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Abstract

We study computational approaches for detecting SNP-SNP interactions that are character-

ized by a set of “two-locus, two-allele, two-phenotype and complete-penetrance” disease

models. We argue that existing methods, which use data to determine a best-fitting disease

model for each pair of SNPs prior to screening, may be too greedy. We present a less

greedy strategy which, for each given pair of SNPs, limits the number of candidate disease

models to a set of prototypes determined a priori.

1 Introduction

For many years, scientists have tried to identify single-nucleotide polymorphisms (SNPs)

that are associated with various diseases, but over the years it is becoming apparent that single

genetic variations can explain only very little heritability. This has come to be known as the so-

called “missing heritability problem” [1–3], and has prompted many scientists to conjecture

that perhaps SNP-SNP interactions are more prevalent than we had previously thought [4].

In genetics, the term “epistasis” refers to the phenomenon that the effect of one gene (or

SNP) is dependent on the presence of others. Different definitions of epistasis exist. For exam-

ple, in biochemical genetics, the term “functional epistasis” is sometimes used to mean the

molecular interactions that proteins (and/or other genetic elements) have with one another;

whereas in population and/or quantitative genetics, the terms “statistical epistasis” and “com-

positional epistasis” are often used. The former is due to Fisher [5] and usually taken to mean

deviation from additive genetic effects, while the latter emphasizes the notion of having a

masking effect—as such, some [6–8] believe it to be closer to the original meaning of the word

“epistasis” when Bateson [9] first coined it in 1909. As Phillips [7] wrote, “[c]ompositional

epistasis measures the effects of allele substitution against a particular fixed genetic back-

ground, while statistical epistasis measures the average effect of allele substitution against the

population average genetic background.”

To characterize different compositional epistatic effects, we follow various researchers who

have studied this problem and focus on a set of “two-locus, two-allele, two-phenotype, and

complete-penetrance” (TTTC) disease models [10]. Table 1 shows a few examples. Often,

these disease models can be interpreted as one SNP having a certain masking effect on the

other. For instance, the recessive-recessive disease model [Table 1(c)] can be viewed as the
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major allele “A” from one SNP having a masking effect on the causal genotype “bb” from the

other SNP, or as the major allele “B” having a similar masking effect on the causal genotype

“aa”.

Clearly, these TTTC disease models can describe only two-way interactions between two

SNPs, and the notion of epistasis itself certainly does not preclude higher-order interactions

among more than two SNPs. At a genome-wide level, however, screening for higher-order

interactions is still largely impractical. For example, even with 100,000 SNPs, there would be
100;000

2

� �
� 5:0� 109 or about 5 billion SNP-pairs to screen already if we limited ourselves to

2-way interactions only, and 100;000

3

� �
� 1:7� 1014 SNP-triplets to screen if 3-way interactions

were to be considered. Therefore, in this paper, we take a “narrow” point of view by restricting

ourselves to consider only two-way interactions.

What’s more, these TTTC models are practically useful, especially when the minor allele

frequency (MAF) is low. A TTTC model has two degrees of freedom, corresponding to the

two penetrance levels, denoted respectively by “1” and “0” in Table 1; whereas a “full model”

will have a 9 degrees of freedom, one for each of the nine genotype combinations. When the

MAF is low, there can be insufficient data for some of the rare genotype combinations, making

it hard to obtain reliable parameter estimates. (In the extreme case, we may have no data in the

sample for a particular genotype combination.) Under such circumstances, it is beneficial to

reduce the number of parameters, or the degree of freedom. Using a TTTC model, one only

has to estimate two parameters. By limiting the degree of freedom in this way, the power of the

statistical test can be improved.

Thus, when we say “epistasis” in this paper, we are largely referring to these TTTC disease

models only. Even so, there are still 29 possible TTTC disease models in theory [10] for each
pair of SNPs, and it is generally not possible to screen them all. But a bad choice of the disease

model can be detrimental, in that a pair of SNPs may appear highly associated with an out-

come under one disease model and not associated under another. For example, studies on sin-

gle-locus effects have generally confirmed that the power (of detecting an existing effect) is

largest when the correct genetic model—e.g., recessive, dominant, additive, and so on—is

specified [11–13], and there is all the reason to expect that the same conclusion will hold for

detecting epistatic effects between two SNPs.

Among methods available for choosing a disease model for each pair of SNPs prior to

screening, two popular ones are: the multi-factor dimensionality reduction (MDR) method by

Ritchie et al. [14], and the method by Wan et al. [15], which we shall refer to throughout the

paper simply as the “ratio split” (RS) method. Both of these methods rely on the case-control

ratios of different genotype combinations (i.e., AABB, AABb, and so on) in order to decide on

Table 1. Examples of TTTC disease models. A “1” means the corresponding genotype combination, e.g., “aabb” in

(c), would elevate the risk of disease, whereas a “0” means it would not.

(a) (b)

AA Aa aa AA Aa aa

BB 1 1 0 BB 0 1 0

Bb 1 1 0 Bb 1 0 1

bb 0 0 0 bb 0 1 0

(c) (d)

AA Aa aa AA Aa aa

BB 0 0 0 BB 0 1 0

Bb 0 0 0 Bb 1 1 1

bb 0 0 1 bb 0 1 0

https://doi.org/10.1371/journal.pone.0213236.t001
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a particular disease model to use for a given pair of SNPs. Specifically, the MDR method deter-

mines a disease model by thresholding the case-control ratios; typically, genotype combina-

tions with ratios� 1 (on a balanced case-control sample) are regarded as high risk. The RS

method, on the other hand, first sorts the case-control ratios in descending order and evaluates

8 different disease models by sequentially considering the top x genotype combinations as

high risk, for x = 1, 2, . . ., 8. Then, it chooses the one that best predicts the outcome (e.g.,

disease).

Both of these methods are essentially greedy and use the data twice: first, to determine the

disease model for each pair of SNPs; then, to determine whether each pair of SNPs is associated

with the outcome. As such, they can be overly adaptive to data, and have a tendency to produce

many false positives. The cost of using the data twice is especially pronounced if the sample

size is relatively small (which is almost always the case for genome-wide association studies),

and/or if the data quality is not so good. Indeed, this kind of concern has been reported in the

literature [16], especially in the context of genome-wide studies where extra out-of-sample val-

idation, which can help mitigate such problems, is computationally prohibitive.

Instead of relying on the case-control ratios to determine what disease model to use for a

pair of SNPs, our main idea is based on the observation that some of these TTTC disease mod-

els are more similar than others. In Table 1, for example, arguably the two models on the left

[(a) and (c)] are quite different from, whereas the two on the right [(b) and (d)] are somewhat

similar to, each other. While we shall be more specific later (Section 3) about how we propose

to measure the similarity between two disease models, such an observation nonetheless means

that we can first group all possible disease models into a few clusters, and then select a repre-

sentative prototype from each cluster for screening purposes. The set of prototype models can

be seen to constrain the search space somewhat, in the sense that only disease models in the

prototype set are now “permitted”. This allows our method to be less data-adaptive, while

including a prototype from each cluster still ensures that we are not systematically missing

important parts of the search space. In what follows, we will sometimes use the acronym

“PTY” (for “prototype”) to refer to our method, especially in tables and figures.

It is worth mentioning that a cluster analysis of all disease models is beneficial in its own

right. For example, it may allow us to better understand and characterize different epistatic

effects (more on this below in Section 3.2), for which there have been a few previous endeav-

ours [10, 17–19].

