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Abstract

Motivation: Monoclonal antibody (mAb) therapeutics are often produced from non-human sources (typically mur-
ine), and can therefore generate immunogenic responses in humans. Humanization procedures aim to produce anti-
body therapeutics that do not elicit an immune response and are safe for human use, without impacting efficacy.
Humanization is normally carried out in a largely trial-and-error experimental process. We have built machine learn-
ing classifiers that can discriminate between human and non-human antibody variable domain sequences using the
large amount of repertoire data now available.

Results: Our classifiers consistently outperform the current best-in-class model for distinguishing human from mur-
ine sequences, and our output scores exhibit a negative relationship with the experimental immunogenicity of exist-
ing antibody therapeutics. We used our classifiers to develop a novel, computational humanization tool, Hu-mAb,
that suggests mutations to an input sequence to reduce its immunogenicity. For a set of therapeutic antibodies with
known precursor sequences, the mutations suggested by Hu-mAb show substantial overlap with those deduced ex-
perimentally. Hu-mAb is therefore an effective replacement for trial-and-error humanization experiments, producing
similar results in a fraction of the time.

Availability and implementation: Hu-mAb (humanness scoring and humanization) is freely available to use at
opig.stats.ox.ac.uk/webapps/humab.

Contact: deane@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since the first monoclonal antibody (mAb), muromonab, was
approved by the US FDA in 1986, the antibody therapeutics market

has grown exponentially, with 6 of the top 10 selling drugs in 2018
being mAbs (Lu et al., 2020). Therapeutic mAbs and antibody-

related products such as Fc-fusion proteins, antibody fragments,
nanobodies and antibody-drug conjugates are now the predominant
class of biopharmaceuticals, representing half the total sales of all

biopharmaceutical products (Ecker et al., 2015). These therapeutics
treat a range of pathologies including but not limited to cancer, mul-

tiple sclerosis, asthma and rheumatoid arthritis. As of September
2020, 93 therapeutic mAbs have been approved by the US FDA and
at least 400 others are in development (Raybould et al., 2020).

Many therapeutic antibodies are derived from natural B-cell rep-
ertoires of mice, or mice with an engineered human germline reper-

toire (Lu et al., 2020). However, antibodies developed in animal
models are often not tolerated by humans and can elicit an immune
response—this property is known as immunogenicity. Immunogenic

responses can negatively impact both safety and pharmacokinetic

properties of the therapeutics and can result in the production of
neutralizing antibodies that lead to loss of efficacy (Lu et al., 2020).
This can pose a significant barrier to the development and approval
of therapeutics (Chirino et al., 2004). To combat the immunogen-
icity of mAbs, various techniques to engineer murine antibodies by
substituting part of their sequence with human ones are used. These
include chimerization (Morrison et al., 1984) and humanization
(Jones et al., 1986). The former involves the combining of a murine
variable domain with human constant region domains, and the lat-
ter involves grafting the murine complementarity-determining re-
gion (CDR) sequences into a human scaffold. Early studies have
suggested that more human-like sequences demonstrate lower levels
of immunogenicity (Hwang and Foote, 2005). While multiple tech-
niques have been developed to obtain fully human mAbs, human-
ized antibodies remain the predominant class of mAb making up
�50% of therapeutics in development (Raybould et al., 2020).

The aim of humanization is to reduce immunogenicity while pre-
serving the efficacy of the therapeutic. Typically, human frame-
works with high homology to the original sequence of interest are
chosen as a scaffold (Safdari et al., 2013). Some murine residues in
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framework regions, referred to as Vernier zone residues, affect the
conformation of CDR loops and may therefore be retained to pre-
serve antibody affinity. The humanization process remains a bottle-
neck in mAb development, often based on trial-and-error, involving
arbitrary back mutations to restore efficacy or reduce immunogen-
icity (Williams et al., 2010).

