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Abstract

Concept recognition tools rely on the availability of textual corpora to assess their per-

formance and enable the identification of areas for improvement. Typically, corpora are

developed for specific purposes, such as gene name recognition. Gene and protein

name identification are longstanding goals of biomedical text mining, and therefore a

number of different corpora exist. However, phenotypes only recently became an entity

of interest for specialized concept recognition systems, and hardly any annotated text is

available for performance testing and training. Here, we present a unique corpus, captur-

ing text spans from 228 abstracts manually annotated with Human Phenotype Ontology

(HPO) concepts and harmonized by three curators, which can be used as a reference

standard for free text annotation of human phenotypes. Furthermore, we developed a
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test suite for standardized concept recognition error analysis, incorporating 32 different

types of test cases corresponding to 2164 HPO concepts. Finally, three established

phenotype concept recognizers (NCBO Annotator, OBO Annotator and Bio-LarK CR)

were comprehensively evaluated, and results are reported against both the text

corpus and the test suites. The gold standard and test suites corpora are available from

http://bio-lark.org/hpo_res.html.

Database URL: http://bio-lark.org/hpo_res.html

Introduction

The Human Phenotype Ontology (HPO) (1) is widely used

for the annotation of human phenotypes and has been

employed in many biomedical applications aiming to

understand the phenotypic consequences of genomic

variation (2). Such applications include: linking human

diseases to animal models (3–5), inferring novel drug inter-

actions (6), prioritizing gene-disease targets (7, 8) and

describing rare clinical disorders (9).

Linking from the literature to conceptual systems like

HPO has been an ongoing endeavour within the text

mining community that attracted substantial interest,

e.g. (10–12), because of its potential for exploiting the data

from millions of existing patient reports, case studies or

controlled trials. This concept recognition (CR) task is

similar to other well-studied tasks such as gene or protein

name normalization, yet it is accompanied by its own set

of challenges. In general, the challenges associated with

this task are: (i) ambiguity, i.e. the same term may refer to

multiple different entities—e.g. ‘irregular ossification of

the proximal radial metaphysis’ vs. ‘radial club hand’—

radial refers to the anatomical entity radius in the former

case and the anatomical coordinate radial in the latter;

similarly ‘short long bones’ vs. ‘long metacarpals’—‘long’

acts as part of the name of an anatomical entity (the long

bones) in the former and represents a quality in the latter;

(ii) use of abbreviations—e.g. ‘segmentation defects in

L4-S1’; (iii) use of metaphorical expressions—e.g.

‘bell-shaped thorax’, ‘hitchhiker thumb’, ‘bone-in-bone

appearance’; (iv) use of hedging and various forms of

qualifiers—e.g. ‘subtle flattening and squaring of the meta-

carpal heads’, ‘segmentation defects appear to affect

L4-S1’; (v) complex intrinsic structure—the lexical struc-

ture of phenotype descriptions may take several forms.

They may have a canonical form, i.e. a conjunction of

well-defined quality-entity pairs, where entities represent,

e.g. an anatomical structure in focus (e.g. thorax) and qual-

ities denote certain characteristics of the entities (e.g.

bell-shaped)—resulting in the phenotype ‘bell-shaped

thorax’. On the other hand, they may also have a non-

canonical form, in which entities and qualities are

associated either via verbs (e.g. ‘Vertebral-segmentation

defects are most severe in the cervical and thoracic

regions’) or via conjunctions (e.g. ‘short and wide ribs with

metaphyseal cupping’). At the same time, each component

of a phenotype description may have a nested structure, as

in ‘flattening, underdevelopment and squaring of the heads

of the metacarpal bones, particularly at metacarpal IV

bilaterally’. All these challenges, and in particular the latter

three, makes the identification of the boundaries of pheno-

type descriptions particularly difficult.

To date there have only been a few controlled studies

focused on the automated annotation and/or harmonization

of phenotype concepts in the scientific literature (13–15).

Critically, none of these have used gold standard representa-

tions, hence making it hard to compare performance, e.g.

due to idiosyncrasies in the annotation method. Against this

background, our study has three goals:

• to introduce the first HPO-specific corpus—aimed to pro-

vide a reference standard for bootstrapping community

efforts in phenotype CR; by CR, we mean the identifica-

tion of entities of interest in free text and their resolution

to ontological concepts, as opposed to named entity rec-

ognition that focuses only on the first part.

• to provide a set of manually crafted test suites [adapted

from the original idea proposed by Cohen et al.

(16)]—aimed at covering a broader range of concept

types and to act as a standardized manner to perform

error analysis and

• to benchmark the landscape of existing phenotype CR

systems against both this gold standard as well as against

the proposed test suites.

Consequently, the contributions of this article include:

• a novel HPO annotated corpus consisting of 228

abstracts annotated by three experts, with a total of

1933 annotations (i.e. the text spans containing entities

of interest and their corresponding HPO concepts) and

covering 460 unique HPO concepts

• a set of 32 types of test suites comprising 2164 entries

and structured according to the 21 top-level HPO pheno-

typic abnormalities and
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• a comprehensive evaluation of three CR systems capable

of annotating HPO concepts: the NCBO Annotator (17),

the OBO Annotator (18) and the Bio-LarK CR (available

at http://bio-lark.org).