1.1 Marginal versus sequential screening

Throughout the paper, we will use the following empirical protocol repeatedly to compare dif-

ferent methods. For any given pair of SNPs, e.g., (i, j), each method has its own way of deter-

mining a “best-fitting” disease model—call itMi,j. A nominalmeasure of association between

the (i, j)-pair and the outcome is then computed as the w2
ð1Þ

-statistic for testing whether the

risky/non-risky assignment byMi,j is statistically independent of the outcome (i.e., disease or

no disease), which we simply denote as bw2
i;j. (We will explain in more detail later in Section 2.3

why we use the adjective “nominal” to describe these association measures.) The pair (i, j) can

then be ranked according to bw2
i;j or considered having been “selected” or “detected” by the

method if bw2
i;j exceed a certain significance threshold. We refer to this as the “marginal screen-

ing procedure”. (One also can use only part of the data to determineMi,j, and compute an out-
of-samplemeasure of association by testingMi,j against the outcome on the remaining data.

For example, MDR is usually applied in this manner when the number of candidate SNPs

being studied is relatively small. To reduce variation caused by chance division of the data,
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however, such a process often needs to be repeated a few times and the resulting measures

averaged, thus making it computationally prohibitive for genome-wide screening [20, 21]).

Alternatively, we also can combine the effects of multiple SNP-pairs sequentially. For exam-

ple, after having selected the top pair—call it (i1, j1), we can re-assess each remaining pair (i, j)
by testing whether the combined risky/non-risky assignment by

Mi1 ;j1
orMi;j ð1Þ

is independent of the outcome. We use bw2
i;jjH to denote the corresponding test statistic, where

H means the entire history of pairs already selected so far. (After the top pair has been selected,

H ¼ fMi1 ;j1
g; after two pairs have been selected, H ¼ fMi1 ;j1

;Mi2 ;j2
g; and so on.) The pair to be

selected next is

arg max
Mi;j=2H

bw2

i;jjH; ð2Þ

rather than

arg max
Mi;j=2H

bw2

i;j: ð3Þ

We refer to this as the “sequential screening procedure”.

2 Motivation

Before we describe our approach in more detail, we first provide some motivations by discuss-

ing some weaknesses of existing methods. We should emphasize that these are merely some

examples of scenarios in which PTY can be seen to have certain advantages over MDR and RS.

They are by no means the only—or even necessarily the main —such scenarios. The reason

why they are being presented, rather than others, is because they are still relatively easy for us

to describe with a reasonable amount of clarity, whether algebraically (Section 2.1), verbally

(Section 2.2), or both (Section 2.3).

2.1 A pathological scenario

We begin by considering a pathological scenario. Suppose that two pairs of SNPs (e.g., {A/a,

B/b}, {C/c, D/d}) are independent (Table 2). For i = 1, 2, . . ., 9, let wi be the probability of having

the i-th genotype combination in the first pair, and likewise vj for the second pair. For simplicity,

suppose each genotype combination is either risky (2 R) or non-risky (2 N). For k, ℓ 2 {0, 1}, let

pkℓ be the penetrance level for individuals having risky combinations from both pairs (k = ℓ = 1),

the first pair only (k = 1, ℓ = 0), the second pair only (k = 0, ℓ = 1), or neither pair (k = ℓ = 0).

Then, derivations contained in S1 Appendix show that, if

p11

X

j2R

vj þ p10

X

j2N

vj ¼ p01

X

j2R

vj þ p00

X

j2N

vj; ð4Þ

Table 2. Analytic framework for Section 2.1. Two SNP-pairs (where each wi, vj denotes the probability of the respective genotype combination) and four penetrance levels

(pkℓ, k, ℓ 2 {0, 1}). Certain relationships among the four penetrance parameters, e.g., Eq (4), can make it impossible for us to determine an appropriate disease model for

the underlying pair based on the case-control ratios.

Pair 1 Pair 2 Penetrance

BB Bb bb DD Dd dd Pair1\Pair2 R N

AA w1 w2 w3 CC v1 v2 v3 R p11 p10

Aa w4 w5 w6 Cc v4 v5 v6 N p01 p00

aa w7 w8 w9 cc v7 v8 v9

https://doi.org/10.1371/journal.pone.0213236.t002
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the case-control ratio will be the same for all genotype combinations i = 1, 2, . . ., 9 in the first

pair, regardless of whether i 2 R or i 2 N. It is thus a pathological case, in which it would be

impossible to rely on the case-control ratios to determine the disease model.

Since both MDR and RS rely on the case-control ratios to determine disease models, we

can expect their powers (of detecting the relevant pair) to be greatly affected if Eq (4) holds,

even if only approximately.
To offer a more concrete illustration, we simulated two examples (see Table 3). In the

first one, the true disease models were the same for the two relevant SNP-pairs; in the second,

they were different. The penetrance parameters p10, p01 and p00 were predetermined, and we

explored a few different values for the last penetrance parameter, p11, around the value implied

by Eq (4). Keep in mind, however, that unless p11 is equal to the value implied by Eq (4) exactly,
there is still some weak signal left that is, in principle, detectable by considering the case-con-

trol ratios. The simulation was repeated for 100 times, with a total of 100 SNPs and a sample

size of n = 800.

We then assessed the number of times each relevant pair was successfully detected by each

method with the sequential screening procedure, out of 100 repetitions. A relevant pair was

considered to have been successfully detected if it was among the top two pairs selected by the

method. Here, the effect of the second pair ({C/c, D/d}) was stronger than the first ({A/a, B/b})

—e.g., p01 > p10—and all three methods detected it perfectly (i.e., 100 times out of 100 replica-

tions), but as the parameter p11 dropped, both MDR and RS started to deteriorate in terms of

their ability to detect the first pair ({A/a, B/b}), whereas our method, PTY, remained largely

unaffected (Fig 1).

To better understand Eq (4), notice that it can be rearranged slightly as

p11 ¼ p01 �

P
j2Rvj

P
j2Nvj
ðp10 � p00Þ: ð5Þ

Since we typically expect p10 > p00, i.e., having a risky combination in the first pair will

increase the probability of having the disease, Eq (5) implies that p11 < p01, or that having risky

combinations from both pairs will actually lead to a lower probability of having the disease

than having risky combinations only from the second pair. This is analogous to the logical

operator, “exclusive or” (XOR).

Table 3. Simulated examples for Section 2.1. Disease models for the two pairs of SNPs that contribute to the simu-

lated outcome. The penetrance parameters, (p00, p01, p10, p11), are chosen so that the case-control ratio is the same for

all genotype combinations i = 1, 2, . . ., 9 in the first pair, {A/a, B/b}.

Ex. 1: Two SNP-pairs, identical disease models (MAF = 0.3).

BB Bb bb DD Dd dd

AA 0 0 1 CC 0 0 1

Aa 0 1 0 Cc 0 1 0

aa 1 0 0 cc 1 0 0

(p10 = 0.1, p01 = 0.28, p00 = 0.01 )
Eq ð4Þ

p11 = 0.03.)

Ex. 2: Two SNP-pairs, different disease models (MAF = 0.2).

BB Bb bb DD Dd dd

AA 0 0 0 CC 0 1 1

Aa 0 1 1 Cc 1 0 0

aa 0 1 1 cc 1 0 0

(p10 = 0.09, p01 = 0.12, p00 = 0.001 )
Eq ð4Þ

p11 = 0.016.)

https://doi.org/10.1371/journal.pone.0213236.t003
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While one certainly can argue that this may be a totally hypothetical scenario that is not

likely to occur in nature, it is nonetheless a theoretical possibility against which our method,

PTY, is robust.

