated by NETMHCII 
2.3 server and the result of 
VaxiJen analysis indicating 
antigenicity of epitopes

Protein ID Allele Peptide Binding affin-
ity [nM]

VaxiJen score Antigen/
non-
antigen

Q71WU4 DRB1_1301 MNFRLKNMG 57.4 1.4634 Antigen
DRB1_1301 VAAMNFRLK 64.6 2.5495 Antigen

Q71Z75 DRB1_1301 LSTKGKNRK 8.8 1.9105 Antigen
DRB1_1301 VAARRSHRE 20.2 1.1808 Antigen
DRB1_1301 KVAARRSHR 23.5 1.4005 Antigen

Q724J4 DRB1_0101 LHFLWNSNL 527.4 1.2681 Antigen
DRB1_1301 IRLKLKSSV 15.1 1.403 Antigen
DRB1_1301 MKGQAGSKK 49.4 2.2596 Antigen

Q71W17 DRB1_1301 ARRANIRFR 17.4 2.2999 Antigen
DRB1_1301 QARRANIRF 44.7 1.9086 Antigen
DRB1_1301 FQARRANIR 49.8 1.458 Antigen
DRB1_1301 KKLGARLER 60.8 1.1766 Antigen

Q71Y34 DRB1_0101 FANIRPIQV 449.7 1.1402 Antigen
DRB1_0701 FANIRPIQV 76 1.1402 Antigen

Q71XR2 DRB1_0101 AIFIRAPYL 886.2 1.4467 Antigen
DRB1_1301 LAFKVKHSS 48.5 1.2632 Antigen
DRB1_1301 IFIRAPYLI 62.4 1.6671 Antigen

Q71ZE0 DRB1_0101 FDCVLPTRI 357 1.5369 Antigen
Q71ZE0 DRB1_0101 FDCVLPTRI 357 1.5369 Antigen

DRB1_0701 FDCVLPTRI 25.3 1.5369 Antigen
DRB1_0701 CEETFGIRL 66 2.4185 Antigen

Q71XX6 DRB1_0701 FKATGGKRI 25.8 1.4894 Antigen
DRB1_1301 VILQVFYFK 63.3 1.8276 Antigen
DRB1_1301 LLLIGIIFV 63.9 1.1184 Antigen

Q71Y46 DRB1_0101 FNVLDSRVL 469 1.38 Antigen
DRB1_0701 FNVLDSRVL 70.1 1.38 Antigen

Q71WP0 DRB1_0101 FIVVDPMLA 640 1.8053 Antigen
Q720A5 DRB1_0701 IKEFKPKMV 117 1.1015 Antigen
Q71WP7 DRB1_1301 LRLDLAAYR 58.4 1.7082 Antigen
Q720D7 DRB1_0101 VILAYAPLL 1236.9 1.2361 Antigen

DRB1_0701 LGATNSFRV 97.1 1.2028 Antigen
Q720T3 DRB1_0101 ALLMPLPVA 654.6 1.5696 Antigen

DRB1_0101 FLGVPWWPV 721.2 2.0565 Antigen
DRB1_0101 LMPLPVAII 929.1 1.4677 Antigen
DRB1_0101 FYFLFYGSL 1330 1.6406 Antigen
DRB1_0101 VALLMPLPV 1365.6 1.8132 Antigen
DRB1_0701 FLGVPWWPV 29.7 2.0565 Antigen
DRB1_0701 IIGAWNWLI 309.5 1.666 Antigen

Q71YI4 DRB1_0701 SGETLSVKV 325.2 2.4375 Antigen
DRB1_1301 LRVTPGIRL 32.6 2.4375 Antigen
DRB1_1301 FLRVTPGIR 65.4 1.2425 Antigen

Q71WT9 DRB1_0701 VSLRVGMEI 216.6 1.6096 Antigen
DRB1_1301 IGETERRRK 37.9 1.3502 Antigen

Q720J1 DRB1_0701 IEVTPDYLM 299.3 1.7114 Antigen
Q71ZZ0 DRB1_1301 THLKTRPKK 20.2 1.3476 Antigen

DRB1_1301 LRTHLKTRP 22.8 1.2793 Antigen
Q71XV7 DRB1_0101 FLYVVVYSL 1393.6 1.213 Antigen

DRB1_0701 FAVEPSFSI 53.6 1.819 Antigen
DRB1_0701 IKWAKWMFV 123.5 1.348 Antigen
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Table 2  (continued) Protein ID Allele Peptide Binding affin-
ity [nM]

VaxiJen score Antigen/
non-
antigen

Q724E9 DRB1_0101 FSAGMGAEA 959.2 1.5015 Antigen

DRB1_0701 LVEGRAIRL 269.1 1.5701 Antigen

DRB1_1301 TKSKVRRER 13.3 1.2742 Antigen

DRB1_1301 GQRRTRAIR 33.3 1.2488 Antigen

DRB1_1301 LKGKQGRFR 51 1.7176 Antigen

DRB1_1301 LKSAQGQRR 55.5 1.6836 Antigen

DRB1_1301 EVTKSKVRR 59.3 1.1113 Antigen

DRB1_1301 LIFNTILPK 65.3 1.134 Antigen
Q71WI0 DRB1_0101 FALHYPYEL 1003.9 1.4132 Antigen

DRB1_0701 FALHYPYEL 319.5 1.4132 Antigen
Q71Z37 DRB1_0101 FLFAPHVHP 425 1.8183 Antigen

DRB1_0101 IAFLFAPHV 125 1.9413 Antigen
DRB1_0101 LYTLRPEDV 1060.8 1.3501 Antigen

Q71XV6 DRB1_0701 FSMVLSLVF 100 1.4972 Antigen
DRB1_0701 ASRSKSNRL 302 1.1981 Antigen
DRB1_0701 YIMALHFGI 307 1.9206 Antigen
DRB1_0701 YALTIYTYL 308 1.1261 Antigen
DRB1_1301 IVLLALMIF 28 1.9817 Antigen