Materials and methods

Corpus construction

Our data set consists of a set of 228 abstracts cited by the

Online Mendelian Inheritance in Man (OMIM) database

(19). OMIM is a manually curated collection of human

hereditary disorders together with their suspected or

confirmed genetic origins. Each abstract was chosen for

its relevance to an OMIM human heritable disease.

The collection was compiled with the aim to match the

44 complex dysmorphology syndromes discussed in the

initial HPO study (20). These were originally selected from

the list of Pubmed citations provided by OMIM at ftp://

ftp.ncbi.nlm.nih.gov/repository/OMIM/pubmed_cited. All

abstracts associated with a disease have been curated.

Table 1 lists the distribution of the OMIM entries in the

corpus. The head of the distribution consists of a limited

number of neurodevelopmental and skeletal disorders

(e.g. Angelman syndrome, Branchiootorenal syndrome 1

or Brachydactyly type C), while the tail is comprised in

majority by skeletal dysplasias (e.g. Brachydactyly type

A2, Oculodentodigital dysplasia or Symphalangism C. S.

Lewis type).

The corpus has been annotated by a team of three

experts, or more concretely, by the creators of the HPO

(Prof. Peter Robinson, Dr. Sebastian Köhler and Dr.

Sandra Dölken). The clinical validity of the annotations

has been ensured by two of the team members—i.e. Prof.

Peter Robinson and Dr. Sandra Dölken—both with exten-

sive clinical experience in human genetics. The actual

annotation process has been performed in a peer-to-peer

manner and consisted of two steps. Initially, two experts

conjointly annotated the corpus. This was followed by a

post-annotation validation phase, in which the third anno-

tator—paired up with one of the two initial annotators—

performed a consistency and completeness check.

Consistency has also been ensured via a set of annota-

tion guidelines that dictated the form of the phenotypic

concepts, their lexical boundaries and the process of han-

dling negation. These guidelines are:

1. Phenotype concepts should only be considered if they

are present in a canonical form—e.g. include ‘hypoplas-

tic nails’ or ‘nail hypoplasia’, but not ‘nails were

hypoplastic’.

2. Conjunctive terms are allowed—e.g. ‘synostosis of

some carpal and tarsal bones’.

3. Subject to the type of conjunction, atomic text spans are

to be annotated with the corresponding HPO concepts.

For example, the text span ‘synostosis of some carpal

and tarsal bones’ represents a conjunction of two pheno-

type concepts: HP: 0008368 (Synostosis involving tarsal

bones) and HP: 0009702 (Synostosis involving the

carpal bones). Since the qualifier is preceding the

anatomical conjunction, the entire text span should be

annotated with both HPO concepts. On the other

hand, when the qualifier is succeeding the anatomical

conjunction—i.e. a mirror of the previous case—the text

span should be split into the corresponding atomic

phenotypes. For example, ‘branchial arch, otic and renal

malformations’ results in three annotations:

• ‘branchial arch, otic and renal malformations’—HP:

0009794 (Branchial anomaly)

• ‘otic and renal malformations’—HP: 0000598

(Abnormality of the ear)

• ‘renal malformations’—HP: 0000792 (Abnormal

renal morphology)

4. Negated phenotypes should be included—i.e. the text

span ‘kidney anomalies’ in the context of ‘no kidney

anomalies were found’ should be annotated with HP:

0000077 (Abnormality of the kidney). Here, the

assumption was that negation can be dealt with at a

different level and via other means.

As a note to point 1 mentioned earlier, non-canonical

phenotypes have been excluded from the annotation

process for two reasons. First, such lexical constructs are

more likely to be present in clinical summaries or

Electronic Health Records (EHRs) than in scientific publi-

cations. In practice, the corpus contains just a few such ex-

amples. Second, we were aware that, with the exception

of Bio-LarK CR, the other CR systems are not able to han-

dle such phenotypes, and as such we would not have been

able to provide a fair basis for comparison.

Benchmarking phenotype CR systems

A wide variety of CR systems have been previously

described—most of which are aimed at a specific purpose

or domain. In this context, we focus on and benchmark

three annotation tools that are able to perform CR using

the HPO: the NCBO Annotator (17)—an ontology-agnos-

tic CR system, the OBO Annotator (18) and the Bio-LarK

CR—both of which have been built with HPO as a direct

target.

Other systems we might have applied include

ConceptMapper (21), Whatizit (22), Bio/MedLee (23),

Apache cTAKES (24), or the well-known MetaMap (25).

These systems were, however, either difficult to access or did
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not provide a route to use HPO as a desired annotation out-

come. The CR systems employed adopt a range of techniques

but tend to avoid deep parsing and make use of a range of

shallow parsing (e.g. for named entity recognition and part of

speech tagging) and pattern-based techniques, supplemented

with restrictions and inferences on HPO. In all cases, we have

treated the systems as black boxes (i.e. off-the-shelf solutions)

and hence we have no access to any degree of confidence they

may have in their concept selections.