An effective humanization protocol must be systematic and be
able to identify the humanness of a sequence with little error.
Higher humanness scores should also be linked with lower levels of
immunogenicity. Multiple computational methods have been devel-
oped to assess antibody humanness. Traditional humanness scores
are based on pairwise sequence identity methods between the sample
and a set of reference (most often germline) human sequences, for
example, a score corresponding to the sequence identity of the clos-
est germline sequence or the average among a set of sequences (Gao
et al., 2013). More recent models take account of both preferences
of particular residues and pair correlations between amino acids
(e.g. Choi et al., 2015; Clavero-Alvarez et al., 2018; Olimpieri et al.,
2015; Seeliger, 2013; Wollacott et al., 2019). A multivariate
Gaussian model utilized a statistical inference approach (Clavero-
Alvarez et al., 2018). This method could distinguish human from
murine sequences accurately, but the score demonstrated only a
weak negative correlation to experimental immunogenicity levels.
More recently, a deep learning approach utilizing a bi-directional
long short-term memory (LSTM) model demonstrated best-in-class
performance in discriminating between human and murine sequen-
ces (Wollacott et al., 2019). However, while making advances, these
approaches are subject to limitations including the need for manual
input (Olimpieri et al., 2015), the requirement for a solved or mod-
elled antibody structure (Choi et al., 2015), the lack of a humaniza-
tion protocol (Gao et al., 2013) and limitations in the size of the
training dataset (Clavero-Alvarez et al., 2018; Seeliger, 2013;
Wollacott et al., 2019).

The recent growth of publicly available antibody sequences has
created many opportunities for large-scale data mining. The
Observed Antibody Space database (OAS) (Kovaltsuk et al., 2018b)
is a database of Ig-seq outputs from 80 studies with nearly 2 billion
redundant antibody sequences across diverse immune states and
organisms (although primarily human and mouse). OAS is ideal for
data mining due to its size, consistent IMGT numbering, and be-
cause the sequences represent natural mature antibodies produced
in vivo.

Utilizing machine learning and the extensive OAS sequence data,
we have developed a method that overcomes the limitations of exist-
ing techniques. We have constructed random forest (RF) classifiers
that accurately distinguish between each human V gene and non-
human variable domain sequences. The ‘humanness’ scores pro-
duced by our RF classifiers exhibited a negative relationship with
observed immunogenicity levels. We used these models to build Hu-
mAb, a computational tool that can systematically humanize VH
and VL sequences of interest by suggesting mutations that increase
humanness. Hu-mAb humanizes the sequence in an optimal manner,
minimizing the number of mutations made to the sequence to limit
the impact on efficacy. The mutations made by our humanizer were
found to be very similar to those made in experimental therapeutic
humanization studies that produced sequences with low immuno-
genicity. Hu-mAb offers a powerful alternative to time-consuming,
trial-and-error-based approaches to reducing immunogenicity. Our
algorithm is entirely automated, does not require an input structure
and uses more sequences for model training than any existing
method. Hu-mAb, both humanness scoring and humanization, is
freely available at opig.stats.ox.ac.uk/webapps/humab.

2 Materials and methods

2.1 Preparation of OAS antibody sequence datasets
All IgG VH and VL sequences were downloaded from the OAS
database (August 2020). Human sequences were split by their V
gene type—for example, V1–V7 for VH sequences. Redundant
sequences, sequences with cysteine errors (Kovaltsuk et al., 2018a)

and sequences with missing framework 1 residues (residues preced-
ing CDR1) were removed. The total dataset included over 65 mil-
lion non-redundant sequences (Supplementary Tables S1 and S2).
The non-redundant non-human (negative) sequences comprised over
13 million sequences from three species (mouse, rat and rhesus)
(Supplementary Fig. S1).

2.2 Training and testing the RF models
All models were trained using the scikit-learn Python module with
default parameters unless stated otherwise. RF binary classifiers for
each V gene type were trained with their respective set of V gene
sequences and the entire set of negative sequences. For example, the
VH V1 model was trained on all human VH V1 sequences (labelled
as the positive class) and all VH negative sequences (labelled as the
negative class). We trained separate classifiers for each human V
gene type to achieve a realistic, V gene type-specific sequence repre-
sentation, rather than a non-physiological representation of mixed
V gene types. Eighty percent of the dataset was used for training,
10% for validation and 10% for testing. Performance plateaued
after 100–200 estimators and therefore each RF classifier was
trained with 200 estimators. The performance of the RF models was
assessed by determining their ability to correctly distinguish human
sequences of a specific V gene type from those originating from
other species. The validation set was utilized to set the classification
threshold according to the value that maximizes the Youden’s J stat-
istic (YJS) (calculated as YJS¼ sensitivityþ specificity�1). It was
found that the threshold that maximizes the YJS was very similar to
the threshold that maximizes the Matthews correlation coefficient
(Supplementary Table S7). This classification threshold was then
used for calculating YJS values of the test set and for classification
of therapeutic datasets. In addition, receiver operating characteristic
(ROC) curves were generated and area under curve (AUC) scores
for each model were calculated in order to assess performance.