Q724M3 DRB1_0101 FDVKMGVRI 1025.4 1.9181 Antigen
DRB1_0701 FDVKMGVRI 320 1.9181 Antigen
DRB1_1301 VKMGVRITI 36 1.2822 Antigen

Q71WH2 DRB1_1301 VRLNATRGR 13 1.8274 Antigen
DRB1_1301 IKKLALKIY 69 1.2527 Antigen

Q71VQ8 DRB1_0701 IVFPLSWTI 300 1.6433 Antigen
DRB1_1301 LLIMPLMIK 24 2.2056 Antigen

Q71ZU1 DRB1_0101 LIQMPILMA 1353.2 1.3037 Antigen
Q720A3 DRB1_0101 LHLIPVNMK 712 1.5796 Antigen

DRB1_0101 LIGLPIRIT 1193 1.6981 Antigen
DRB1_1301 IYKYDVRFK 53 1.8026 Antigen

Q720A7 DRB1_1301 VRVNVMGYR 20 1.4928 Antigen
DRB1_1301 LRLSNFMLW 55 1.2577 Antigen

Q720J2 DRB1_0101 WLNMPDMTV 1064.6 1.3955 Antigen
Q71XU1 DRB1_0701 ILNFTPARI 108 1.1713 Antigen

DRB1_0701 LNFTPARIS 248.4 1.4755 Antigen
DRB1_1301 ILNFTPARI 54.6 1.1713 Antigen

Q71WU5 DRB1_0101 PISIISARI 1514.9 1.1708 Antigen
DRB1_0701 PISIISARI 121.3 1.1708 Antigen

Q71YA9 DRB1_0701 ATG TTG LRI 122.2 2.2883 Antigen
Q724F0 DRB1_0101 FRTLRPTDG 368.9 1.165 Antigen

DRB1_0101 LINIRPVVA 1366 1.2121 Antigen
DRB1_0701 VEHVEAREI 78.9 1.4245 Antigen
DRB1_1301 LRVKLRLIN 22.2 1.3688 Antigen
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Table 2  (continued) Protein ID Allele Peptide Binding affin-
ity [nM]

VaxiJen score Antigen/
non-
antigen

Q71WP3 DRB1_0101 NTLTLGLRL 518 1.6477 Antigen

DRB1_0101 MKFLFPLKL 612.8 2.3447 Antigen

DRB1_0101 MLGLPFQIA 1397.6 1.8635 Antigen

DRB1_0701 NTLTLGLRL 80.1 1.6477 Antigen

DRB1_0701 MKFLFPLKL 175.8 2.3447 Antigen

DRB1_0701 VTLTLAIMV 181.1 1.2651 Antigen

DRB1_1301 ICTRNLQRR 16.9 1.1843 Antigen
Q722W7 DRB1_0101 WVMHLDAMV 1508.3 1.4715 Antigen

DRB1_0701 IVYEVSWRY 223.4 1.2052 Antigen
DRB1_0701 YHFYFAHAL 234.2 1.4315 Antigen
DRB1_1301 LMGRSGRRG 11.8 1.4813 Antigen
DRB1_1301 LRITMLLMR 26.9 1.1065 Antigen
DRB1_1301 QLMGRSGRR 27.3 1.1831 Antigen
DRB1_1301 KLSTKLKRK 36.7 1.3477 Antigen

Q71YH0 DRB1_0101 CTLLYAFPL 185.7 2.1684 Antigen
DRB1_0101 SYWLIGLPV 452.6 1.3982 Antigen
DRB1_0701 CIGIPAFFI 229.8 1.6783 Antigen
DRB1_0701 IMHFLVYAI 260.9 1.1187 Antigen
DRB1_0701 CTLLYAFPL 311.2 2.1684 Antigen
DRB1_1301 FILSIRVRK 8.4 1.1456 Antigen
DRB1_1301 IRVRKTEQK 17.8 1.6151 Antigen
DRB1_1301 AFILSIRVR 39.5 1.4081 Antigen
DRB1_1301 LSIRVRKTE 45.7 1.7093 Antigen
DRB1_1301 LTLFSMTFF 65.7 1.2134 Antigen

Q71WB6 DRB1_0101 YIPGIGHNL 419.9 1.1532 Antigen
DRB1_0701 VRLSNGIEV 41.6 1.353 Antigen

Q71YB9 DRB1_0101 FLKIDPPIL 199.4 2.3187 Antigen
DRB1_0101 FWMIEPEMA 524.2 2.1476 Antigen
DRB1_0701 FLKIDPPIL 101.7 2.3187 Antigen

Q71VR4 DRB1_0101 KLNLHAIYV 1297.1 1.6175 Antigen
DRB1_1301 IEHGKRSRK 55.6 1.2977 Antigen

Q71W89 DRB1_0101 LSFLPALAL 91.8 1.5837 Antigen
DRB1_0101 YILLPLSLI 150 1.4583 Antigen
DRB1_0101 FSLAFNTAA 398.7 1.4513 Antigen
DRB1_0101 ILLIPVALV 879.3 1.4451 Antigen
DRB1_0101 FLPALALGP 996.5 1.3317 Antigen
DRB1_0101 LILVPPLLT 1544.3 2.0559 Antigen
DRB1_0701 LSFLPALAL 97.5 1.5837 Antigen
DRB1_0701 LSFSLAFNT 155.2 1.688 Antigen
DRB1_0701 LLLVLAVPL 211.1 1.53 Antigen