M1: NCBO Annotator. The NCBO Annotator is a CR sys-

tem available online and as well as part of the NCBO vir-

tual appliance. It identifies and indexes biomedical

concepts in unstructured text by exploiting a range of over

300 ontologies stored in BioPortal (26)—the largest reposi-

tory of biomedical ontologies. The system can be applied

to all ontologies or restricted to a specified set—such as in

our case, the HPO.

NCBO Annotator operates in two stages: CR and,

optionally, semantic expansion. CR performs lexical

matching by pooling terms and their synonyms from across

the ontologies and then identifies lexical variants in free

text and assigns annotations using Mgrep (27). Mgrep

applies stemming as well as permutations of the word

order combined with a radix-tree-search algorithm to

allow for the identification of the best matches of diction-

ary entries to a particular text span. During semantic

expansion, various rules such as transitive closure and

semantic mapping using the Unified Medical Language

System (UMLS) Metathesaurus are used to suggest related

Table 1. Distribution of disorders associated with the the HPO

gold standard corpus

Disorder (OMIM) Count

Angelman syndrome (OMIM:105830) 56

Neurofibromatosis type II (OMIM:101000) 46

Basal cell nevus syndrome (OMIM:109400) 40

Branchiootorenal syndrome 1 (OMIM:113650) 27

Brachydactyly type C (OMIM:113100) 14

Branchiooculofacial syndrome (OMIM:113620) 13

Townes-Brocks syndrome (OMIM:107480) 11

Arthrogryposis distal type 1 (OMIM:108120) 9

Brachydactyly type A1 (OMIM:112500) 7

Popliteal pterygium syndrome (OMIM:119500) 6

Prader-Willi syndrome (OMIM:176270) 5

Arthrogryposis distal type 2B (OMIM:601680) 4

Van der Woude syndrome (OMIM:119300) 3

Neurofibromatosis type I (OMIM:162200) 3

Arthrogryposis distal type 2A (OMIM:193700) 3

Arthrogryposis distal type 5 (OMIM:108145) 2

Gordon syndrome (OMIM:114300) 2

Trismus-pseudocamptodactyly syndrome

(OMIM:158300)

2

Schwannomatosis (OMIM:162091) 2

Neurofilament protein heavy polypeptide

(OMIM:162230)

2

Hemifacial microsomia (OMIM:164210) 2

Symphalangism proximal cushing symphalangism

(OMIM:185800)

2

Branchiootic syndrome 1 (OMIM:602588) 2

Arthrogryposis distal type 4 (OMIM:609128) 2

Acrodysostosis 1 with or without hormone resist-

ance (OMIM:101800)

1

Arthrogryposis-like hand anomaly and sensorineural

deafness (OMIM:108200)

1

Stickler syndrome type I (OMIM:108300) 1

Brachydactyly type A2 (OMIM:112600) 1

Charcot-Marie-Tooth disease demyelinating type 1B

(OMIM:118200)

1

Arthrogryposis distal type 9 (OMIM:121050) 1

Arthrogryposis distal type 2E (OMIM:121070) 1

Crouzon syndrome (OMIM:123500) 1

Duane retraction syndrome 1 (OMIM:126800) 1

Multiple endocrine neoplasia type I

(OMIM:131100)

1

Treacher Collins-Franceschetti syndrome

(OMIM:154500)

1

Mesothelioma malignant (OMIM:156240) 1

Neurofibromatosis familial spinal (OMIM:162210) 1

Neurofibromatosis type III mixed central and per-

ipheral (OMIM:162260)

1

Noonan syndrome 1 (OMIM:163950) 1

Oculodentodigital dysplasia (OMIM:164200) 1

Polydactyly postaxial type A1 (OMIM:174200) 1

Greig cephalopolysyndactyly syndrome

(OMIM:175700)

1

(continued)

Table 1. Continued

Disorder (OMIM) Count

Hutchinson-Gilford progeria syndrome

(OMIM:176670)

1

Multiple pterygium syndrome autosomal dominant

(OMIM:178110)

1

Symphalangism C. S. Lewis type (OMIM:185650) 1

Thumbs stiff with brachydactyly type A1 and devel-

opmental delay (OMIM:188201)

1

Waardenburg syndrome type 1 (OMIM:193500) 1

Williams-Beuren syndrome (OMIM:194050) 1

Diarrhea 1 secretory chloride congenital

(OMIM:214700)

1

Cystic fibrosis (OMIM:219700) 1

Hydrocephalus autosomal dominant

(OMIM:600256)

1

Bor-Duane hydrocephalus contiguous gene syn-

drome (OMIM:600257)

1

Cholesteatoma congenital (OMIM:604183) 1

Basal cell carcinoma susceptibility to 1

(OMIM:605462)

1

The listing includes the name of the OMIM disease and the number of

abstracts associated with it (the Count column).
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concepts from within and across ontologies based on

extant relationships. For the purpose of our experiments,

only the CR part is relevant.

