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Abstract

Various mutations in the SH3 and multiple ankyrin repeat domains 3 (SHANK3) gene are associated with
neurodevelopmental and neuropsychiatric disorders. Thus far, synaptic abnormalities in multiple brain regions,
including the hippocampus, prefrontal cortex, striatum, and ventral tegmental area, have been investigated in
several lines of Shank3 mutant mice. However, although some reports have shown loss and gain of body
weight in Shank3 knock-out and overexpressing transgenic (TG) mice, respectively, the potential functions of
Shank3 in the hypothalamus, a brain region critically involved in energy intake and expenditure, are unknown.
Hence, we first characterized endogenous Shank3 mRNA and protein expression in the hypothalamus of adult
wild-type mice. Thereafter, we performed transcriptome analysis (RNA-sequencing) in the hypothalamus of
adult Shank3 TG mice which mildly overexpress Shank3 proteins. By comparing the 174 differentially expressed genes
in the hypothalamus with those previously reported in the striatum and medial prefrontal cortex (mPFC) of Shank3 TG
mice, we found that 159 were hypothalamus-specific while only 15 were also observed in either the striatum or mPFC.
Furthermore, gene set enrichment analysis of the RNA-sequencing analysis revealed that ribosome-related genes were
enriched especially in the up-regulated genes of Shank3 TG hypothalamus, which is in contrast to the results of the
Shank3 TG striatum and mPFC analyses, where ribosome-related genes were enriched in the down-regulated genes.
Beyond revealing endogenous Shank3 mRNA and protein expression in the hypothalamus, our results suggest unique
molecular changes in the hypothalamus of Shank3 TG mice compared with those in the striatum and mPFC.

Keywords: Shank3, Hypothalamus, Transcriptome

Main text
Deletions, duplications, and point mutations in the SH3
and multiple ankyrin repeat domains 3 (SHANK3) gene,
encoding excitatory postsynaptic core scaffolding proteins,
are causally associated with numerous neurodevelopmen-
tal and neuropsychiatric disorders. Several mouse lines of
knock-out, knock-in, overexpression, and viral knock-
down for the Shank3 gene have been generated and char-
acterized, which has provided important insights into the
neuronal pathophysiology of SHANK3-associated brain

disorders. Specifically, detailed biochemical and synaptic
abnormalities in various brain regions of the mice, includ-
ing the prefrontal cortex [1–3], hippocampus [4–6], stri-
atum [7–10], and ventral tegmental area [11], have been
investigated. The hypothalamus is a brain region critical
for regulating energy intake and expenditure [12]. Notably,
reduced body weight of a line of Shank3 knock-out mice
was reported [13]. Moreover, Shank3 transgenic (Shank3
TG) mice which mildly overexpress Shank3 proteins (by
approximately 50%) showed increased body weight and
food intake [5]. Therefore, it is conceivable that Shank3
may have some functions in the hypothalamus; however,
this has not been investigated thus far. In the present
study, we aimed to understand expression and molecular
functions of Shank3 in the hypothalamus, by performing
transcriptome (RNA-sequencing, RNA-seq) analysis in
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Fig. 1 (See legend on next page.)
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the hypothalamus of adult (10 to 12-week old) Shank3 TG
mice (Additional file 1).
We initially characterized the expression of endogenous