2.3 Training and testing the LSTM models
Identical training (excluding negative sequences), validation and test
sets were used for the LSTM models. The method to construct the
LSTM models followed that described in Wollacott et al. (2019). As
with the RF models, the validation set was used to set the classifica-
tion threshold for the test dataset.

2.4 VL Kappa and lambda classifier
An RF model to classify whether a light chain sequence is of type
kappa or lambda was trained on 25% of the total human VL dataset
(12 million sequences). Testing of the model demonstrated perfect
accuracy—it correctly classified every sequence as kappa or lambda
within the entire VL dataset (both human and negative).

2.5 Sequence alignments
All antibody sequences were aligned and numbered using the IMGT
scheme with the ANARCI software (Dunbar and Deane, 2016).

2.6 Therapeutic antibody dataset
All approved and phases 1–3 antibody therapeutics were obtained from
Thera-SAbDab (Raybould et al., 2020) and were aligned and IMGT
numbered by ANARCI (August 2020). Only mAbs with both a VH
and VL sequence were included; this gave a set of 481 therapeutics
(Supplementary Material Section 1C). Each therapeutic has an
International Nonproprietary Name (INN) assigned by the WHO
(Parren et al., 2017). The INN infix preceding the suffix ‘-mab’ is deter-
mined by the origin of the therapeutic. Thus, the origin of each thera-
peutic was obtained from its source infix (Supplementary Fig. S2 and
Table S5). Therapeutics named in 2017 onwards no longer followed
this nomenclature and their origins were obtained from the IMGT data-
base for therapeutic monoclonal antibodies (IMGT/mab-DB) (Poiron
et al., 2010). For 25 therapeutics, we also obtained the precursor
sequences prior to their humanization, in addition to their humanized
sequences. The Supplementary Material contains a list of all 481
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therapeutics and their origin, as well as a list of the 25 experimentally
humanized therapeutic sequences and their precursors.

For each of these 481 therapeutics, we calculated the humanness
scores of the VH and VL sequences. The VL kappa/lambda classifier
(Section 2.4) was used to classify VL sequences as kappa or lambda
prior to humanness scoring. A sequence was considered ‘human’ if it
achieved a humanness score above the YJS threshold for any V gene.
The combined VH/VL sequences were classified as human if both
separate VH and VL scores exceeded the respective YJS thresholds.

2.7 Anti-drug antibody response levels of therapeutics
Anti-drug antibody (ADA) responses of patients were obtained for
217 therapeutics from clinical papers using an identical approach to
that described in Clavero-Alvarez et al. (2018). When multiple ADA
levels are reported for the same therapeutic, the mean between the
minimal and maximal reported value is used. We then obtained the
sequences of 10 additional therapeutics, for which we had ADA re-
sponse data but which were not included in Thera-SAbDab, from
Clavero-Alvarez et al. (2018). The complete list of therapeutics to-
gether with observed immunogenicity levels can be found in the
Supplementary Material.

2.8 Hu-mAb protocol
The input sequence, specific chain type (VH, VL kappa or VL
lambda), V gene type and target humanness score were used as
inputs. To compare Hu-mAb to experimental mutations, for the
therapeutic cases we set the Hu-mAb target score as the humanness
score of the experimentally humanized sequence. Every possible sin-
gle-site mutation within the framework region of the input sequence
was made (Supplementary Fig. S3). This generated a set of mutated
sequences which were then scored by the relevant RF model. The
humanness scores of the mutated sequences were ranked and the top
scoring sequence was selected. This process was repeated with the
newly selected sequence until the target humanness score was
achieved. We carried out this humanization approach for each of
the 25 therapeutics for which we had the precursor and experimen-
tally humanized sequences (Supplementary Material Section 3G).