M2: OBO Annotator. OBO Annotator (18) was designed

to perform phenotype recognition of rare diseases specifi-

cally relating to patient case reports. Their method involves

identifying a set of seed linguistic patterns from case

reports in PubMed abstracts in a controlled search using

cerebrotendinous xanthomatosis as the motivating topic.

OBO Annotator proceeds through each sentence trying to

exactly match each string within the seed pattern to HPO

concepts using a longest match assumption. If no longest

match can be found the candidate string is divided into

shorter parts and matching is tried again, e.g. in the case of

coordinated terms such as ‘brain and cerebellar atrophy’.

Orthography, tokenization, stemming, punctuation and

stop words are all handled within the system. OBO

Annotator supports contextual variations using transitive

closure on the concepts in the HPO hierarchy, i.e. to infer

term similarity based on ancestors and descendants of each

concept under consideration. More specific annotations

are preferred over more general ones where there are over-

lapping annotations.

M3: Bio-LarK CR. The Bio-LarK concept recognizer has

been developed as part of the SKELETOME project (28),

with an initial goal of performing automatic annotation of

skeletal phenotypes in patient clinical summaries.

Subsequently, it was extended to enable phenotype CR

using HPO. Bio-LarK CR uses an Information Retrieval

approach to index and retrieve HPO concepts, combined

with a series of language techniques to enable term normal-

ization and decomposition (e.g. token lexical variation).

In addition to standard CR, the system is able to decom-

pose and align conjunctive terms (e.g. ‘short and broad

fingers’ aligned to HP: 0009381—Short fingers and HP:

0001500—Broad fingers), as well as recognize and process

non-canonical phenotypes, such as ‘fingers are short and

broad’—which would be aligned to the same terms as in

the previous example. This is realized via an efficient

pattern matching approach that uses manually crafted

rules over the shallow structure of the sentence. The recog-

nition of non-canonical phenotypes is an optional feature

of Bio-LarK CR and can be enabled or disabled subject to

the intented use of the system.

Experimental setup

The HPO gold standard corpus was used to assess the CR

performance of the three above-listed systems. More con-

cretely, the systems have been applied on the free text of the

228 abstracts, which resulted in an individual set of

annotations. These annotations have then been aligned to

the gold standard annotations using exact boundary match-

ing. It is worth mentioning that exact boundary detection

represents the default strategy for all chosen systems.

Furthermore, the annotation guidelines (see earlier) explic-

itly impose the fine-grained decomposition of coordinations,

hence overlap matching strategies are not required.

Standard evaluation metrics have been computed on the

alignment results:

• Precision (P); P¼TP/(TPþ FP)

• Recall (R); R¼TP/(TPþ FN)

• F-Score—the harmonic mean of Precision and Recall;

F-Score¼ 2*PR/ (PþR)

In the equations earlier, TP is the number of true posi-

tive annotations (i.e. the HPO concepts suggested by the

system match those listed in the gold standard); FP is the

number of false positive annotations (i.e. the HPO con-

cepts suggested by the system do not match those listed in

the gold standard); and FN is the number of false negative

annotations (i.e. the number of text spans failed to be iden-

tified by the system).

Towards standardized error analysis: Introducing the

HPO test suite package

The experimental setup described earlier provides a clear

view on the systems’ CR performance on real data.

However, since the coverage of the HPO terms is not

exhaustive, it is not able to create a comprehensive picture

of the systems’ strengths and weaknesses. Furthermore, as

in the case of any other gold standard evaluation, error

analysis is qualitative, the process of interpreting and dis-

cussing the errors being subject to the observations made

by the evaluator.

Cohen et al. (16) have adopted the test suite methodol-

ogy from software engineering and proposed a stratified

approach to data sampling based on several criteria. Each

criterion focuses on a set of concepts that share a particular

property, such as length in tokens, presence of punctuation,

coordination, etc. This leads to a framework able to charac-

terize the strengths of the linguistic patterns used within

each CR system and, moreover, to a platform that can be

applied and shared to perform standardized error analysis.

Hence, as a second major contribution, following

the work done by Cohen et al., we propose and make

available a set of 32 manually crafted criteria (or test

cases) comprising 2164 entries. Each test case entry

corresponds to the label of an HPO concept and was

manually selected to conform with the corresponding test

case. Furthermore, since the linguistic characteristics of

phenotypes depend, to some extent, on the anatomical
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localization of the abnormality, we have structured these

test suites according to the 21 top-level HPO phenotypic

abnormalities.

Figure 1 depicts the distribution of 32 test cases

(or criteria) according to their types (their complete

description is available in Section S2 in the Supplementary

Material) and with respect to the 21 top-level HPO pheno-

typic abnormalities. On average, each criterion has 70 test

case entries. The test cases can be grouped into the follow-

ing categories (examples are provided in the same table):

• Length-based tests—characterize the system’s ability to

cater for the wide variety of concept label length in

tokens. The length of all HPO concept labels ranges

from 1 to max. 14.