Of course, the aforementioned XOR-type relationship means the two pairs, {A/a, B/b} and

{C/c, D/d}, are interacting with each other, so there is actually a four-way interaction across

the four SNPs involved. Such a high-order interaction still could be detectable by methods

such as the MDR or the RS if four-way disease models were considered and screened but, as

we stated earlier (Section 1), in this study we are taking a “narrow” point of view by restricting

ourselves to consider only two-way interactions. Indeed, there is nothing “pathological” about

having a high-order interaction; it is only “pathological” when one is restricted to consider

only two-way interactions.

2.2 Detection of spurious effects

We have also observed that being overly adaptive to data can cause a method to be more easily

tricked into detecting spurious epistatic effects, e.g., by SNPs with large individual effects. To

demonstrate this, we simulated 100 SNPs on a case-control sample of size n = 200. Two pairs

of SNPs—say, {A/a, B/b} and {C/c, D/d}—contributed to the simulated outcome indepen-

dently, each according to an additive disease model (see Table 4). The SNPs A/a and C/c were

simulated to have higher minor allele frequencies (MAFs) than B/c and D/d so that, according

to the underlying additive disease model, they had larger marginal, individual effects than the

other two.

We repeated the simulation for 100 times and counted those pairs most frequently ranked

by each method—with the sequential screening procedure—to be among the top two (Table 5).

Fig 1. Simulated examples for Section 2.1. Number of times the first pair, {A/a, B/b}, was successfully detected (out of

100 repetitions) as the parameter p11 varied.

https://doi.org/10.1371/journal.pone.0213236.g001

Table 4. Simulated examples for Section 2.2. Disease models for the two pairs of SNPs that contribute to the simu-

lated outcome. Numeric values (e.g., 0.1, 0.2) are penetrance parameters for the corresponding genotype combinations.

(MAF = 0.5 and 0.3, respectively for the two SNPs in each pair).

BB Bb bb DD Dd dd

AA 0 0 0.1 CC 0 0 0.1

Aa 0 0 0.1 Cc 0 0 0.1

aa 0.1 0.1 0.2 cc 0.1 0.1 0.2

https://doi.org/10.1371/journal.pone.0213236.t004
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Both MDR and RS were more likely to select a spurious pair, {A/a, C/c}, due to the large mar-

ginal effects of both of these SNPs. They were much less effective than our method, PTY, in

identifying the truly relevant pairs.

2.3 Exaggeration of effects and false positives

Earlier in Section 1, we already stated that both MDR and RS tend to produce many false posi-

tives. To demonstrate this point more concretely, we conducted another experiment. We sim-

ulated 100 SNPs on a case-control sample of size n = 400, except that, this time, none of the

SNPs was related to the simulated outcome. We then allowed all three methods, MDR, RS, and

PTY, to assess the resulting 100

2

� �
¼ 4; 950 pairs of SNPs and examined the distributional prop-

erties of the resulting association measures (see Section 1.1) produced by each method for all

pairs, fbw2
i;j : 1 � i; j � 100g.

Fig 2 shows various Q-Q plots of these association measures, produced by different meth-

ods under different MAF settings, against the theoretical quantiles of the w2
ð1Þ

-distribution. We

can see that all methods produced inflated association measures, leading to false discoveries.

This is not a big surprise; after all,Mi,j was not just any disease model but the one deemed

“best-fitting” for the underlying pair (i, j). Though the meaning of “best-fitting” differed for

the three methods, a post-hoc test of independence based onMi,j was clearly biased toward

being significant. This is why we used the adjective “nominal” earlier in Section 1.1 to describe

these association measures.

However, the main point here is that our method, PTY, suffered the least from this ten-

dency to produce false positives. As the MAF increased, the tendency to produce false positives

also became more pronounced for both MDR and RS, but not for PTY. To further make this

point, we repeated the aforementioned “null simulation” 400 times. For each repetition, we

computed the mean value of the (nominal) association measure,

1

4950

X

i;j

bw2

i;j; ð6Þ

across all 4,950 SNP-pairs. The average of these mean values and its standard error over the

400 repetitions are shown in Table 6 for each method under different MAF settings. Clearly,

this value is more inflated for MDR and especially for RS than it is for PTY.

3 Method

We now describe our approach in more detail. First, we derive a metric to measure the simi-

larity (or equivalently, difference) between two disease models. Then, we cluster all disease

Table 5. Simulated examples for Section 2.2. Number of times different pairs of SNPs were among the top two pairs

detected, out of 100 replications. The truly relevant pairs are emboldened.

MDR RS PTY

{A/a, C/c} 75 {A/a, C/c} 74 {A/a, B/b} 43

{B/b, D/d} 32 {B/b, D/d} 51 {C/c, D/d} 42

{C/c, D/d} 13 {A/a, D/d} 12 {A/a, C/c} 32

{A/a, D/d} 13 {B/b, C/c} 9 {A/a, D/d} 23

{A/a, B/b} 10 {C/c, D/d} 8 {B/b, C/c} 9

{B/b, C/c} 10 {A/a, B/b} 7 {B/b, D/d} 6

Other Pairs � 9 Other Pairs � 6 Other Pairs � 5

https://doi.org/10.1371/journal.pone.0213236.t005
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models into a few groups and select a prototype model from each group. Finally, we screen

each pair of SNPs against the set of prototype models. The set of prototype models is decided

a priori, without considering the disease status of individuals in the data set. This is what

makes our approach less greedy, and less data-adaptive, than existing methods such as MDR

and RS.

Fig 2. Results from simulation study (Section 2.3). Q-Q plots of nominal association measures fbw2
i;j : 1 � i; j � 100g

against their theoretical quantiles.

https://doi.org/10.1371/journal.pone.0213236.g002

Table 6. Results from simulation study (Section 2.3). Average values of the nominal association measures

fbw2
i;j : 1 � i; j � 100g across all 4,950 SNP-pairs, together with their standard errors, over 400 repetitions.

MAF MDR RS PTY

0.05 1.837 (0.229) 2.115 (0.233) 1.792 (0.214)

0.10 2.457 (0.239) 2.975 (0.230) 2.202 (0.200)

0.40 4.748 (0.289) 5.101 (0.303) 3.033 (0.221)

https://doi.org/10.1371/journal.pone.0213236.t006
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3.1 Similarity measure

Earlier in Section 1, we already alluded to the intuition that some disease models appear to be

more similar than others (Table 1). Such intuition can be formalized in many different ways;

for instance, some researchers have used a geometric approach to categorize them [17]. In this

paper, we take a more pragmatic approach.

We measure the similarity of two disease models—say,M andM0—according to how much

they agree in terms of their assignment of individuals into high- and low-risk groups. For

k, ℓ = {0, 1}, suppose nkℓ is the number of individuals classified to be high-risk by both models

(k = ℓ = 1), byM only (k = 0, ℓ = 1), byM0 only (k = 1, ℓ = 0), or by neither model (k = ℓ = 0),

out of a hypothetical group of n‥ individuals (Table 7). We then use the so-called F-coefficient

[22], defined as

F ¼
ðn11Þðn00Þ � ðn10Þðn01Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1�Þðn0�Þðn�1Þðn�0Þ

p ð7Þ

to measure the concordance betweenM andM0. A high (low) value ofFmeans the two models

classify many (few) individuals to be in the same high- or low-risk group.