To investigate the importance of having separate V gene type-
specific classifiers, we conducted a negative control analysis in
which we humanized each of these 25 therapeutics sequences using
an RF classifier corresponding to a different V gene type than the ex-
perimentally humanized sequence. For each therapeutic, we scored
the sequence humanness and selected the RF classifier with the low-
est humanness score for humanization. In the case where multiple
classifiers had the same, lowest humanness score (e.g. a score of 0),
the classifier for humanization was selected at random from those
with the lowest score.

3 Results

3.1 Classification performance of our RF models on

OAS sequences
RF models were generated by training on the OAS IgG dataset (see
Section 2). Each model was created as a binary classifier—trained
on human antibody sequences (either VH, VL kappa or VL lambda)
of a specific V gene type as the positive class and all non-human
sequences of the respective chain type as the negative class. Different
classifiers were constructed for each V gene as principal component
analysis (PCA) demonstrated clear clustering of sequences by their
respective V gene type (Supplementary Fig. S4). The performance of
the RF models was assessed by determining their ability to correctly
distinguish human sequences of a specific V gene type from those
originating from other species. We used the validation set to deter-
mine the classification thresholds as the value that maximizes the
YJS (see Section 2). Performance on the test set was then calculated
using the chosen threshold for each model. Extremely high perform-
ance was observed across all models, achieving AUCs (area under
the ROC curve) close to 1 or 1 (Supplementary Table S8). Similar
YJS values were also seen in both validation and test sets with all

models scoring �0.999. All the VH models perfectly discriminated
between human and negative sequences in both validation and test
sets. Performance on the light chain was also extremely high, albeit
not perfect—this may be due to the greater amount of negative
training data available for the VH models (>12 million sequences)
compared to that of kappa (�950 000) and lambda (�650 000)
models. We also assessed model performance on a subset of our test
dataset limited to sequences with <97% sequence identity with any
training/validation sequence [identified using CD-HIT (Fu et al.,
2012)] and found no drop off in performance (Supplementary Table
S9).

3.2 Comparison of RF models to previous LSTM models
Recent work has used an LSTM model for predicting humanness
(Wollacott et al., 2019). We generated LSTM models with our data-
set of sequences (see Section 2) and performance was compared to
our RF models. Across all 22 models (each chain and each V gene
type), the RF model outperformed the respective LSTM model on
both AUC and YJS scores (Supplementary Table S10). None of the
LSTM models was capable of completely discriminating between
human and negative sequences. We suspect our RF models produce
better results because they are trained using both positive and nega-
tive (non-human) data, whereas LSTM models were only trained on
positive human sequences.

3.3 Classification of therapeutics
A set of 481 antibody therapeutics (phase I to approved) was
obtained from Thera-SAbDab (Raybould et al., 2020) (see Section
2). Each VH and VL sequence was scored by the respective set of RF
classifiers (VH, VL kappa or VL lambda) and was classified as
human if a single model scored it as human (above the YJS thresh-
old). In the case of VL sequences, we built and used an additional
RF model to first discriminate whether the sequence type is kappa or
lambda (see Section 2). Figure 1 shows the proportion of therapeu-
tics classified as human (split by origin) by their chain type (VH or
VL) and combined (requires both VH and VL to be classified as
human). All but 1 of the 176 human sequences were classified as
human, and all 14 mouse sequences as non-human. For the one
human sequence not classified as such (VHþVL), the light chain
humanness score (0.850) fell slightly short of the respective human-
ness threshold (0.856). Overall our RF models classify more thera-
peutics as human, as the human content of the antibody sequences
increases. This trend is also observed using the LSTM method, but
not as clearly—for example, with the LSTM method more of the
chi/humanized set are classified as human than the humanized set
(Supplementary Fig. S8). Additionally, more human therapeutics are
classified as non-human with the LSTM method.

Fig. 1. Percentage of antibody therapeutics classified as human by our RF models,

split by their origin: Human (176 sequences), Humanized (214 sequences), Chi/

Humanized (34 sequences), Chimeric (43 sequences) and Mouse (14 sequences).

Chi/Humanized are sequences which are part humanized and part chimeric.