Shank3 mRNA and protein in the hypothalamus because
there was a report suggesting a lack of Shank3 expression
in the hypothalamus [2]. In qRT-PCR experiments using
primers targeting exon 6–7 of Shank3 (thus detecting
Shank3a and Shank3b isoforms), Shank3 mRNA levels in
the hypothalamus were relatively lower than those in the
cortex, medial prefrontal cortex (mPFC), hippocampus,
and striatum, but higher than those in the cerebellum of
adult male wild-type (WT) mice (Fig. 1a). Consistent with
the mRNA expression pattern, protein levels of Shank3
and its direct binding partner Homer1b/c in the hypothal-
amus were relatively lower than those in other brain re-
gions of adult male WT mice (Fig. 1b). Based on the
expression of endogenous Shank3 in the hypothalamus,
we next investigated molecular changes in the hypothal-
amus of Shank3 TG mice by performing a RNA-seq ana-
lysis of hypothalamic tissue from adult male WT and
Shank3 TG mice (Additional file 2: Table 1). After apply-
ing adjusted P values (< 0.05, Benjamini–Hochberg cor-
rection) to the transcriptome analysis, we identified 174
differentially expressed genes (DEGs) (79 up-regulated
and 95 down-regulated) in the Shank3 TG hypothalamus
compared with the WT hypothalamus (Fig. 1c and
Additional file 2: Table 2). Thereafter, we attempted to
understand the specificity of the Shank3 TG hypothalamic
DEGs, by comparing them to DEGs from two age-
matched Shank3 TG RNA-seq studies recently published
by our group. One was from the striatum (75 DEGs; 33
up-regulated and 42 down-regulated) [14], and the other
was from the medial prefrontal cortex (mPFC) (195 DEGs;
82 up-regulated and 113 down-regulated) of adult Shank3
TG mice [15]. We observed that the majority of DEGs
found in each brain region were brain region-specific (Fig.
1d). Specifically, among the 174 DEGs of the Shank3 TG

hypothalamus, 159 were hypothalamus-specific while only
15 were shared with either the striatum or mPFC. Not-
ably, five genes were commonly altered in all three brain
regions of Shank3 TG mice compared with those of the
WT mice (Fig. 1d), among which we validated the changes
of Shank3, G protein-coupled receptor 85 (Gpr85), and
Caveolin 2 (Cav2) in the Shank3 TG hypothalamus by
qRT-PCR experiments (Fig. 1d, left panel).
To understand representative biological pathways or

functions of the 174 DEGs in the Shank3 TG hypothal-
amus, we performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analyses. However, we could not find significant terms in
any category of the analyses, suggesting that the 174
DEGs may be too heterogeneous to be grouped into cer-
tain biological pathways or functions. Therefore, instead
of focusing on the DEGs, we next performed gene set
enrichment analysis (GSEA) of the RNA-seq analysis.
GSEA is more useful to identify meaningful molecular
signatures based on broader or overall expression
changes in the transcriptome, regardless of fold change
and statistical significance of each gene [14, 15]. We ap-
plied three different groups of gene sets (Hallmark,
KEGG, and GO gene sets) to the hypothalamic RNA-seq
analysis. For the Hallmark gene sets, “Epithelial mesen-
chymal transition” was significantly represented by the
up-regulated genes of the Shank3 TG hypothalamus
(Additional file 2: Table 3). For the KEGG gene sets,
“Ribosome” and “ECM receptor interaction” were
enriched by the up-regulated genes of the Shank3 TG
hypothalamus (Fig. 1e, g and Additional file 2: Table 3).
Lastly, for the GO gene sets, “Cytosolic ribosome” and
“Ribosomal subunit” were enriched by the up-regulated
genes, while “Postsynapse” and “Synaptic membrane” were
represented by the down-regulated genes of the Shank3
TG hypothalamus (Fig. 1f and Additional file 2: Table 3).
Collectively, these results indicate that ribosome-related