For i = 1, 2, . . ., 9, let Gi denote a genotype combination formed by a pair of SNPs; and let

PðDjGiÞ denote the penetrance (or probability of trait/disease) of the particular combination

Gi. Suppose thatM is the true disease model with only two unique penetrance levels,

PðDjGiÞ ¼

( P1; MðGiÞ ¼ 1;

P0; MðGiÞ ¼ 0;
ð8Þ

whereasM0 is a different disease model used in place of the true modelM. Then, derivations

contained in S2 Appendix show that the F-coefficient betweenM andM0 can be expressed as

FðM0;MÞ ¼
ðW11ÞðW00Þ � ðW10ÞðW01Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U
V
W11 þW01

� �

W10 þ
V
U
W00

� �

W1�ð Þ W0�ð Þ

s
; ð9Þ

where

Wk‘ ¼
X

MðGiÞ ¼ k
M0ðGiÞ ¼ ‘

PðGiÞ for k; ‘ 2 f0; 1g; ð10Þ

U ¼ rP1½1 � PðDÞ� þ ð1 � P1ÞPðDÞ; ð11Þ

V ¼ rP0½1 � PðDÞ� þ ð1 � P0ÞPðDÞ; ð12Þ

r is the case-control ratio of the sample; and PðDÞ is the prevalence of the trait/disease.

Table 7. Assignment of individuals into high- and low-risk groups by two disease models, M and M0.

M0\M High Risk Low Risk Total

High Risk n11 n10 n1�

Low Risk n01 n00 n0�

Total n�1 n�0 n��

https://doi.org/10.1371/journal.pone.0213236.t007
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Eq (9) allows us to use

dðM0;MÞ ¼ 1 � FðM0;MÞ ð13Þ

as a distance metric for two disease models. It is important to note here that our distance met-

ric d(M0,M) is not symmetric but directional. In particular,M is assumed to be the true model,

andM0 is the prototype used in its place. We shall say more about the similarity measure, F

(M0,M), later in Section 6; here, we first give some details about how values of various parame-

ters can be obtained in order to compute the expression on the right-hand side of Eq (9).

Wkℓ: Assuming Hardy-Weinberg equilibrium, the MAFs of the two SNPs can be estimated

from the control sample, and used to determine PðGiÞ for each genotype combination Gi and

henceWkℓ as well for k, ℓ 2 {0, 1}.

r: For any given data set, the case-control ratio r is known, e.g., r = 1 for a balanced case-

control data set.

PðDÞ: The prevalence, PðDÞ, of a particular trait/disease can often be obtained from exter-

nal sources, e.g., published studies and/or expert opinions. (More on this below in Sections 3.2

and 6).

P1, P0: To determine the value of these parameters, we make a convenient assumption that

the underlying pair of SNPs is the actual pair associated with the outcome. Then, the preva-

lence is simply

PðDÞ ¼
X9

i¼1

PðDjGiÞPðGiÞ ð14Þ

and the heritability (the amount of genetic contribution to overall phenotype variation [23]) is

given by

h2 ¼
1

½PðDÞ�½1 � PðDÞ�
X9

i¼1

½PðDjGiÞ � PðDÞ�
2PðGiÞ: ð15Þ

Since we have assumed in Eq (8) thatM has only two unique penetrance levels, i.e., each

PðDjGiÞ is either P1 and P0, they can now be uniquely determined from the two Eqs (14) and

(15), provided that information is available about the heritability parameter, h2. This can often

be obtained from external sources as well, much like the prevalence parameter. (More on this

below in Sections 3.2 and 6).

3.2 Clustering

There are altogether 29 − 2 = 510 non-trivial TTTC disease models—the trivial ones are those

such thatM(Gi) = 1 orM(Gi) = 0 for all Gi. For clustering purposes, we need not consider dis-

ease models that are symmetric with respect to (i) the exchange of locus, i.e., swapping the two

SNPs, or (ii) the exchange of disease status, i.e., flipping the binary values of eachM(Gi) from a

zero to a one, and vice versa. The set of models that remain, which we denote as M, is listed in

S3 Appendix.

Fig 3 shows the 2-dimensional coordinates of all models 2M as estimated by the multidi-

mensional scaling (MDS) technique from their pairwise distances, assuming that the MAFs

of both SNPs are equal to 0.1, 0.2, 0.3, and 0.4, respectively, while fixing the prevalence and

heritability parameters at PðDÞ ¼ h2 ¼ 0:02. While we used the directional distance metric

for prototype identification (see Table 8 below), we used a symmetrized distance metric,

ds(Mi,Mj)� [d(Mi,Mj) + d(Mj,Mi)]/2, for performing MDS so that the resulting
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2-dimensional coordinate-map (Fig 3) is more meaningful. It is clear from Fig 3 that these dis-

ease models form several clusters.

One can easily expect from Eq (9) that our distance metric will be affected by the MAFs of

the underlying SNPs, but Fig 3 shows that the resulting clusters do not change significantly.

Therefore, it is not necessary to repeat the prototype selection step for every individual SNP-

pair. Instead, we simply discretized the MAF-scale into 6 bins, {0.05, 0.1, 0.2, 0.3, 0.4, 0.45},

and created 36 different sets of prototypes for all 6 × 6 pairwise combinations. For example,

when screening a SNP-pair (i, j) with (MAFi, MAFj) = (0.068, 0.182), we would use the set of

prototypes for (MAFi, MAFj) = (0.05, 0.2), and so on.

We also examined similar plots (not shown) produced with different values of PðDÞ and h2.

While these parameters also affected the distance metric, they did not produce any substantial

changes to the clustering. Intuitively, this is because there has to be a fairly drastic warping of

the relative distances between objects in order to alter their grouping; we shall come back to

this point again later in Section 6. Hence, for this paper we simply used PðDÞ ¼ h2 ¼ 0:02.

Fig 3. A two-dimensional map of disease models in M. The coordinates are estimated by applying the multi-

dimensional scaling (MDS) technique to the symmetrized pairwise distances, ds(Mi,Mj)� [d(Mi,Mj) + d(Mj,Mi)]/2,

for all i 6¼ j. Models clustered into the same group are depicted by the same symbol (e.g., ‘+’, ‘�’, ‘×’). These two-

dimensional coordinates explain about 50-70% of the variation in ds(�, �), so there is some loss of information—in

particular, some disease models may be closer to (or farther apart from) each other than how they appear in this map.

https://doi.org/10.1371/journal.pone.0213236.g003
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In principle, we could use any distance-based clustering algorithm. In our implementation,

we used the “global K-means” algorithm [24]. The steps of our algorithm are given in Table 8.

Based on Fig 3, we selected 7 prototypes for each MAF-combination. As an illustration, the

prototypes for SNP-pairs with (MAFi, MAFj) = (0.2, 0.2) are displayed in Fig 4 with manual

annotations to reveal their relationships with one another. One may interpret this figure to

mean that, for a pair of SNPs, both of which have MAF around 0.2, these are the primary epi-

static effects to consider, and their structural relationships; any other will likely be very similar

to one of these—in terms of how they would classify individuals into high- versus low-risk

groups, that is. This is also a unique piece of insight from our overall methodology that is not

otherwise available from MDR or RS.

Table 8. The global K-means algorithm for identifying prototype disease models.

1. Let M be the set of all disease models and M�
, the prototype set (initially empty).

2. Evaluate eachMi 2M nM�
as a potential new prototype, as follows:

a. For eachMk 2M n fM�
[Mig, calculate the distances d(Mi,Mk), and dðM�j ;MkÞ for allM�j 2M�

if M�
is not

empty.

b. AssignMk eitder to an existing cluster—e.g., C�j , with centerM�j — or to a potentially new cluster—say Ci, with

centerMi—depending on which of d(Mi,Mk) and dðM�j ;MkÞ is the shortest.

c. After allMk 2M n fM�
[Mig are assigned, calculate the total within-cluster distances,

DðMiÞ �
X

Mk2Ci

dðMi;MkÞ þ
X

M�j 2M
�

X

Mk2C�j

dðM�j ;MkÞ;

as a result of usingMi as an additional cluster center.