• Tests accounting for the presence of certain types of tokens,

including punctuation, isolated numerals (Arabic or

Roman) and stop words (IN, OF, TO, BY, FROM, WITH)

• Lexical variation tests covering the transformation of

some of the tokens from singular to plural or from nouns

to adjectives and vice versa

• Token ordering tests—opposing canonical and trans-

formed canonical ordering

• Synonym tests—original concept labels are replaced by

suitable synonyms listed in the ontology

• Other, more specialized tests, such as non-English canon-

ical, i.e. the ability to detect non-English tokens, meta-

phoric constructs—phenotypes are perhaps the only

domain-specific concepts that contain metaphoric

expressions, e.g. bone-in-bone appearance and coor-

dination—composite terms created via conjunctions of

several atomic HPO concepts.

Figure 1 also depicts the distribution of the test cases

according to the top-level HPO categories, which follows to

a large extent the natural distribution of concepts in the

HPO (as shown in Section S3 in the Supplementary

Material). On average, each such HPO category has 100

test case entries. The actual number of entries depends on

the distribution and diversity of the types of concept labels

in the respective category. For example, ‘Abnormality of the

voice’ and ‘Abnormality of the breast’ have the lowest cov-

erage in HPO, and hence, also have the lowest number of

test case entries assigned. On the other hand, ‘Abnormality

of the cardiovascular system’ and ‘Abnormality of the integ-

ument’ have a wider variety of terms (from a lexical and

morphological perspective) and hence they are better repre-

sented in terms of test cases, each with more than 150

entries. Finally, while ‘Abnormality of the skeletal system’ is

by far the most dominant category in terms of coverage—

almost 30% of HPO terms are under this category—this

does not translate proportionally in the number of test case

entries. Skeletal abnormalities have a fairly uniform lexical

representation and consist of a large number of repetitions

and partonomies of anatomical localizations, leading to a

low lexical and morphological variety.

The test suite experimental setup was similar to the gold

standard approach. We have treated each test case as an

individual free text document and used them as input for

the CR systems. The alignment strategy and evaluation

metrics were the same as earlier, i.e. exact boundary match-

ing with Precision, Recall and F-Score. The use of exact

boundary matching in this context has the role to penalize

systems that produce also concepts nested within the

provided label, in addition to the concept representing the

target of the test case entry. Furthemore, this is also required

to enable an appropriate processing of term coordination.

Results

HPO gold standard corpus

The resulting corpus comprises 1933 individual annotations

(with an average length of 2.42 tokens or words), which

map to 460 unique concepts in HPO (4.4% coverage). In

total, the annotations are related to 77 OMIM disorders.

In order to create a better overview of the concepts

captured in the corpus, we have mapped them to the 21

top-level phenotype abnormalities defined by HPO.

Figure 2 depicts the distribution of the resulting annota-

tions according to these categories, when looking at both

the overall percentage (i.e. counting every instance of a

particular annotation—e.g. if ‘meningioma’ appears three

times in an abstract, the resulting count would be three), as

well as the unique coverage (i.e. counting the unique

instances of each concept—using the same example, if

‘meningioma’ appears three times in an abstract, the result-

ing count would be one). From an overall perspective, the

most highly represented concepts include abnormalities of

the nervous system (30.36%), neoplasms (22.50%), abnor-

malities of the integument (16.6%) and abnormalities of

the skeletal system (15.62%). From a unique coverage per-

spective, the distribution is slightly different, with abnor-

malities of the skeletal system, abnormalities of the

nervous system and abnormalities of the head and neck

dominating the corpus—25.86%, 22.82% and 14.78%,

respectively. The two distributions mirror fairly closely the

natural distribution of HPO concepts in the ontology (see

Section S3 in the Supplementary Material).

Experimental results

The evaluation results on the HPO gold standard corpus

(HPO GS) are presented in Table 2, while a more detailed
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overview according to the top-level HPO categories is

depicted in Figure 3. The OBO Annotator and Bio-LarK

CR share the best performance—0.54 and 0.56 F-Score.

While the overall F-Score shows minor differences, we can

observe that the OBO Annotator focuses more on precision

(0.69 as opposed to 0.65 of Bio-LarK) and Bio-LarK CR

more on recall (0.49 as opposed to 0.44 of the OBO

Annotator). The Recall of the NCBO Annotator was simi-

lar to that of the OBO Annotator—with a slight decrease

of 0.05—however, the Precision, and hence the overall

F-Score, was substantially lower: 0.54 Precision (on aver-

age 0.13 less the other two systems), leading to 0.45

F-Score (0.09 lower than OBO Annotator and 0.11 lower

than Bio-LarK CR).

Although the HPO GS evaluation has shown relatively

consistent performance across all three tools, the overall

results on the test suite evaluation were remarkably differ-

ent—as listed in Table 3 (Figure 4 depicts an in-depth per-

spective according to each test case). Here, Bio-LarK CR

outperformed both NCBO Annotator and OBO

Annotator, achieving 0.97 Precision and an overall 0.95 F-

Score. Surprisingly, the OBO Annotator, which performed

on par with Bio-LarK on the gold standard, had the lowest

Precision (0.54) and a very low Recall of 0.26, leading to

Figure 1. Distribution of HPO test cases according to their types mapped to the top-level HPO categories. The larger the symbol, the more test case

entries the corresponding mapping has. For example, the largest number of test case entries of Length-1 is present in Abnormality of the integument.