Q71W91 DRB1_0101 VNVLQVNLA 587.2 1.403 Antigen
Q71WP8 DRB1_0101 LEVLLPQYV 1295.8 1.246 Antigen
Q71WG3 DRB1_1301 VKGGRRFRF 39.8 1.694 Antigen
Q71Z71 DRB1_1301 ISVREKSAK 56 1.548 Antigen
Q722Y1 DRB1_0101 GVMLPLKLS 254.4 1.104 Antigen

DRB1_0101 FQIELGHAA 324.6 1.288 Antigen
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Table 2  (continued) Protein ID Allele Peptide Binding affin-
ity [nM]

VaxiJen score Antigen/
non-
antigen

Q71WF2 DRB1_0701 KVHPIGMRI 181.4 1.3023 Antigen

DRB1_1301 IKTQVSGRL 19.6 1.16 Antigen

DRB1_1301 MRAGAKGIK 50.5 1.27 Antigen

DRB1_1301 LRIRDYVAK 51.4 1.181 Antigen
Q722Y9 DRB1_1301 IKLRKTQPR 34.9 1.462 Antigen
Q71WF1 DRB1_1301 VRIAPRKAR 27 1.1447 Antigen

DRB1_1301 GRASAINKR 44 1.264 Antigen
Q71ZP6 DRB1_0101 YKLLNPTLG 86.8 1.307 Antigen

DRB1_0101 FLNIRLKPV 485.3 1.9058 Antigen
DRB1_0101 ILSMQLSFA 540.1 1.2557 Antigen
DRB1_0101 LNLLFGIPL 599.5 1.7237 Antigen
DRB1_0101 LAIVPAVII 777.5 1.356 Antigen
DRB1_0101 LSMQLSFAV 1348.6 1.566 Antigen
DRB1_0701 FSLTIALLI 22.4 1.852 Antigen
DRB1_0701 IDSTFSLTI 57.8 1.4124 Antigen
DRB1_0701 FLNIRLKPV 62.9 1.906 Antigen
DRB1_0701 ISWAVAIFI 72.9 1.347 Antigen
DRB1_0701 IGSAIALNL 111.4 1.277 Antigen
DRB1_0701 LAIVPAVII 184 1.356 Antigen
DRB1_1301 LNIRLKPVV 30.9 2.189 Antigen

Q71WE9 DRB1_0701 IKVGNALEL 51 1.204 Antigen
DRB1_1301 LKKKAGRNN 60.7 1.322 Antigen
DRB1_1301 VRHHGGGHK 63.8 2.522 Antigen

Q71WB7 DRB1_1301 LEVKARRVG 53 1.551 Antigen
DRB1_1301 IEVRADRRS 60.7 1.989 Antigen
DRB1_1301 MMVDGKRGK 65.1 1.375 Antigen

Q71WH0 DRB1_1301 SYRGMRHRR 9 1.4454 Antigen
DRB1_1301 TKNNARTRK 38.1 2.1367 Antigen

Q71XE5 DRB1_0701 FVSGLSFHV 35.1 1.487 Antigen
DRB1_1301 KQLKIRQIR 53.8 1.389 Antigen

Q71XX1 DRB1_0101 NIDIKGRLI 1319.9 1.353 Antigen
Q71YK6 DRB1_0701 IFDVRSEHV 179.8 1.5294 Antigen
Q71WE5 DRB1_1301 MAKQKIRIR 18.8 1.2116 Antigen

DRB1_1301 FEMRTHKRL 27.8 1.1916 Antigen
DRB1_1301 IRLKAYDHR 28.8 1.7067 Antigen
DRB1_1301 AKQKIRIRL 37.3 1.7363 Antigen
DRB1_1301 QKIRIRLKA 46.2 1.7022 Antigen
DRB1_1301 IRIRLKAYD 55.2 1.8524 Antigen
DRB1_1301 QFEMRTHKR 68.6 1.7135 Antigen

Q71WF6 DRB1_1301 VRTKSGARR 5.6 1.944 Antigen
Q71WH1 DRB1_1301 MARKTNTRK 5.2 1.6203 Antigen

DRB1_1301 RKTNTRKRR 5.5 2.5417 Antigen
DRB1_1301 ARKTNTRKR 10.3 2.2271 Antigen
DRB1_1301 TNTRKRRVK 26.3 2.1039 Antigen
DRB1_1301 TRKRRVKKN 55.9 1.5039 Antigen
DRB1_1301 NTRKRRVKK 62 1.8576 Antigen
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Table 2  (continued) Protein ID Allele Peptide Binding affin-
ity [nM]

VaxiJen score Antigen/
non-
antigen

Q725B8 DRB1_1301 GRR GGR RRK 7.1 3.0668 Antigen

DRB1_1301 RRG GRR RKK 17.1 2.833 Antigen

DRB1_1301 GGR RGG RRR 25.2 3.1722 Antigen
Q71WV5 DRB1_1301 VKKRSAKRA 14.9 1.3995 Antigen

DRB1_1301 LNARTLERK 16.7 1.6232 Antigen
DRB1_1301 VRLKSGTRG 19.6 1.5481 Antigen
DRB1_1301 VSKSGINHR 44.8 1.3402 Antigen
DRB1_1301 LNARTLERK 16.7 1.6232 Antigen
DRB1_1301 VRLKSGTRG 19.6 1.5481 Antigen
DRB1_1301 VSKSGINHR 44.8 1.3402 Antigen

Q71WG2 DRB1_1301 KVRKKRHAR 7.7 1.6463 Antigen
DRB1_1301 VRKKRHARV 12.6 1.3471 Antigen
DRB1_1301 RHARVRSKI 27.1 1.4108 Antigen
DRB1_1301 KKRHARVRS 38.4 2.0868 Antigen
DRB1_1301 RKKRHARVR 47.2 2.0804 Antigen
DRB1_1301 NKVRKKRHA 59.3 1.1365 Antigen