3. Identify a new prototype model as the one that minimizes the total within-cluster distances, i.e.,

M� ¼ arg min
Mi2MnM�

DðMiÞ;

and insert it into the set M�
 M�

[M�.
4. Repeat steps 2-3 until a certain number of prototypes are identified.

https://doi.org/10.1371/journal.pone.0213236.t008

Fig 4. The set of prototype disease models selected by the global K-means algorithm (K = 7) for SNP-pairs (i, j)
with (MAFi, MAFj)� (0.2, 0.2). The structural relationships between the seven prototypes were manually annotated;

the clustering algorithm itself was not capable of making this type of discoveries.

https://doi.org/10.1371/journal.pone.0213236.g004
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Finally, it is worth emphasizing that the reduction of disease models to the set M, due to

various symmetry considerations we mentioned in the opening paragraph of this subsection,

is only applicable to the clustering and prototype selection stage. When screening each candi-

date SNP-pair, prototype disease models that are asymmetric with respect to the exchange of

locus, such asM�
1

in Fig 4, are always tested both for {A/a,B/b} and for {B/b,A/a}, and so on.

4 Simulation study

To motivate our approach, we already presented a few simulated examples in Section 2, where

we concentrated on evidence that our approach appears to overcome various weaknesses of

existing approaches. In this section, we assess our approach more generally with a number of

simulated examples that are commonly examined in the literature.

4.1 Set-up

In each simulation, we generated 100 SNPs, but only the first two determined the simulated

outcome according to a particular disease model (more details below in Section 4.2). To evalu-

ate the performance of a method, we used a metric known as the F-measure, defined as

F-measure �
2� ðprecisionÞ � ðrecallÞ
ðprecisionÞ þ ðrecallÞ

; ð16Þ

where

precision ¼

1

# ðpairs detectedÞ
; if the true pair was detected;

0; otherwise;

8
><

>:
ð17Þ

and

recall ¼
1; if the true pair was detected;

0; otherwise:

(

ð18Þ

Each simulation was repeated for 400 times, and the average F-measure and its standard error

were recorded (Table 11). To avoid excessive computation, we used the marginal screening

procedure for all methods; see Section 1.1.

The F-measure is a widely used criterion in the field of information retrieval; it is a single

numeric metric that balances the trade-off between true positives and false positives. We

adopted the F-measure, instead of other metrics such as the “balanced accuracy”, because the

underlying problem really is more of an “information retrieval” problem than a “classification”

problem, not only because there are far more true negatives than true positives, but also

because detecting the positives—here, the relevant SNP-pair—is a much more important

objective than correctly calling out the negatives. Imagine the experience of conducting a Goo-

gle search. For each given query, most of the web pages on the Internet are irrelevant. There-

fore, from a customer’s perspective, the most important measure must concentrate on the set

of detected web pages retrieved by the search engine, for example, the top twenty. How many

of these are relevant (true positives), and how many are irrelevant (false positives)? By and

large, the customer does not care how many truly irrelevant web pages have been correctly left

out of the search result—that is, the customer does not care about the true negatives. More-

over, because the set of truly irrelevant pages is so large, the true negative rate will also be diffi-

cult to distinguish meaningfully for most “reasonable” search engines; any “reasonable” search
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engine will have a true negative rate of>99%. Therefore, measures like the “balanced accu-

racy” actually places an undue amount of emphasis on this rather inconsequential side of the

performance. This is also why the information retrieval community tend to largely favor met-

rics such as the F-measure to those more commonly used by the classification community,

such as “balanced accuracy”. The situation of detecting relevant SNP-pairs is very much

akin to performing a Google search in that (i) most pairs are not signals; (ii) we care not very
much about getting the true negatives right; (iii) instead, we care a lot about how many of the

detected pairs are true positives or false positives.

4.2 Disease models

Our primary focus was to evaluate the ability of different methods to detect different epistatic

effects as represented by different disease models.

First, we included six disease models with main effects (Table 9). They were among the

most commonly used examples in various studies [25–30]. Here in Table 9, these models are

parameterized in terms of odds, PðDjGiÞ=½1 � PðDjGiÞ�, rather than penetrance, PðDjGiÞ. The

parameters α and θ were determined by simultaneously solving Eqs (14) and (15), given the

prevalence PðDÞ and heritability h2 of the outcome, as well as the MAF of each SNP. We sim-

ply fixed PðDÞ ¼ 0:02, but repeated each of these simulations with MAF = 0.1 and 0.4 for all

SNPs. Assuming Hardy-Weinberg equilibrium, the MAF determined PðGiÞ for each genotype

combination Gi, leaving α and θ to be the only unknowns in Eqs (14) and (15) so that they

could be uniquely determined.

Next, we included four disease models without main effects (Table 10), taken from an ear-

lier study conducted by Ritchie et al. [31], in which these disease models were created to have

purely epistatic effects in the sense that no marginal effect existed for either SNP involved.

The disease models, T, DD, MOD and XOR, all have two penetrance levels (Table 9), and

so do our prototype disease models (see Fig 4). However, in designing our simulations we took

care to ensure that, while some of these models (e.g., XOR) were relatively close to a prototype,

Table 9. Simulated examples for Section 4. Disease models with main effects. The parameters α and θ were uniquely

determined given prevalence PðDÞ, heritability h2, and MAF. We fixed PðDÞ ¼ 0:02, and repeated each simulation

with MAF = 0.1 and 0.4 for all SNPs.

(a) Threhold (T)

h2 = 0.02

(b) Dominant-Dominant (DD)

h2 = 0.02

BB Bb bb BB Bb bb

AA α α α AA α α α

Aa α α α(1 + θ) Aa α α(1 + θ) α(1 + θ)

aa α α(1 + θ) α(1 + θ) aa α α(1 + θ) α(1 + θ)

(c) Modifying Effect (MOD)

h2 = 0.02

(d) Exclusive Or (XOR)

h2 = 0.02

BB Bb bb BB Bb bb

AA α α α AA α α α(1 + θ)

Aa α α α(1 + θ) Aa α α α(1 + θ)

aa α(1 + θ) α(1 + θ) α(1 + θ) aa α(1 + θ) α(1 + θ) α

(e) Multiplicative (ME)

h2 = 0.015

(f) Threshold Multiplicative (MET)

h2 = 0.015

BB Bb bb BB Bb bb

AA α α (1 + θ) α(1 + θ)2 AA α α α

Aa α (1 + θ) α(1 + θ)2 α(1 + θ)3 Aa α α (1 + θ) α(1 + θ)2

aa α(1 + θ)2 α(1 + θ)3 α(1 + θ)4 aa α α(1 + θ)2 α(1 + θ)4

https://doi.org/10.1371/journal.pone.0213236.t009
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others (e.g., DD) were relatively far from all prototypes, as measured by our metric F. The dis-

ease models, ME, MET, and DMN 1-4, on the other hand, all have more than two penetrance

levels (Tables 9 and 10). They were chosen so that a wider variety of epistatic effects could be

studied.

4.3 Thresholds

The nominal association measures produced by different methods for each pair of SNPs (see

Section 1.1) were thresholded by their corresponding (nominal) p-values,

bpi;j � Pðw2
ð1Þ
> bw2

i;jÞ; ð19Þ

and a pair was considered “detected” if bpi;j < a, where α was a significance threshold. For con-

venience, we applied simple Bonferroni corrections to determine the threshold α. As there

were a total of 100

2

� �
¼ 4; 950 pairs of SNPs, it was natural to first consider a threshold of

aeasy ¼ 0:05� 4; 950 � 10� 5: ð20Þ

To account for the fact that these nominal association measures were biased (see Section 2.3),

however, we also considered applying a more stringent threshold. But since there was not a

clear way to pick such a threshold that easily could be considered “fair” for all methods, as

each method considers a different number of (almost certainly) correlated disease models for a

pair of SNPs, we simply settled on a convenient choice of

ahard ¼ 0:05� 4; 950� 8 � 1:26� 10� 6; ð21Þ

based on the fact that RS would always consider 8 different disease models. Correcting signifi-

cance thresholds for simultaneous tests of correlated hypotheses is an intricate inferential

problem, for which there is no good solution yet. It is not clear whether αhard is really the “cor-

rect” threshold for RS but, as a rough guideline, one may think that this choice would favor RS

slightly. Our empirical results below do support this interpretation to some extent.