In addition to providing an overview on the test suite content, this figure also depicts a birds-eye view over the variation in terms of characteristics of

the concept lexical representations in the different top-level HPO categories. We can observe, e.g. that only a very few top-level categories contain

concept labels with a length greater than 10. Similarly, metaphoric constructs seem to be present only in skeletal abnormalities, which also dominate

together with the abnormalities of the integument and of the metabolism the range of labels containing punctuation.
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0.35 F-Score. Moreover, the NCBO Annotator achieved

remarkable results in comparison to its performance on the

HPO GS, with a 0.95 Precision (very similar to Bio-

LarK)—i.e. an increase of 0.41 when compared to the

HPO GS results, and a Recall of 0.84—0.09 lower than

Bio-LarK, however, 0.45 higher than its Recall on HPO

GS. Whilst the results of the two experiments are not

directly comparable, they can be used to provide a comple-

mentary understanding of the system performance, given

that one has been performed on a real-world corpus, and

the other on a controlled test suite.

Discussion

Distribution of concepts in the HPO GS corpus

As mentioned earlier, Figure 2 depicts the distribution of

the concept annotations according to the top-level HPO

categories both from the overall as well as from the unique

perspectives. It is important to remark that the interpreta-

tion of these distributions should take into account two

inter-weaved aspects. First, the Overall distribution quanti-

fies the amount of duplicate annotations in comparison to

unique annotations—or more concretely the comparison

between counting a particular concept annotation every

time it appears against counting it only once. For example,

we can observe that neoplastic, neural and integumental

anomalies contain a large number of duplicate

annotations—visible in the change of level from Overall to

Unique. This leads to them covering only a fraction of the

Figure 2. Distribution of HPO annotations according to the top-level HPO categories. Two distributions are shown: an overall distribution that

accounts for duplicate concept annotations (i.e. every instance of an annotation is counted), and a unique distribution that shows the counts of the

unique concept annotations (i.e. every concept is counted a single time, indifferently of how many annotations exist in the corpus).

Table 2. System performance on the HPO corpus using exact

matching and concept identification

Precision Recall F1

NCBO Annotator 0.54 0.39 0.45

OBO Annotator 0.69 0.44 0.54

Bio-LarK CR 0.65 0.49 0.56

OBO Annotator and Bio-LarK CR have a similar overall efficiency, the

difference in F-Score being of only 0.02. The efficiency of the NCBO

Annotator was on average with 10 percentage points lower than of the other

two systems.
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existing set of HPO concepts in the corresponding top-level

category, while annotations of skeletal abnormalities,

e.g. are in most cases unique. Second, both distributions

capture the intrinsic multi-inheritance nature of the pheno-

types in HPO—i.e. the fact that a phenotype concept may

have ancestors leading to several different top-level catego-

ries. To be more precise, 19.12% of the set of unique con-

cepts have more than one parent. For example, HP:

0000250 (Dense calvaria) is both an Abnormality of the

skeletal system (via HP: 0002683—Abnormality of the

calvaria) as well as an Abnormality of the head and neck

(via HP: 0004330—Increased skull ossification). Hence,

while from a unique counting perspective annotations of

skeletal abnormalities are dominant, in practice, they are

shared with other categories, such as abornormalities of

the nervous system. In conclusion, the corpus focuses on a

set of cohensive and tightly coupled abnormalities of the

skeletal (including head and neck), integument and nerv-

ous systems with relations to neoplasm.

Error analysis

The systems’ overall performance on the gold standard to

some extent matched our expectations. Phenotype con-

cepts are highly complex, in particular due to their intrinsic

lexical structure, as well as due to their structural and

semantic ambiguity—the reported performance reflects

this complexity.

In order to provide a finer-grained view on this per-

formance, Figure 3 depicts the F-Score achieved by the

Figure 3. F-Score results achieved by the three systems on the HPO gold standard, distributed according to the HPO top-level category.

Table 3. System performance on the HPO test suites using

exact matching and concept identification

Precision Recall F1

NCBO Annotator 0.95 0.84 0.89

OBO Annotator 0.54 0.26 0.35

Bio-LarK CR 0.97 0.93 0.95

As opposed to the results listed in Table 2, the NCBO Annotator achieved

an overall F-Score similar to the one of Bio-LarK CR—i.e. 0.89 compared to

0.95. Surprisingly, the OBO Annotator’s efficiency was much lower than of

the other two systems (F1 of 0.35), although on real data it performed on par

with Bio-LarK CR.
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systems according to the top-level HPO category. First,

we can observe that three HPO top-level categories are

not present in the CR results—i.e. ‘Abnormality of

blood and blood-forming tissues’, ‘Abnormality of the

breast’ and ‘Abnormality of the voice’—whilst the two

others have poor F-Score results—i.e. Abnormality of

immune system and of metabolism/homeostasis. These

results are, however, more likely due to their very poor

representation in the HPO GS. On the other hand, the

systems performed better on some other poorly repre-

sented categories, such as ‘Growth abnormality’,

‘Abnormality of the respiratory system’ or ‘Abnormality

of prenatal development or birth’.