Q71WE8 DRB1_1301 AGYTNKRRK 46.9 1.237 Antigen
Q71YD4 DRB1_1301 FGISRIRFR 48.6 1.1227 Antigen
Q71YN5 DRB1_1301 TVTRKRRKK 2.7 1.1019 Antigen

DRB1_1301 GTVTRKRRK 15.8 1.2113 Antigen
DRB1_1301 GGTVTRKRR 31 1.6998 Antigen

Q721R7 DRB1_1301 ARLRTT GGR 14 1.7495 Antigen
DRB1_1301 RLRTT GGR Y 64.9 1.4507 Antigen

Q71ZZ5 DRB1_1301 MNVRANRVS 41.7 2.0256 Antigen
DRB1_1301 GRRIRLRKV 60.1 1.6184 Antigen

Q720A8 DRB1_0101 LRLSIPQLT 375.6 1.2897 Antigen
DRB1_0701 LRLSIPQLT 192.5 1.2897 Antigen

Q721Y1 DRB1_0701 LRITLNLAL 19.5 1.9824 Antigen
DRB1_1301 ILLRITLNL 32.3 1.4731 Antigen
DRB1_1301 LLLVAALFL 51.9 1.2854 Antigen

Q71YM9 DRB1_0101 LRNLRGKAA 476.7 1.2468 Antigen
DRB1_0701 TVRVHAKVV 152.6 1.3034 Antigen
DRB1_1301 VRVHAKVVE 67.1 1.564 Antigen
DRB1_1301 RRGKVRRAK 20.2 1.3055 Antigen
DRB1_1301 LRGKAARIK 17.4 2.0521 Antigen

Q71WG4 DRB1_1301 AKLEITLKR 51.3 1.1423 Antigen
Q71YN4 DRB1_0701 FKRTGSGKL 34.3 1.1993 Antigen

DRB1_1301 THRGSAKRF 43.7 1.0624 Antigen
DRB1_1301 QKQKRKLRK 46.1 1.1816 Antigen

Q71WH3 DRB1_1301 LGRTSSQRK 33.5 1.2846 Antigen
Q71ZY7 DRB1_1301 LKKYCPRLR 50.8 2.0807 Antigen

DRB1_1301 KKYCPRLRR 61.5 1.5286 Antigen
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Table 2  (continued) Protein ID Allele Peptide Binding affin-
ity [nM]

VaxiJen score Antigen/
non-
antigen

Q71XW7 DRB1_1301 SKAKKRKRR 5.8 1.8899 Antigen

DRB1_1301 KKRKRRTHV 11.7 1.4013 Antigen

DRB1_1301 AKKRKRRTH 15.7 1.6556 Antigen

DRB1_1301 RTSKAKKRK 18.1 1.9221 Antigen

DRB1_1301 KRKRRTHVK 21.3 1.6065 Antigen

DRB1_1301 TSKAKKRKR 23.1 1.7453 Antigen

DRB1_1301 KAKKRKRRT 24.4 1.7483 Antigen

DRB1_1301 RRTSKAKKR 26 1.7169 Antigen

DRB1_1301 RKRRTHVKL 39.5 1.4259 Antigen
Q723G3 DRB1_1301 ARRTSKAKK 15.4 1.4443 Antigen

DRB1_1301 SKAKKNKRR 29.1 1.707 Antigen
DRB1_1301 KAKKNKRRT 46.4 1.7778 Antigen

Q71WV3 DRB1_0101 FKYGIPIDA 297 1.6186 Antigen
DRB1_1301 ISHRDMKRR 11.9 1.5539 Antigen
DRB1_1301 LMFTLPFYK 44.9 1.9589 Antigen
DRB1_1301 ALVMDLRGR 45.8 1.1548 Antigen
DRB1_1301 MAPRELRER 51.1 1.1283 Antigen
DRB1_1301 SHRDMKRRK 64 1.6218 Antigen
DRB1_1301 LLMFTLPFY 68.2 2.632 Antigen
DRB1_1301 SRYKETRRH 69.9 1.0813 Antigen

Q71ZJ5 DRB1_0101 FRFVPINNF 1098 1.5957 Antigen
DRB1_0701 FRFVPINNF 83.9 1.5957 Antigen
DRB1_0701 IQPVGSKNL 287.2 0.534 Antigen

Q721N6 DRB1_1301 QMVQNRHGK 18 1.5447 Antigen
Q71ZK1 DRB1_1301 KKSEAARKR 46.5 1.9356 Antigen
Q71ZD0 DRB1_1301 MLKFDIQHF 45 1.2032 Antigen
Q71WF4 DRB1_0101 LFNLRFQLA 1029 2.5288 Antigen
Q71YL9 DRB1_1301 MAVKIRLKR 4.3 1.4155 Antigen

DRB1_1301 AVKIRLKRI 55.1 1.4342 Antigen
Q71YK0 DRB1_1301 RKSRSGNKR 40.5 2.7338 Antigen
Q71WI2 DRB1_1301 LLTRDPRMK 16.6 1.3863 Antigen

DRB1_1301 KSSVARVRL 68.6 1.0414 Antigen
Q71VQ6 DRB1_1301 ASRRRKGRK 8.3 2.0002 Antigen

DRB1_1301 SRRRKGRKV 12.1 1.7764 Antigen
DRB1_1301 MSTKNGRRV 13.5 1.7661 Antigen
DRB1_1301 FRTRMSTKN 39.7 1.2896 Antigen
DRB1_1301 RMSTKNGRR 49.3 2.0073 Antigen