4.4 Results

Results are given in Table 11. We used a relatively large sample size of n = 600 when the MAF

was relatively low (e.g., 0.1, 0.25), and a relatively small sample size of n = 300 when it was high

(e.g., 0.4). This is because, when the MAF was relatively high (low), the underlying signals

Table 10. Simulated examples for Section 4. Disease models without main effects, taken from [31], where they were specifically constructed in such a way that there is no

individual association between either SNP and the disease.

(a) DMN 1

MAF = 0.25, h2 = 0.016

(b) DMN 2

MAF = 0.25, h2 = 0.04

BB Bb bb BB Bb bb

AA 0.08 0.07 0.05 AA 0 0.1 0.09

Aa 0.1 0 0.1 Aa 0.04 0.01 0.08

aa 0.03 0.1 0.04 aa 0.07 0.09 0.03

(c) DMN 3

MAF = 0.1, h2 = 0.002

(d) DMN 4

MAF = 0.1, h2 = 0.015

BB Bb bb BB Bb bb

AA 0.07 0.05 0.02 AA 0.09 0.001 0.02

Aa 0.05 0.09 0.01 Aa 0.08 0.07 0.005

aa 0.02 0.01 0.03 aa 0.003 0.007 0.02

https://doi.org/10.1371/journal.pone.0213236.t010
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became stronger (weaker) and easier (harder) to detect, and all the methods would perform

quite well (badly) if given a sample that was “too large (small)”, making it difficult to tell them

apart. For our simulated cases with 100 SNPs, we found that all methods essentially became

indistinguishable when the sample size reached as low as n = 100 or as high as n = 1000.

As we explained previously, the threshold, αeasy, only includes a simple Bonferroni correc-

tion—here, for multiple testing of 4,950 pairs—and does not account for the fact that a

method, whether MDR, RS, or PTY, has usually tested a few disease models already before test-

ing the significance of the SNP-pair against the outcome. Strictly speaking, therefore, the Bon-

ferroni correction alone is not enough, and often leads to inflated false positive rates. Among

the three methods, PTY is the least prone to false positives, which explains why its performance

is the best under αeasy. Generally speaking, our results confirm that there is some practical

value to consider a less greedy and less data-adaptive procedure such as ours for epistasis

detection.

4.5 Comments

Throughout our simulation study, we have assessed the performance of each screening method

by its ability to detect the underlying SNP-pair, but not by whether the true disease model is

correctly identified as well. The detection of the relevant SNP-pair is certainly the more funda-

mental task. Once the relevant SNP-pairs are identified, further studies can be conducted to

determine the real underlying mechanism. Such an approach is certainly not unusual in the

context of genome-wide association (GWA) studies. For most GWA studies in the literature,

single SNPs are often tested and reported using disease models—e.g., additive, dominant, and

so on—that are not necessarily the correct ones. Ascertaining the true disease model is almost

never the goal of the initial GWA study; detecting the affected SNPs is.

In fact, this is also the very reason why our method works, because one need not always use

exactly the true disease model in order to detect a pair of affected SNPs. While using a “very

wrong” disease model can negatively affect the chances of detecting an affected SNP-pair, one

Table 11. Results from simulation study (Section 4). Average F-measures (and their standard errors) over 400 replications. A star (�) in front of the number indicates the

best performer for that simulation.

αeasy = 1.00 × 10−5 αhard = 1.26 × 10−6

n MAF Model MDR RS PTY MDR RS PTY

600 0.1 T 0.012 (0.005) 0.080 (0.013) �0.083 (0.015) 0.000 (0.000) �0.046 (0.012) 0.030 (0.010)

MOD 0.062 (0.009) 0.067 (0.007) �0.075 (0.010) 0.063 (0.011) �0.109 (0.013) 0.090 (0.013)

DD 0.183 (0.016) 0.172 (0.015) �0.278 (0.019) 0.341 (0.023) 0.372 (0.021) �0.449 (0.024)

XOR 0.199 (0.014) 0.198 (0.013) �0.328 (0.020) 0.283 (0.022) 0.449 (0.022) �0.531 (0.024)

ME 0.011 (0.000) 0.011 (0.000) �0.012 (0.000) 0.013 (0.000) 0.013 (0.001) �0.015 (0.001)

MET 0.234 (0.019) 0.245 (0.016) �0.294 (0.021) 0.335 (0.025) �0.414 (0.023) 0.350 (0.024)

300 0.4 T 0.167 (0.011) 0.152 (0.010) �0.223 (0.014) �0.357 (0.017) 0.346 (0.017) 0.317 (0.018)

MOD 0.076 (0.007) 0.064 (0.006) �0.110 (0.010) 0.163 (0.013) 0.154 (0.013) �0.202 (0.015)

DD 0.015 (0.001) 0.014 (0.001) �0.135 (0.009) 0.035 (0.005) 0.032 (0.005) �0.276 (0.014)

XOR 0.195 (0.012) 0.164 (0.011) �0.306 (0.016) 0.441 (0.018) 0.409 (0.018) �0.561 (0.019)

ME 0.022 (0.002) 0.020 (0.002) �0.033 (0.002) 0.043 (0.004) 0.039 (0.003) �0.086 (0.006)

MET 0.073 (0.006) 0.074 (0.007) �0.076 (0.008) 0.132 (0.011) �0.141 (0.011) 0.103 (0.010)

600 0.25 DMN 1 0.729 (0.015) 0.686 (0.016) �0.935 (0.009) 0.951 (0.008) 0.939 (0.009) �0.992 (0.003)

0.25 DMN 2 0.743 (0.015) 0.705 (0.016) �0.938 (0.010) 0.959 (0.007) 0.944 (0.008) �0.972 (0.009)

0.1 DMN 3 0.700 (0.018) 0.675 (0.018) �0.832 (0.019) 0.822 (0.021) �0.852 (0.019) 0.722 (0.026)

0.1 DMN 4 0.752 (0.015) 0.720 (0.015) �0.897 (0.014) 0.912 (0.013) �0.921 (0.012) 0.831 (0.021)

https://doi.org/10.1371/journal.pone.0213236.t011
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has a good chance of making the detection as long as the disease models used for screening is

“close enough” to the true one. Due to the way our prototype models are selected—i.e., as rep-

resentative models from each cluster, there is a very good chance that at least one of our mod-

els is “close enough” to the true one.

5 Analysis of bipolar disorder data

In this section, we report our analysis of the phase I bipolar disorder data from the Wellcome

Trust Case Control Consortium (WTCCC) [32]. Because our method is aimed at screening

SNP-pairs for different epistatic effects (rather than individual SNPs for main effects), we

focus on the complementary value that our method offers—in particular, its ability to find rele-

vant SNPs that other methods may still miss.

The WTCCC project involves genotyping of 500K SNPs on humans of British ancestry.

Bipolar disorder is one of seven diseases being studied by the WTCCC, and the shared control

samples consist of 1, 500 individuals from the 1958 British Birth Cohort and another 1, 500

individuals selected from blood donors recruited as part of their project.