Therapeutics were classified based on their VH and VL sequences separately, as well

as combined (to be classified as human, both VH and VL scores had to be above the

respective YJS threshold). As the humanness of the therapeutics decreases (left to

right), the proportion classified as human also decreases
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It might be expected that all chimeric sequences have a complete-
ly non-human variable domain as only the constant domains are
replaced with human sequence. However, two VH sequences and
one VL sequence (out of 43) were labelled as human by our classi-
fiers. This is likely to be because these sequences were of Macaca
irus origin—a species that was not present in the training dataset
from the OAS. Two-thirds of the humanized therapeutics had both
VH and VL classified as human. Humanized sequences often have
arbitrary back mutations in the framework regions to improve effi-
cacy which might explain why not all humanized sequences are clas-
sified as human. Moreover, the INN definition was changed in 2014
such that sequences with a chimeric origin could be given an INN
that implied a humanized sequence (Jones et al., 2016). VL sequen-
ces had a lower proportion classified as human compared to VH
sequences. This could be potentially attributed to the lower number
of mutations made in VL sequences (on average 75% of the number
of mutations made in VH sequences—see Table 1).

3.4 Relationship of RF model scores with

immunogenicity
The aim of humanization is to create a therapeutic that is safe and
does not elicit an immune response. A strong predictive score for
classification is not sufficient to produce a humanizer as it does not
explicitly account for immunogenicity. The relationship of the
model scores with observed immunogenic responses, as measured by
the appearance of ADAs, was therefore investigated. The fraction of
patients with observed immunogenic responses was obtained from
FDA labels of approved antibody therapeutics and clinical studies of
therapeutics still in clinical trials (outlined in Section 2). There are
limitations to this data: for example, there are differences in patient
demographic (age, physical conditions, illness), dosage levels and
length of dosage of the therapeutic and if the treatment is in combin-
ation with other drugs. In addition, the murine therapeutics within
the dataset are likely to be inherently biased toward lower levels of
immunogenicity as they are approved therapeutics.

We assessed the correlation between the percentage of patients
who develop ADAs and the minimum humanness score of a thera-
peutic’s VH and VL chains, as the least human chain is expected to
dictate the level of immunogenicity, across 217 therapeutics
(Supplementary Fig. S9). We found that higher minimum model
scores tend to relate to lower immunogenicity, although the correl-
ation was weak with an R2 of 0.31. This correlation is substantially
higher than the R2 of 0.18 observed in previous work (Clavero-
Alvarez et al., 2018).

We grouped the set of 217 therapeutics by their humanness
scores. Figure 2 illustrates this categorization and demonstrates that
high humanness scores are linked with low immunogenicity and vice
versa. For example, 90% of therapeutics that had both their VH and
VL sequence above the YJS threshold exhibited low observed im-
munogenicity and only one sequence (0.7%) had high immunogen-
icity. In contrast, <50% of the therapeutics with scores below the
YJS threshold had low immunogenicity.

3.5 Hu-mAb: a computational humanizer tool and its ap-

plication to previously experimentally humanized

therapeutics
As high model scores were linked with lower levels of immunogen-
icity, we used the score to construct a computational humanization
tool, Hu-mAb, that suggests optimal mutations that would increase
the model score of the input sequence, therefore lowering immuno-
genicity. Residues in the CDRs are not mutated to maintain antigen-
binding properties (described in Section 2). The humanizer should
ideally produce as few mutations as possible to reduce efficacy loss
of the therapeutic. To investigate the similarity between mutations
suggested by Hu-mAb and experimentally derived mutations, ex-
perimentally humanized sequences that demonstrated low immuno-
genicity and for which the precursor sequence was available were
collected (Supplementary Tables S3, S11 and S12). The VH and VL
sequence of each therapeutic was scored by each RF model, and the

V gene identified by selecting the model that produced the highest
score. The precursor sequence was used as the input sequence into
the humanizer, along with its target humanness score (the score
achieved by the experimentally humanized sequence) and V gene
type. An example of the results, for the Campath heavy chain, are
shown in Figure 3.

Table 1 compares the mutations made experimentally and those
suggested by Hu-mAb for the precursor (unhumanized) sequences of
25 therapeutics. Each of these therapeutics displayed low immuno-
genicity in their experimentally humanized forms. All precursor
sequences were of murine, rat or rabbit origin and most had model
scores close to 0 (see Supplementary Material Section 1F/3G for
breakdown of immunogenicity and scores). Two therapeutics had
precursor sequences scoring above their YJS threshold (VL only for
Campath and both VH/VL for Clazakizumab). This is likely due to
sequences of their species origin not being present in the training
dataset of our models—neither VH/VL rabbit sequences
(Clazakizumab) nor VL rat sequences (Campath) were present in the
respective training datasets.