Q722D6 DRB1_0101 YALLFFPYA 1222 1.9423 Antigen
DRB1_0701 IFLFAANIL 179.2 1.1164 Antigen
DRB1_1301 LSVKLRSRG 15 1.128 Antigen
DRB1_1301 VLSVKLRSR 21.1 1.3894 Antigen
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by Swiss Model. Proteins with PDB ID 4AH2, 3C5J, and 
6CQL were used as templates for alleles HLA DRB1_0101, 
HLA DRB1_0701, and HLA DRB1_1301. Visualization of 
the tertiary structures was done by the PyMOL visualiza-
tion tool. Molecular docking between epitope and its corre-
sponding allele was performed by AutoDock Vina software. 
Based on low binding energy, 4 peptides were selected viz., 
CEETFGIRL, MKFLFPLKL, FLKIDPPIL,  and VRH-
HGGGHK. CEETFGIRL showed the energy of  −  6.7 kcal/
mol and 6 hydrogen bonds. MKFLFPLKL showed the 

energy of − 6.9 kcal/mol and 2 hydrogen bonds. FLKIDP-
PIL showed the energy of − 7.3 kcal/mol and 6 hydrogen 
bonds. VRHHGGGHK showed the energy of − 6.7 kcal/
mol and 6 hydrogen bonds. These 4 epitopes were selected 
on low binding energy as low energy means high stability. 
Most promiscuous B cell epitope which is a nano peptide, 
must not be toxic and therefore toxicity analysis must be 
performed. Toxin Pred server is used for this analysis. This 
server also anticipates various physicochemical properties 
of the epitopes like molecular weight, hydrophobicity, and 

Table 2  (continued) Protein ID Allele Peptide Binding affin-
ity [nM]

VaxiJen score Antigen/
non-
antigen

Q71XL9 DRB1_0101 GIILLGFRL 330.6 1.0131 Antigen

DRB1_0101 YFLAKLPFL 673.5 1.4522 Antigen

DRB1_0101 FLIAALCLS 844.4 1.2298 Antigen

DRB1_0101 FLIAMSMGG 884.2 1.1022 Antigen

DRB1_0101 FLAKLPFLM 891 1.7779 Antigen

DRB1_0101 FLVICAYFL 1342 2.0765 Antigen

DRB1_0101 YFLIAMSMG 1357 1.1587 Antigen

DRB1_0101 YGIALTFCI 1600 1.7051 Antigen

DRB1_0701 VIYTLIYPI 20.1 1.3475 Antigen

DRB1_0701 FLVICAYFL 125.7 2.0765 Antigen
Q71XA1 DRB1_0701 ITISLGFYL 56.9 1.6467 Antigen
A6X137 DRB1_1301 AHAKIRERL 32.2 1.2949 Antigen
Q71Z99 DRB1_0701 PQVTVSLVF 92.9 1.1655 Antigen

DRB1_1301 VILLKLFHV 49.4 1.5441 Antigen
Q724P3 DRB1_1301 IRCKYTKTR 22.7 2.0203 Antigen

DRB1_1301 RCKYTKTRR 43 1.5601 Antigen
Q71ZL4 DRB1_1301 LMLDIRYRH 33.2 1.656 Antigen

DRB1_1301 SLMLDIRYR 35.4 1.4323 Antigen
Q2N761 DRB1_0101 LLSLSPELF 1010 1.2376 Antigen

DRB1_0101 WLLSLSPEL 1136 2.0048 Antigen
DRB1_0101 NVAIRTLRL 1262 1.4269 Antigen
DRB1_0701 WLLSLSPEL 59.8 2.0048 Antigen
DRB1_0701 MVTTVHARL 241.6 1.3229 Antigen
DRB1_0701 NVAIRTLRL 244.4 1.4269 Antigen
DRB1_1301 ARVRLTSGR 28.7 1.3033 Antigen
DRB1_1301 MVTTVHARL 31.9 1.3229 Antigen
DRB1_1301 VAIRTLRLT 34.2 1.1019 Antigen

L9WZX9 DRB1_1301 AHRKAARER 17.4 1.422 Antigen
DRB1_1301 ALLWLFPRF 59.1 2.2918 Antigen

A0A0X1KHF9 DRB1_0101 CSNIEGVHV 1163 1.8716 Antigen
DRB1_0701 ITQSLSAKV 20.1 1.1418 Antigen
DRB1_0701 LSIDASFGL 320.4 1.1112 Antigen

Q1KT48 DRB1_0701 LKLACAKAF 89.5 1.2066 Antigen

Cut off value for the VaxiJen server is 1.1
The top 20 selected epitopes are represented in bold
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hydrophilicity. MHC Pred server was used to anticipate 
the binding intensity of epitopes with allele’s viz., HLA 
DRB1_0101, HLA DRB1_0401, and HLA DRB1_0701. 

Epitopes viz., CEETFGIRL and VRHHGGGHK were found 
to bind with HLA DRB1_0101 and HLA DRB1_0401, 
respectively. Both FLKIDPPIL and MKFLFPLKL were 
found to bind with HLA DRB1_0101 and HLA DRB1_0701. 
Binding energy prediction is given in the form of  IC50 value. 
Epitopes having an  IC50 value greater than 500 nM are not 
considered in this analysis. Population coverage analysis is 
one of the most important investigations need to be done in 
computational biology. Population coverage analysis of all 
4 epitopes was analyzed by the IEDB population coverage 
tool. Based on both low binding energy and high population 

Fig. 1  Modeled structure 
of HLA class II alleles—a 
molecular structure of HLA 
DRB1_0101, b molecular 
structure of HLA DRB1_0701, 
c molecular structure of HLA 
DRB1_1301

Table 3  List showing Binding energy of 20 selected epitopes while 
interacting with its corresponding allele, as anticipated by AutoDock 
Vina software