Identical-twin studies have shown that bipolar disorder has a strong genetic component

[33]. Current findings from genome-wise association studies (GWAS) demonstrate that bipo-

lar disorder shares many genetic overlaps with schizophrenia and other major depressive dis-

orders, and that it is also characteristic of being polygenic, i.e., many variants that coalesce into

functional pathways contribute to the disorder with small effects. The current understanding

of its neurobiology is that changes in inflammatory cytokines, corticosteroids, neurotrophins,

mitochondrial energy generation, oxidative stress, and neurogenesis are all involved in a com-

prehensive way to explain its various clinical features [34].

5.1 Pre-processing

We began by applying the same data quality control procedures as described in [32]—

excluding SNPs with > 5% missing observations (> 1% for SNPs with MAF < 0.05),

Hardy-Weinberg exact p-value < 5.7 × 10−7, p-value < 5.7 × 10−7 for either a one- or two

degree-of-freedom test of association between the two control groups, and genome-wide

heterozygosity < 23% or > 30%; as well as samples with > 3% missing across all SNPs. In

addition, we also filtered out SNPs with MAF < 1%, p-value < 10−7 for a univariate test of

association, and p-value < 10−5 for a test of Hardy-Weinberg equilibrium. The remaining

data contained 1, 868 cases (individuals with bipolar disorder), 2, 938 controls, and 405, 524

SNPs. Eliminating “easily detectable” SNPs with “obvious” main effects is not uncommon

for studies that focus on the detection of SNP-SNP interactions—for example, the paper by

Wan et al. [15] that proposed the RS method also did this.

5.2 Mapping SNPs to genes

We used the marginal screening procedure (see Section 1.1) to screen and rank all pairs of

SNPs. Here, we focus on the 100 unique SNPs appearing in the top 85 pairs (nominal p-

value < 10−11). We used the “Ensembl gene annotation system” [35] as well as SNPnexus [36]

to map these SNPs to the genes in which they most likely reside. Altogether, we identified 75

genes in this manner.

Fig 5 shows the number of SNPs appearing in the top 85 pairs identified by PTY, MDR and

RS, respectively. While 15 SNPs were identified by all three methods, 42 were identified by our

method alone and they were mapped to 18 unique genes. Five of them—specifically, UNC13A

[37], RGS6 [38], DPP10 [39], FGF14 [40] and TLE4 [40]—had been associated with bipolar

disorder or related suicide attempts. Moreover, the SNP that was mapped to FGF14 had a p-
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value of 0.03 on a univariate test of association, indicating that it would have had no chance of

being detected in a genome-wide screening of individual SNPs. Here, it was detected as a result

of pairwise screening that focused on epistatic effects.

Fig 6 shows the largest interaction network based on the 75 genes we identified. The hub

gene, AQP1, encodes a small integral membrane protein that functions as a water channel pro-

tein and is potentially involved in a human neurological disorder called “central pontine mye-

linolysis” [41]. The specific SNP that was mapped to this gene (rs4299909) had a p-value of

0.0002 based on a univariate test of association; hence, it would have had no chance of being

detected by marginal screening of individual SNPs, either. Here again, it was detected as a

result of pairwise screening that focused on epistatic effects.

Among other genes in this network, ST6GALNAC5 is known to catalyse the transfer of

sialic acid to cell surface proteins, and sialic acid has been suggested as an essential nutrient for

brain development and cognition [42]. RGS6 regulates G protein signaling and may modulate

neuronal activities; in previous studies, SNPs in this gene have been reported to be associated

with schizophrenia [43]. MAN2A1 encodes a glycosyl hydrolase (a common enzyme) and

catalyses the final hydrolytic step in the N-glycan maturation pathway; many SNPs in this

gene have been reported to be associated with various phenotypes and diseases, including

Fig 5. Analysis of bipolar disorder data. Venn diagram of unique SNPs appearing in the top 85 pairs detected by

PTY, RS, and MDR, respectively. SNPs detected multiple times (e.g., occurring in multiple pairs) were counted only

once.

https://doi.org/10.1371/journal.pone.0213236.g005
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Alzheimer’s disease [44, 45]. TLE4 inhibits the transcriptional activation mediated by PAX5,

and by CTNNB1 and TCF family members in Wnt signaling, which has been suggested to

be potentially involved in the pathophysiology of bipolar disorder [46]. FAH encodes the last

enzyme in the tyrosine metabolism pathway; the amino acid, tyrosine, is a precursor to neuro-

transmitters and increases plasma neurotransmitter levels—particularly dopamine and norepi-

nephrine, both important neurotransmitters in the brain [47]. FUT8 encodes an enzyme

belonging to the family of fucosyltransferases; a variant in this gene has been reported to influ-

ence glutamate concentrations in brains of patients with multiple sclerosis [48]—glutamate is

a neurotransmitter accounting in total for well over 90% of the synaptic connections in the

human brain.

Out of the 75 genes we identified, the following have also been reported by various indepen-

dent studies to be associated with bipolar disorder, or suicides related to bipolar disorder:

ANK3 [49], CNTNAP2 [50], PTPRN2 [51], DSCAM [37], PSD3 [37], RAPGEF4 [52], CPN1

[53], EPHB2 [40], CAP2 [40], NAV2 [40], and ABCB1 [40].

5.3 Gene set enrichment analysis

To further validate our findings, we also performed gene set enrichment analysis (GSEA) [54]

on the aforementioned set of 75 genes. GSEA identifies classes of genes (e.g., those involved in

specific pathways) that are over-represented in a given gene set (e.g., the ones we discovered)

Fig 6. Analysis of bipolar disorder data. Largest interaction network formed by genes mapped from SNPs appearing in the top 85 pairs. Each node is

either a gene (oval), or a SNP (rectangle) itself if it cannot be mapped to any gene. The size of the node is irrelevant—it is determined by the amount of

text inside rather than anything scientific. A link between two nodes means the SNPs underlying the nodes are from the same pair detected, so, for

example, a link between AQP1 and FAH means that a pair of SNPs—one of which was mapped to AQP1 and another, to FAH—was among the top 85

pairs detected. The resulting network contains many disjoint components. The one presented here is the biggest component.

https://doi.org/10.1371/journal.pone.0213236.g006
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and may have an association with disease phenotypes, by comparing the candidate set against

background databases. Gene Ontology [55] is one such database, which annotates and classi-

fies genes in terms of their associated biological processes, cellular components and molecular

functions. Other popular databases include KEGG [56] and Pathway Commons [57]. To com-

pare a candidate gene set to various background databases and determine whether certain

gene groups (e.g., those occurring in known pathways) appear statistically more or less often

than expected, we used a tool called WebGestalt [58].

Table 12 lists the statistically enriched pathways from KEGG (multiple-testing adjusted p-

value� 0.05). Many of them have been associated with bipolar disorder or related diseases.

For instance, the neurotransmitter dopamine, which is believed to have connections to bipolar

disorder, is part of the tyrosine metabolism pathway (line 3). The N-Glycan biosynthesis path-

way (line 4) has been reported to be significantly enriched by a study of bipolar disorder in

Canadian and UK populations [59]. Both arginine and proline (line 5) have been related to

schizophrenia [60]. The ErbB signaling pathway (line 7) regulates a diverse range of physiolog-

ical responses, such as cell proliferation, migration, differentiation, apoptosis and motility; and

insufficient ErbB signaling has been associated with the development of neuro-degenerative

diseases in humans [61]. The regulations of the lysosome pathway (line 9) and of the actin

cytoskeleton pathway (line 14) were found in a transcriptome sequencing and GWA study to

be statistically enriched in genes associated with schizophrenia [62].

For comparison, the corresponding results for MDR and RS are provided in S4 Appendix,

while enriched pathways from Gene Ontology and Pathway Commons (for PTY identified

genes only) are provided in S5 Appendix.