Hu-mAb consistently suggested fewer mutations than the num-
ber carried out experimentally—on average, Hu-mAb suggested
59% and 58% of the experimental amount for the VH and VL
sequences, respectively. Of the mutations suggested by Hu-mAb, an
average of 68% and 77% (for VH and VL sequences, respectively)
were also made experimentally (overlap ratio, OR). Including muta-
tions to similar residue types (see Supplementary Table S6 for group-
ings) resulted in an average adjusted OR (AOR) of 77% and 85%
for VH and VL, respectively. This shows that the mutations sug-
gested by Hu-mAb are very similar to those made experimentally. In
contrast, a randomly humanized sequence would be expected to
produce an average OR and AOR of �2% and �5%, respectively
(see Supplementary Material Section 3H). Hu-mAb is exploiting the
information found in the antibody repertoires to more efficiently hu-
manize therapeutic sequences.

We investigated the significance of considering V gene type in
humanization by humanizing these therapeutics using an RF classi-
fier of a different V gene type (e.g. humanization of a sequence that
is of the VH V1 gene type with the VH V2 classifier). From this, we
obtained much poorer humanization results compared to the above.
Of the 25 therapeutics, humanization of 19 heavy and 8 light chains
was unable to reach the humanness threshold of the experimentally
humanized sequence. Where the threshold was reached, an average
of 12 and 14 more mutations, for heavy and light chains, respective-
ly, were required to achieve the target humanness score.
Furthermore, the OR and AOR, calculated for all mutations sug-
gested even if the threshold was not reached, with the experimental-
ly humanized mutations were on average only 10% and 35% (heavy
chain) and 12% and 43% (light chain), respectively. The full results
are included in Supplementary Material Section 3I.

3.6 Hu-mAb protocol and RF model analysis
Since experimental humanization procedures often involve grafting
of non-human CDRs onto a human framework, it is expected that
the framework regions are more important than the hypervariable
CDR regions for the classification of human and non-human
sequences. Analysis of our RF models’ feature importance found
that this is true; the key residues for discrimination are mostly found
in the framework region (Fig. 4 and Supplementary Figs S5–S7).
However, some CDR positions are utilized by the models for
discrimination.

Analysis of our Hu-mAb protocol showed that identical muta-
tions (i.e. mutations of position X to residue type Y) do not result in
an identical increase in humanness score; the effect depends on the
rest of the sequence. Moreover, we found that Hu-mAb occasionally
made more than one mutation to the same position in the sequence
over the course of the humanization procedure. These observations
suggest that our RF models do not consider positions in the sequence
independently, but rather they incorporate interactions between resi-
dues to more realistically evaluate humanness.

We have also analysed the characteristics of the mutations pro-
posed by Hu-mAb and compared them to those made
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experimentally. In terms of residue types, the mutations proposed by
Hu-mAb and experimentally were very similar (Supplementary Fig.
S10). Most commonly, mutations were from one hydrophobic resi-
due to another (18% and 20% of all mutations made by Hu-mAb
and through experiment, respectively). Least common were muta-
tions involving cysteines (<1% for both Hu-mAb and experiment);
importantly the conserved cysteines at IMGT positions 23 and 104
were never mutated, meaning structural viability is maintained
(Kovaltsuk et al., 2018a).

The geometry of the antibody binding site is dependent on the
orientation of the VH and VL, which is in turn affected by the resi-
dues present at the interface between the two domains. The propor-
tion of mutations suggested by Hu-mAb to key VH–VL interface
residues is slightly lower than the proportion made by experimental
procedures (see Supplementary Table S14), and the OR calculated
for these residues is also higher than the average (74%/96% for VH/
VL compared to an average across all mutations of 68%/77%).
Since Hu-mAb also suggests fewer mutations on average (58–59%
of the number made experimentally), the average number of inter-
face mutations per sequence is around half that of experimental

procedures (0.8 vs 1.6 for heavy chains, 0.8 vs 1.8 for light chains).
A similar pattern was also observed for the Vernier zone—Hu-mAb
proposed fewer mutations to these residues, which are thought to af-
fect CDR conformations (Foote and Winter, 1992) (full details in
Supplementary Material Section 3K). This means that the binding
properties of the antibody are more likely to be preserved by using
Hu-mAb.