Selected epitopes are represented in bold

S. no. Peptide Allele Energy 
(kcal/
mol)

1 VAAMNFRLK DRB1_1301 − 5.8
2 MKGQAGSKK DRB1_1301 − 5.1
3 ARRANIRFR DRB1_1301 − 5.7
4 CEETFGIRL DRB1_0701 − 6.7
5 SGETLSVKV DRB1_0701 − 6.5
6 LRVTPGIRL DRB1_1301 − 6.3
7 ATG TTG LRI DRB1_0701 − 6.3
8 MKFLFPLKL DRB1_0101 − 6.9
9 MKFLFPLKL DRB1_0701 − 6.5
10 FLKIDPPIL DRB1_0101 − 7.3
11 FLKIDPPIL DRB1_0701 − 6.5
12 VRHHGGGHK DRB1_1301 − 6.7
13 RKTNTRKRR DRB1_1301 − 5.2
14 ARKTNTRKR DRB1_1301 − 5.7
15 RRG GRR RKK DRB1_1301 − 5.2
16 GGR RGG RRR DRB1_1301 − 5.9
17 LLMFTLPFY DRB1_1301 − 6.4
18 LFNLRFQLA DRB1_0101 − 6.5
19 RKSRSGNKR DRB1_1301 − 5.5
20 ALLWLFPRF DRB1_1301 − 6.3

Fig. 2  This Docked result depicts the interaction analysis of epitope 
CEETFGIRL (represented with cyan color) with 3C5J receptor (rep-
resented with forest green color). Showing the epitope interacting 
with 3C5J receptor with the help of 6 hydrogen bonds (Color figure 
online)
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coverage, worldwide epitope FLKIDPPIL was selected. To 
check the binding energy of epitope FLKIDPPIL with its 
corresponding 4AH2 receptor molecular dynamics simula-
tion study was performed by using MD Web. RMSD and B 
factor plot was used to interpret the result of the simulation. 
After all these vigorous steps of the investigation, epitope 
FLKIDPPIL proved to be the most eligible candidate that 
should be used for vaccine designing. Reverse vaccinology 
has been proved as one of the most powerful weapons to 
combat some deadly bacterial diseases and had shown tre-
mendous results also. First and foremost, a peptide-based 

vaccine using the reverse vaccinology approach was created 
against E. coli in the year 1985 (Jacob et al. 1985). It has 
been proved effective against tuberculosis (Mustafa 2013) 
and many more pathogenic diseases. The identification of 
antigenic peptides by using a reverse vaccinology approach 
has been found effective against Staphylococcus aureus 
(Oyama et al. 2019). From this research work, we found dur-
ing the identification and characterization of epitopes for the 
utility of vaccine designing against Listeria monocytogenes, 
the epitope FLKIDPPIL was non-allergic, non-toxic, highly 
antigenic, and can provoke a better immune response.

Conclusion

Despite major advancements in the field of technology, soci-
ety and mankind have been plagued by several kinds of life-
threatening diseases. Although vigorous research is going 
on, on several deadly diseases in various parts of the world. 
But still, some foodborne diseases are under-reported and 
Listeriosis is one of them. In such conditions, computational 
vaccine technology is one of the best alternatives to deal 
with such diseases. Computational vaccine technology is 
a boon in research domains as it accelerates the process of 
epitope screening and vaccine designing and development. 
It is a branch of vaccinology that is based on the central 
idea of solving vaccine development by using a computer-
driven algorithm. Listeriosis is still under-reported in many 
countries of the world. Computational vaccine technology 
is going to create some awareness and will bring out the 
best treatment and remedy for the disease. In this research 
work, after performing molecular docking, 4 epitopes were 

Fig. 3  This Docked result depicts the interaction analysis of epitope 
MKFLFPLKL (represented with cyan color) with 4AH2 receptor 
(represented with forest green color). Showing the epitope interacting 
with 4AH2 receptor with the help of which 2 hydrogen bonds (Color 
figure online)

Fig. 4  This Docked result depicts the interaction analysis of epitope 
FLKIDPPIL (represented with cyan color) with 4AH2 receptor (rep-
resented with forest green color). Showing the epitope interacting 
with 4AH2 receptor with the help of 6 hydrogen bonds (Color figure 
online)

Fig. 5  This Docked result depicts the interaction analysis of epitope 
VRHHGGGHK (represented with cyan color) with 6CQL receptor 
(represented with forest green color). Showing the epitope interacting 
with 6cql receptor with the help of 6 hydrogen bonds (Color figure 
online)
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screened out. These 4 epitopes viz., CEETFGIRL, MKFLF-
PLKL, FLKIDPPIL, and VRHHGGGHK were screened as 
the most promiscuous B cell epitopes among 299 antigenic 
sites identified. Low binding energy and population coverage 
analysis predicted FLKIDPPIL as the most potent epitope. 
Epitope FLKIDPPIL can elicit a strong immune response in 
the host against listeriosis. Further wet lab trials can assure 
the stability as well as the response of the epitope in vitro 
and in vivo. Reverse vaccinology can be proved as the most 
powerful approach to find remedies against diseases like 
listeriosis.