Second, we can use this overview as an indication of

the systems’ strengths and weaknesses in recognition of

certain types of HPO concepts. For example, Bio-LarK

outperformed the other systems on ‘Abnormality of

the abdomen’,’Abnormality of the connective tissue’ and

‘Neoplasm’, the OBO Annotator on ‘Abnormality of the

genitourinary system’ and ‘Abnormality of the nervous sys-

tem’, while the NCBO Annotator on ‘Growth

abnormality’ and ‘Abnormality of the cardiovascular sys-

tem’. No system consistently outperformed the others on

all categories.

A closer inspection of the errors in the CR process

reveals three particular types:

• Coordination—e.g. ‘aplastic or hypoplastic nails’—the

OBO Annotator and Bio-LarK were able to correctly

identify and decompose only some examples of coordi-

nation. In particular, the OBO Annotator was unable to

decompose most coordinations created using the con-

junctive connector ‘OR’. The NCBO Annotator identi-

fied only the tail units within a coordination (i.e.

‘hypoplastic nails’), without being able to correctly iden-

tify any entire coordination.

• Canonical order transformed—e.g. ‘Brachydactyly type

A1’ instead of ‘Type A1 brachydactyly’ (HP: 0009371).

Both the OBO Annotator and the NCBO Annotator

were unable to correctly identify concepts that had their

canonical order transformed in the text.

• Acronyms and complex concept conjunctions—e.g.

‘BDA1’ (standing for ‘Type A1 brachydactyly’) or ‘ster-

eotyped jerky movements’—which is a conjunction of

HP: 0000733 (Stereotypical motor behaviours) and HP:

0007087 (Involuntary jerking movements). No system

was able to identify such concepts: (i) acronyms—

because none of the systems performs acronym expan-

sion and these were not listed as synonyms in the concept

definition; (ii) complex conjunctions—these require

human interpretation in order to correctly align the cor-

responding underlying concepts.

The above listed errors types are partly confirmed also

by the test suite evaluation. Figure 4 depicts the F-Score

results according to the test criteria. For example, the pair

{Canonical ordering—Canonical ordering—transformed}

should present mirrored results if a system is able to cater

for lexical groundings that do not respect the token order as

defined in the concept label (i.e. mapping ‘Hypoplasia of the

optic nerve’ to ‘Optic nerve hypoplasia’). Here, we can see

an important decrease in F-Score for the NCBO Annotator

and only a slight decrease for Bio-LarK, which confirms the

finding earlier. The OBO Annotator, has however an unex-

pected behaviour, reporting an increase in F-Score in this

category. When inspecting the actual concepts, we were not

able to find a correlation between the concept correctly

identified in the canonical ordering and those in the canoni-

cal ordering transformed. More concretely, in most cases

the system has identified one, but not the other, with a slight

preference for the canonical ordering transformed.

The results in the Canonical ordering pair can be corre-

lated with those in the Lexical variation category and in

the {Singular—Plural} test pair (designed in the same man-

ner as the Canonical ordering pair). Lexical variation refers

to altering the lexical form of some of the tokens without

altering the overall semantics—e.g. from ‘Hypoplasia of

the optic nerve’ to ‘Hypoplastic optic nerve’. It is impor-

tant to note that there are cases in which transforming the

canonical ordering requires a certain degree of lexical var-

iation. Here, only Bio-LarK is able to perform consis-

tently—achieving high F-Scores (over 0.75). The NCBO

Annotator has difficulties, in particular, in dealing with the

lexical variation—as opposed to the OBO Annotator,

which achieves an F-Score of 0.25. The same counterbal-

anced results are visible also on the {Singular—Plural} test

case where the NCBO Annotator displays a 0.2 decrease in

F-Score from singular to plural, while the OBO Annotator

decreases from 0.8 F-Score on plural to 0.3 on singular—

hence showing a clear preference for plural terms. Finally,

the Coordination test case mirrors the gold standard

results, with Bio-LarK and the OBO Annotator outper-

forming the NCBO Annotator.

An overall summary of lessons learned from the test

suite evaluations is listed later:

• NCBO Annotator performs best when the text spans of

interest map perfectly to the lexical groundings of the

associated concepts—indifferently of the length of

these lexical groundings or their internal composition

(i.e. punctuation or stop words)

• The OBO Annotator is able to handle better lexical var-

iation and coordination, but encounters major issues

when targeting lexical groundings with higher number of

tokens or those consisting of arabic numerals.
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• Bio-LarK performs fairly consistently across all tests,

with some difficulties with coordination and lexical

variation.

Section S4 in the Supplementary Material provides

additional insight into the systems’ performance on test

suites, by looking at an orthogonal dimension—i.e. evalua-

tion results according to the HPO top-level category.