6 Discussion

This paper is concerned with screening pairs of SNPs, rather than just individual SNPs, for

their association with various phenotypes. The complication is that there are many mecha-

nisms—corresponding to different epistatic effects and described by different disease models

—for a pair of SNPs to be associated with the outcome.

At the highest level, our main point is that we would be better off using less greedy

approaches to determine the “best” disease model for each pair of SNPs. While there are

Table 12. Analysis of bipolar disorder data. GSEA results from KEGG. O = number of genes in the discovered set; C = total number of genes in the given pathway.

Line Name O C p-value

Nominal Adjusted

1 metabolic pathways 13 1130 � 0.01 � 0.01

2 thyroid cancer 2 29 < 0.01 0.01

3 tyrosine metabolism 2 41 < 0.01 0.01

4 N-glycan biosynthesis 2 49 < 0.01 0.01

5 arginine and proline metabolism 2 54 < 0.01 0.01

6 melanoma 2 71 0.01 0.02

7 ErbB signaling pathway 2 87 0.01 0.02

8 hepatitis C 2 134 0.02 0.03

9 lysosome 2 121 0.02 0.03

10 axon guidance 2 129 0.02 0.03

11 pathways in cancer 3 326 0.02 0.03

12 cell adhesion molecules 2 133 0.02 0.03

13 endocytosis 2 201 0.05 0.05

14 regulation of actin cytoskeleton 2 213 0.05 0.05

https://doi.org/10.1371/journal.pone.0213236.t012
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certainly many different ways to achieve this goal, some of which are currently under our

active investigation, in this paper we have concentrated on the simple idea of first clustering

the disease models and then limiting the candidates to a set of prototypes selected from each

respective cluster.

Earlier in Section 1, we stated that screening for higher-order interactions at a genome-

wide level is still largely impractical at the present time, but when the time does become ripe

for doing so, we think our idea of using prototype disease models will become even more

attractive because, as higher-order interactions are considered, there will be combinatorial

growth in the number of disease models and a heightened tendency for greedy approaches to

produce false positives.

Prototype disease models can be selected in many different ways, although we do not expect

that using different sets of prototypes will make a substantial difference. The specific proposal

we have outlined in this paper is based on using a particular metric, F(M0,M), to quantify the

similarity of disease models. We now say more about the intuitive appeal of this metric, as

promised earlier in Section 3.1.

Let r0 ¼ PðDÞ=½1 � PðDÞ� denote the population-wide case-control ratio. Then, the ratio

U/V appearing in the denominator of Eq (9) is simply

U
V
¼
ðP1Þr þ ð1 � P1Þr0
ðP0Þr þ ð1 � P0Þr0

¼
r0 þ ðr � r0ÞP1

r0 þ ðr � r0ÞP0

: ð22Þ

This makes it clear that, if r = r0, then U/V = 1. In this case, it is easy to see that the denomina-

tor of the F-coefficient can be interpreted as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðM0ÞVarðMÞ

p
. This is becauseM can be

viewed as a Bernoulli random variable mapping various genotype combinations to either 0 or

1, with PðM ¼ 1Þ ¼W1� and PðM ¼ 0Þ ¼W0�, so VarðMÞ ¼W1�W0�. Likewise,

VarðM0Þ ¼ W�1W�0

¼ ðW11 þW01ÞðW10 þW00Þ

¼ W11W10|fflfflfflffl{zfflfflfflffl}
M¼1

þW01W10|fflfflfflffl{zfflfflfflffl}
M 6¼M0

þW11W00|fflfflfflffl{zfflfflfflffl}
M¼M0

þW01W00|fflfflfflffl{zfflfflfflffl}
M¼0

:
ð23Þ

We can decompose VarðM0Þ into four terms, as shown above in Eq (23), where each successive

term can be seen to measure the variability inM0 whenM = 1, whenM andM0 completely dis-

agree, when they completely agree, and whenM = 0, respectively.

However, for a case-control sample, it is often the case that r� r0, in which case Eq (22)

implies that U/V� P1/P0 > 1. We can now see that, in this case, Eq (9) implicitly tells us to cal-

culate VarðM0Þ, the variance of the potential prototype modelM0 used to approximate/repre-

sentM, differently:

VarðM0Þ ¼
U
V
W11W10 þW01W10 þW11W00 þ

V
U
W01W00: ð24Þ

In particular, among genotypes considered to be risky byM (the set for whichM = 1), the vari-

ability inM0 should be up-weighted, which reduces their similarity; whereas, among those con-

sidered to be non-risky byM (the set for whichM = 0), the variability inM0 should be down-

weighted, which increases their similarity. In other words, when consideringM0 as a potential

prototype for representingM, the metric F(M0,M) “thinks” it is more important forM0 to
agree withM on their assignments of the risky genotypes than for them to agree on the non-

risky ones. This is intuitively appealing; a concrete numeric example is given in S6 Appendix.
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The approximation that U/V� P1/P0 also allows us to see more clearly how the parameters,

PðDÞ and h2, affect the metric F. The solution to Eqs (14) and (15) is:

P1 ¼ PðDÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0�

W1�

PðDÞ½1 � PðDÞ�h2

r

; P0 ¼ PðDÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1�

W0�

PðDÞ½1 � PðDÞ�h2

r

: ð25Þ

Fig 7 contains various views of the odds, P1/P0, as a function of the ratioW1�/W0�, prevalence

PðDÞ, and heritability h2. For any given disease modelM with a specific ratioW1�/W0�, the

Fig 7. Different views of the odds, P1/P0, as a function of the ratio W1�/W0�, prevalence PðDÞ, and heritability h2, where P1, P0 are solutions to Eqs

(14) and (15). While the parameters PðDÞ and h2 do affect the odds P1/P0 and hence the metricF(M0,M), their impact is similar at different values of

W1�/W0� and hence similar for differentM.

https://doi.org/10.1371/journal.pone.0213236.g007
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odds P1/P0 is certainly affected by the choices of PðDÞ and h2; but these parameters also affect

the odds of other disease models with differentW1�/W0�-ratios in a similar manner. For exam-

ple, for fixed h2, a large (and potentially wrong) choice of PðDÞ lowers the odds—whereas, for

fixed PðDÞ, a large (and potentially wrong) choice of h2 elevates it—for all disease models. As a

result, even though the distances do change between different disease models and their candi-

date prototypes, the relative distances are not drastically warped. That’s why we were able to

observe that the resulting prototypes were fairly robust to different choices of PðDÞ and h2.

We also note that the sequential screening procedure we outlined in Section 1.1 is not yet

widely considered. This is understandable due to the extra computational burden—every time

a pair of SNPs is added, all remaining pairs must be re-assessed. Even with today’s technology,

such a procedure is still largely infeasible on the genome-wide scale. In fact, we also avoided

it in our real-data analysis (Section 5) and simulation study (Section 4) for the same practical

reasons, but it may deserve some attention and more systematic treatment in the future.

Finally, we note an important limitation of our current study is that we did not consider

linkage disequilibrium (LD). It is well-known that, in GWA studies, screening algorithms

can declare a specific SNP to be significant only because it is in linkage disequilibrium with

another truly-associated SNP. In other words, the presence of LD can lead to false discoveries.

Undoubtedly, such concerns also apply to our study here. In fact, properly accounting for LD

is much more challenging and complex when we screen for epistatic effects than it is when we

screen for main effects only, because the underlying question now becomes whether a pair of

SNPs is in LD with another pair, rather than merely whether an individual SNP is in LD with

another SNP. Thus, although studies are available for considering LD in genetic simulations

[4], the complexity involved is by no means trivial on a pairwise level. We anticipate that full

considerations of LD in the context of epistatis will require a considerable amount of effort in

the next few years.
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