Table 4  Result of toxicity 
analysis of selected epitopes as 
analyzed by Toxin Pred along 
with their physicochemical 
properties

Epitope SVM score Toxic/nontoxic Molecular weight Hydrophobicity Hydrophilicity

CEETFGIRL − 0.73 Non toxic 1067.35 − 0.12 0.17
MKFLFPLKL − 0.73 Non toxic 1136.64 0.09 − 0.63
FLKIDPPIL − 0.85 Non toxic 1055.46 0.13 − 0.41
VRHHGGGHK − 1.03 Non toxic 984.23 − 0.34 0.33

Table 5  List showing number of HLA binders and binding affinity of 
anticipated B cell epitopes as investigated by MHCPred tool

IC50 < 500 nM scores are selected (are considered good binders)

EPITOPE Number of 
HLA bind-
ers

HLA with predicted IC50 (nM) value

FLKIDPPIL 2 HLA-DRB1_0101 (19.19)
HLA-DRB1_0701 (195.88)

CEETFGIRL 1 HLA-DRB1_0101 (66.53),
MKFLFPLKL 2 HLA-DRB1_0101 (78.52)

HLA-DRB1_0701 (246.04)
VRHHGGGHK 1 HLA-DRB1_0401 (318.42)

Fig. 6  Graphical representa-
tion of Population coverage 
for epitope MKFLFPLKL and 
FLKIDPPIL

Fig. 7  Graphical representa-
tion of population coverage for 
epitope CEETFGIRL
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Fig. 8  Graphical representa-
tion of population coverage for 
epitope VRHHGGGHK

Fig. 9  Graphical representation of RMSD for epitope FLKIDPPIL with 4AH2 receptor obtained during simulation studies



798 International Journal of Peptide Research and Therapeutics (2021) 27:779–799

1 3

Compliance with Ethical Standards 

Conflict of interest The authors hereby declare they that have no con-
flict of interest.

Ethical approval The authors did not perform any experiments on 
human or animals.

References

Abdelhamed H, Lawrence ML, Ramachandran R, Karsi A (2019) 
Validation of predicted virulence factors in Listeria monocy-
togenes identified using comparative genomics. Toxins 11:508

Briers Y, Klumpp J, Schuppler M, Loessner MJ (2011) Genome 
sequence of Listeria monocytogenes Scott A, a clinical iso-
late from a food-borne listeriosis outbreak. J Bacteriol 
193(16):4284–4285

Brusic V, Petrovsky N (2005) Immunoinformatics and its relevance to 
understanding human immune disease. Expert Rev Clin Immunol 
1(1):145–157

Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A (2006) 
Predicting population coverage of T-cell epitope-based diagnos-
tics and vaccines. BMC Bioinform 7(1):153

Charlier C, Perrodeav E, Leclercq A, Cazenave B, Pilmis B, Henry B, 
Lopes A, Maury M, Moura A, Goffinet F, Dieye H, Thouvenot P, 
Ungeheuer MN, Tourdjman M, Goulet V, De Valk H, Lortholary 
O, Ravaud P, Lecuit M (2017) Clinical features and prognostic 
factors of listeriosis: the MONALISA national prospective cohort 
study. Lancet Infect Dis 17(5):510–519

Davies MN, Flower DR (2007) Harnessing bioinformatics to discover 
new vaccines. Drug Discov Today 12:389–395

Department of Health. New York State Department of Health (2017) 
https ://www.healt h.ny.gov/disea ses/commu nicab le/liste riosi s/
fact_sheet .htm

Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of 
protective antigens, tumour antigens and subunit vaccines. BMC 
Bioinform 8(1):4

Guan P, Doytchinova IA, Zygouri C, Flower DR (2003) MHCPred, 
a server for quantitative prediction of peptide-MHC binding. 
Nucleic Acids Res 31:3621–3624

Gupta S, Kapoor P, Chaudhary K et al (2013) In silico approach for 
predicting toxicity of peptides and proteins. PLoS ONE 8:e73957

Hamon M, Bierne H, Cossart P (2006) Listeria monocytogenes: a mul-
tifaceted model. Nat Rev Microbiol 4(6):423–434

Hasebe R, Nakao R, Ohnuma A, Yamasaki T, Sawa H, Takai S, Hori-
uchi M (2017) Listeria monocytogenes serotype 4b strains repli-
cate in monocytes/macrophages more than other serotypes. J Vet 
Med Sci 79(6):962–969

Hospital A, Andrio P, Fenollosa C, Cicin-Sain D, Orozco M, Gelpí 
JL (2012) MDWeb and MDMoby: an integrated web-based 
platform for molecular dynamics simulations. Bioinformatics 
28:1278–1279

Fig. 10  Graphical representation of the B factor plot for epitope FLKIDPPIL with 4AH2 receptor obtained during simulation studies

https://www.health.ny.gov/diseases/communicable/listeriosis/fact_sheet.htm
https://www.health.ny.gov/diseases/communicable/listeriosis/fact_sheet.htm


799International Journal of Peptide Research and Therapeutics (2021) 27:779–799 

1 3

Jacob CO, Leitner M, Zamir A, Salomon D, Arnon R (1985) Priming 
immunization against cholera toxin and E. coli heat-labile toxin 
by a cholera toxin short peptide-beta-galactosidase hybrid synthe-
sized in E. coli. EMBO J 4(12):3339–3343

Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan 
Z, Sette A, Peters B, Nielsen M (2018) Improved methods for 
predicting peptide binding energy to MHC class II molecules. 
Immunology 154:394–406

Kaushik V (2019) In Silico identification of epitope-based peptide vac-
cine for Nipah virus. Int J Pept Res Ther 26:1147–1153

Khan F, Srivastava V, Kumar A (2019) Computational identification 
and characterization of potential T-cell epitopes for the utility of 
vaccine design against Enterotoxigenic Escherichia coli. Int J Pept 
Res Ther 25:289–302

Lee DT, Park CJ, Peterec S, Morotti R, Cowles RA (2019) Outcomes of 
neonates with listeriosis supported with extracorporeal membrane 
oxygenation from 1991 to 2017. J Perinatol 40(1):105–111

Listeria (listeriosis) | Listeria | cdc (2019) https ://www.cdc.gov/liste 
ria/index .html

Mustafa AS (2013) In silico analysis and experimental validation of 
Mycobacterium tuberculosis-specific proteins and peptides of 
Mycobacterium tuberculosis for immunological diagnosis and 
vaccine development. Med Princ Pract 22(suppl 1):43–51