(See figure on previous page.)
Fig. 1 Characterization of Shank3 expression in the wild-type hypothalamus, and transcriptome analysis of the hypothalamus in Shank3 transgenic
mice. a qRT-PCR results showing relative expression levels of Shank3 mRNA in various brain regions of adult wild-type (WT) mice. HYP, hypothalamus;
CRB, cerebellum; CTX, cortex; HP, hippocampus; STR, striatum. b Western blot images showing relative expression levels of Shank3 (3a, 3c/d, 3e
isoforms), Homer1b/c, and PSD-95 proteins in various brain regions of adult WT mice. The amount of total proteins loaded in each well is indicated. c
Volcano plot for the hypothalamic RNA-sequencing (RNA-seq) analysis of adult Shank3 TG mice. Differentially expressed genes (DEGs), defined by FDR
< 0.05, are shown as orange (FC < = 2) and red (FC > 2) circles. FC, fold change. The complete lists of the RNA-seq analysis and DEGs are provided in
Additional file 2: Tables 1 and 2. d The Venn diagram shows the numbers of common DEGs among the hypothalamus, striatum, medial prefrontal
cortex (mPFC) of Shank3 TG mice. For the common DEGs, the log2FC values for each brain region are shown. The bar graph shows qRT-PCR results for
Shank3, Gpr85, and Cav2 in the Shank3 TG hypothalamus. e, f The bar graphs show normalized enrichment scores (NESs) of the gene set enrichment
analysis (GSEA) on the Kyoto Encyclopedia of Genes and Genomes (KEGG, E) and Gene Ontology-Cellular component (GO-CC, F) gene sets for the
Shank3 TG hypothalamus RNA-seq analysis. Significant gene sets (FDR < 0.05) are highlighted in red and blue for up-regulated and down-regulated
genes, respectively. The complete lists of the GSEA are provided in Additional file 2: Table 3. g The enrichment plot of RNA-seq analysis of Shank3 TG
hypothalamus of the KEGG ribosome gene set. h The diagram shows opposite directional NES of the GSEA on KEGG ribosome gene set for the
Shank3 TG hypothalamus compared with striatum and mPFC. Blue represents negative NES value (i.e., down-regulated genes), while red represents
positive NES value (i.e., up-regulated genes). The Venn diagram shows the numbers of common ribosome-related core genes among the
hypothalamus, striatum, and mPFC of Shank3 TG mice. The complete lists of the ribosome-related genes are provided in Additional file 2:
Table 4. Data are presented as mean ± SEM. *P < 0.05 and **P < 0.01 (unpaired two-tailed Student’s t-test)
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genes are enriched especially in the up-regulated genes of
the Shank3 TG hypothalamus, which is reminiscent of
our previous GSEA of the RNA-seq analyses of the stri-
atum and mPFC of Shank3 TG mice [14, 15]. Notably,
however, in the striatum and mPFC of Shank3 TG mice,
ribosome-related genes were enriched in the down-regu-
lated genes, but not in the up-regulated genes (Fig. 1h).
Nevertheless, the ribosome-related core genes largely
overlapped in all three brain regions (Fig. 1h, right panel
and Additional file 2: Table 4), suggesting opposite direc-
tional changes of those genes in the hypothalamus com-
pared with the striatum and mPFC of Shank3 TG mice.
Nevertheless, it should be considered that the ribosome-
related genes in the Shank3 TG hypothalamus were not
DEGs. Therefore, we consider that the GSEA results may
reflect some, possibly ribosome-related, functional
changes in the Shank3 TG hypothalamus which may lead
to subtle, but overall, responses of ribosome-related genes.
Our results show mRNA and protein expressions of
Shank3 in the hypothalamus, and the effect of mild
Shank3 overexpression on hypothalamic gene expression,
thus providing a new platform to further investigate
unique molecular and synaptic functions of Shank3 in the
hypothalamus.

Additional files

Additional file 1: Materials and methods including information about
mice, RNA sequencing and analysis, RNA purification and qRT-PCR, and
biochemistry and antibodies for Western blotting. (DOCX 39 kb)

Additional file 2: Table S1. Summary of RNA-Seq mapping results
(Shank3 TG hypothalamus 10–12 wk). Table S2. List of DEG (Differentially
Expressed Gene) from RNA-Seq analysis results (Shank3 TG hypothalamus
10–12 wk). Table S3. GSEA (Gene-Set Enrichment analysis) (Shank3 TG
hypothalamus 10–12 wk). Table S4. Comparison of ribosome-related
GSEA core enrichment genes (Shank3 TG Hypothalamus, mPFC and
Striatum). (XLSX 101 kb)
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