4 Discussion

We have developed a novel humanization tool, Hu-mAb, that can
humanize both the VH and VL sequences of potential antibody ther-
apeutics. The model is based on RF classifiers that have been trained
on large-scale repertoire sequence data and demonstrate very high
levels of accuracy in the classification of antibodies by their origin.
The humanness scores of the model exhibited a negative relationship
with observed experimental immunogenicity. Therefore, sequences
that have a higher humanness score are likely to have lower levels of
immunogenicity.

Our model is worse at classifying non-human sequences of spe-
cies that it has not been trained on (as seen with, e.g. the rabbit pre-
cursor sequence of Clazakizumab). The non-human sequences
within OAS are almost entirely of murine origin, and therefore Hu-
mAb is mainly intended for use on murine precursor sequences. We
intend to regularly train and update the RF models as new studies of
non-human species are added to OAS, potentially widening its uses;
however, as most therapeutics of non-human origin are derived
from murine sources, our RF models and humanizer Hu-mAb
should already be applicable in many cases.

Experimental approaches to humanization are largely a trial-
and-error process involving grafting of CDRs onto a completely
human scaffold and if efficacy is lost, arbitrary back mutations are
made to attempt to restore it (Safdari et al., 2013). Hu-mAb was
constructed as a greedy algorithm and is optimized to select the
mutations that provide the highest increase in humanness score, thus
suggesting as few mutations as possible to reduce the likelihood of
impacting the efficacy of the therapeutic. By utilizing RF classifiers
that have only trained on a particular V gene type, the humanizer
should produce a realistic sequence with a single V gene origin.

Hu-mAb is efficient and only proposes mutations to the key resi-
dues in the framework region responsible for humanness; it incre-
mentally suggests additional mutations to reduce immunogenicity if
necessary; and back mutations can be suggested in a sequential and
non-arbitrary manner (the mutation with the lowest impact on the
humanness score). Compared to experimentally humanized thera-
peutics, Hu-mAb suggested �60% of the number of mutations, with
a high similarity to those suggested experimentally (average AOR of

Fig. 2. Relationship between the humanness scores produced by our RF models and

experimentally determined immunogenicity. Therapeutics were split into three cate-

gories according to the minimum humanness score of the VH and VL chains: posi-

tive with a score above 0.9 [‘Positive (high score, score > 0.9)’] (85 sequences),

above the YJS threshold for the relevant RF model but with a score � 0.9 [‘Positive

(score � 0.9)’] (57 sequences) and below the YJS threshold (‘Negative’) (75 sequen-

ces). Both the VH and VL sequences have to be above the threshold to be classed as

‘Positive’. The immunogenicity of a therapeutic is also represented by three levels:

over 50% of patients develop ADAs (orange, solid), 10–50% of patients develop

ADAs (yellow, dotted) and under 10% of patients develop ADAs (blue, striped).

Therapeutic sequences classified as human by our model tend to have low immuno-

genicity levels, while sequences classified as not human are more immunogenic

Fig. 3. The Hu-mAb humanization procedure demonstrated using the heavy chain sequence of the therapeutic Campath. The humanized sequence produced experimentally is

shown at the bottom of the figure (conserved residues in yellow, mutated residues in orange). Starting with the unhumanized precursor sequence (top), Hu-mAb makes every

possible mutation to the framework residues (grey) and selects the one that produces the largest increase in humanness score. CDR residues (dark blue) are not mutated to pre-

serve binding. This procedure is performed iteratively until the humanness score reaches a given threshold. Mutations suggested by Hu-mAb are coloured depending on

whether they are the same (green), similar (blue) or different (red) to mutations made experimentally. In this case, Hu-mAb suggested 16 mutations (compared to 39 from the

experiment), of which 14 were the same or similar to those derived experimentally
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77/85%). Hu-mAb offers a promising alternative to experimental
humanization approaches, allowing mutations to be made in a more
systematic and efficient manner, and achieving similar results in a
fraction of the time.

There are, however, still remaining challenges in antibody hu-
manization, most notably the humanization of alternative antibody
formats (e.g. nanobodies and asymmetric antibodies). The ability to
score and increase the humanness of these sequences will improve
with further data and investigation of the relationship between im-
munogenicity, sequence and antibody format.
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