Oyama LB, Olleik H, Teixeira CAN, Guidini MM, Pickup JA, Cookson 
AR, Vallin H, Wilkinson T, Bazzolli D, Richards J, Wootton M, 
Mikut R, Hilpert K, Maresca M, Perrier J, Hess M, Mantovani 
HC, Fernandez-fuentes N, Creevey CJ, Huws SA (2019) In silico 
identification of novel peptides with antibacterial activity against 
multidrug-resistant Staphylococcus aureus. Access Microbiolo 
1(1A)

Poland GA, Ovsyannikova IG, Kennedy RB, Haralambieva IH, Jacob-
son RM (2011) Vaccinomics and a new paradigm for the devel-
opment of preventive vaccines against viral infections. OMICS 
15:625–636

Potocnakova L, Bhide M, Pulzova LB (2016) An introduction to B-cell 
epitope mapping and in silico epitope prediction. J Immunol Res 
2016:6760830

Quereda JJ, Dussurget O, Nahori MA, Ghozlane A, Volant S, Dillies 
MA, Regnault B, Kennedy S, Mondot S, Villoing B, Cossart P, 
Pizarro-Cerda J (2016) Bacteriocin from epidemic Listeria strains 
alters the host intestinal microbiota to favor infection. PNAS 
113(20):5706–5711

Quereda JJ, Rodriguez-Gomez IM, Meza-Torres J, Carrasco L, Cos-
sart P, Pizarro-Cerda J (2018) Reassessing the role of Internalin 
B in Listeria monocytogenes virulence using the epidemic strain 
F2365. Clin Microbiol Infect 252:252.e1–252.e4

Saha S, Raghava G (2006) AlgPred: prediction of allergenic proteins 
and mapping of IgE epitopes. Nucleic Acids Res 34:W202–W209

Sallami L, Marcotte M, Naim F, Quattara B, Leblanc C, Saucier L 
(2006) Heat inactivation of Listeria monocytogenes and Salmo-
nella enterica serovar Typhi in a typical bologna matrix during 
an industrial cooking-cooling cycle. J Food Prot 69:3025–3030

Sharma P, Kaur R, Upadhyay AK, Kaushik V (2020) In-Silico predic-
tion of a peptide-based vaccine against Zika virus. Int J Pept Res 
Ther 26:85–91

Singh S, Singh H, Tuknait A, Chaudhary K, Singh B, Kumaran S, 
Raghava GPS (2015) PEPstrMOD: structure prediction of pep-
tides containing natural, non-natural and modified residues. Biol 
Direct 10(1):73

Thomas J, Govender N, McCarthy KM, Erasmus LK, Doyle TJ, Allam 
M, Jsmail A, Ramalwa N, Sekwadi P, Ntshoe G, Shonhiwa A, 
Essel V, Tau N, Smouse S, Ngomane HM, Disenyeng B, Page 
NA, Govender NP, Duse AG, Stewart R, Thomas T, Mahoney D, 
Tourdjman M, Disson O, Thouvenot P, Maury MM, Leclercq A, 
Lecuit M, Smith AN, Blumberg LH (2020) Outbreak of Listeri-
osis in South Africa associated with processed meat. N Engl J 
Med 382:632–643

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and 
accuracy of docking with a new scoring function, efficient optimi-
zation, and multithreading. J Comput Chem 31:455–461

Veiga E, Cossart P (2005) Listeria hijacks the clathrin-dependent 
endocytic machinery to invade mammalian cells. Nat Cell Biol 
7:894–900

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gum-
ienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore 
R, Schwede T (2018) SWISS-MODEL: homology mod-
eling of protein structures and complexes. Nucleic Acids Res 
46(W1):W296–W303

World Health Organization Listeriosis, Australia (2018a) WHO. https 
://www.who.int/csr/don/09-april -2018-liste riosi s-austr alia/en/

World Health Organization. Listeriosis–Spain (2019) Disease outbreak 
news. Geneva: the Organization. https ://www.who.int/csr/don/16-
septe mber-2019-liste riosi s-spain 

World Health Organization South Africa (2018b). https ://www.who.
int/csr/don/28-march -2018-liste riosi s-south -afric a/en/

Yao H, Kang M, Wang Y, Feng Y, Kong S, Cai X, Ling Z, Chen S, 
Jiao X, Yin Y (2018) An essential role for hfq involved in biofilm 
formation and virulence in serotype 4b Listeria monocytogenes. 
Microbiol Res 215:148–154

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.cdc.gov/listeria/index.html
https://www.cdc.gov/listeria/index.html
https://www.who.int/csr/don/09-april-2018-listeriosis-australia/en/
https://www.who.int/csr/don/09-april-2018-listeriosis-australia/en/
https://www.who.int/csr/don/16-september-2019-listeriosis-spain
https://www.who.int/csr/don/16-september-2019-listeriosis-spain
https://www.who.int/csr/don/28-march-2018-listeriosis-south-africa/en/
https://www.who.int/csr/don/28-march-2018-listeriosis-south-africa/en/

	Proteomic Exploration of Listeria monocytogenes for the Purpose of Vaccine Designing Using a Reverse Vaccinology Approach
	Abstract
	Introduction
	Methodology
	Protein Sequence Retrieval
	Allergenic Protein Prediction
	B cell Epitope Prediction
	Molecular Modeling of Epitopes and Human Leukocyte Antigen (HLA) Alleles
	Molecular Docking of Epitopes and HLA Alleles
	Toxicity Prediction of the Epitopes
	Binding Affinity Prediction and Population Coverage Analysis
	Molecular Dynamics (MD) and Simulation Study

	Results
	Discussion
	Conclusion
	References