It is notable that the distribution of the HPO gold

standard phenotypes mirrors the categories of disorders

included in the corpus—i.e. neurodevelopmental and skele-

tal disorders—although they also mirror to a large extent

the natural distribution of phenotypes in HPO (as shown

in Section S3 in the Supplementary Material). This may

influence the global preception ofthe CR efficiency of a

particular system. Hence, the system CR results discussed

earlier should be stricly interpreted in the context provided

by the corpus annotations and the possible bias towards

abnormalities of the integument and of the nervous and

skeletal systems (including head and neck).

Alternatively, this bias may prove the utility of the test

suite corpora and offer the explanation for the large dis-

crepancy in CR efficiency shown by the OBO Annotator

on the gold standard vs. the test suite. More concretely, the

OBO Annotator seems to cater well for this particular dis-

tribution of phenotypes, but cannot handle the wider

range—in terms of constructs and lexical variety—

captured by the test suites. Oppositely, the consistent

behaviour exhibited by the NCBO Annotator and Bio-

LarK CR on both corpora leads to the conclusion that they

have a higher chance of achieving the same results on a

new corpus—perhaps built using the same underlying for-

mat (i.e. publication abstracts).

The goal and utility of the test suite corpus

The goal of the test suites introduced in this article is to

provide a standardized benchmarking environment for

error analysis—one that enables us, and others, to lay out

a quantitative perspective on a set of errors a CR system

may produce. Ideally, these should be a mixture of ‘stand-

ard’ cases (i.e. cases one would expect a system to handle

correctly—similarly to paradigm employed in software

engineering) and ‘challenging’ cases. And while we have

tried to include some of the latter (e.g. the canonical order

transformed or the term coordination)—the vast majority

of our test cases fit into the former category. As a side

remark, research on building challenging test cases in the

CR context is almost inexistent. And whilst this idea has

been raised, there is a paucity of published research in the

area, and only lately it has started to gain some attention,

in particular with the goal of building such test cases auto-

matically (29).

By providing an evaluation both on real data, as well as

on structured test cases, our intention is to describe two

dimensions of the same story—dimensions that are com-

plementary but not necessarily nested within each other.

The results on the real data reflect the systems’ efficiency

in the context of the concept distributions and characteris-

tics underpinning this data. The real data covers aspects

absent from the test cases and found, in their majority, in

the qualitative error analysis accompanying the corre-

sponding evaluation—e.g. lack of synonyms, lack of acro-

nym expansion, particular forms of term coordination.

The structured test cases, on the other hand—as mentioned

earlier—depict a ‘what-if’ type of analysis—i.e. ‘what

would be the behaviour of system X if the real data would

Figure 4. F-Score results achieved by the three systems on the HPO test suites, distributed according to the type of the test case.
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contain a concept found in the Y test category?’ And we

believe that this goal has been attained—even if more

emphasis should be placed on challenging test cases. For

example, the test suites show that some systems encounter

difficulties in handling concepts with long lexical

groundings—e.g. the OBO Annotator efficiency is inexis-

tent for lengths greater than nine. Such a finding would not

be possible with the real data, where the concepts’ average

length in tokens is 2.42. Similarly, the same test suites

show that the NCBO Annotator is not able to handle coor-

dination and transformed canonical ordering, which again,

is covered only in part by the real data.

In conclusion, the two dimensions require a tighter

integration, in order to enable a correlation of the experi-

mental results emerging from them. We intend to work on

this aspect in the near future, in parallel to supporting the

progress of the research on CR test suites.

Conclusions and future work

Phenotype recognition is essential for interpreting the evi-

dence about human diseases in clinical records and the

scientific literature. In this article, we have presented the

first corpus of manually annotated abstracts using the HPO.

The corpus represents a valuable resource for gaining

a deeper understanding of the linguistic characteristics of

phenotypes both from an overall perspective, and with

respect to their classification according to the HPO top-level

categories.

Furthermore, inspired by the work of Cohen et al. (16),

we have provided a set of 32 manually crafted HPO-based

test suites. The discussion presented on the experimental

results shows the utility and added-value of CR test suites.

First, they provide a controlled environment for detecting

patterns of errors emerging from the CR process.

Identifying such patterns is beneficial for both the users of

the system—as they understand the systems’ strengths and

weaknesses—as well as for the systems’ developers—as

they are able to focus their attention on correcting those

aspects associated with the low-performing test suites.

Second, test suites enable reproducibility, standardized

error analysis and a fair ground for comparing system

performance.

Finally, we evaluated three off-the-shelf CR systems

that are able to identify HPO concepts. These have been

benchmarked using both the gold standard and the test

suite corpora.

Future work will focus on expanding the gold standard

corpus to increase the coverage of HPO concepts and on

designing additional test suites. In addition, we intend to

investigate the opportunity of devising hybrid CR system

configurations (or ensemble learners) that are able to take

advantange the strengths and weaknesses of the individual

systems, as detected by the test suites presented in this article.

Supplementary Data

Supplementary data are available at Database Online.
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1. Robinson,P.N.,Köhler, S.,Bauer, S. et al. (2008) The Human

Phenotype Ontology: a tool for annotating and analyzing human

hereditary disease. Am. J. Hum. Genet., 83, 610–615.
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