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Abstract
Background: Graphical models (e.g., Bayesian networks) have been used frequently to describe
complex interaction patterns and dependent structures among genes and other phenotypes.
Estimation of such networks has been a challenging problem when the genes considered greatly
outnumber the samples, and the situation is exacerbated when one wishes to consider the impact
of polymorphisms (SNPs) in genes.

Results: Here we describe a multistep approach to infer a gene-SNP network from gene
expression and genotyped SNP data. Our approach is based on 1) construction of a graphical
Gaussian model (GGM) based on small sample estimation of partial correlation and false-discovery
rate multiple testing; 2) extraction of a subnetwork of genes directly linked to a target candidate
gene of interest; 3) identification of cis-acting regulatory variants for the genes composing the
subnetwork; and 4) evaluating the identified cis-acting variants for trans-acting regulatory effects of
the target candidate gene. This approach identifies significant gene-gene and gene-SNP associations
not solely on the basis of gene co-expression but rather through whole-network modeling. We
demonstrate the method by building two complex gene-SNP networks around Interferon
Receptor 12B2 (IL12RB2) and Interleukin 1B (IL1B), two biologic candidates in asthma
pathogenesis, using 534,290 genotyped variants and gene expression data on 22,177 genes from
total RNA derived from peripheral blood CD4+ lymphocytes from 154 asthmatics.

Conclusion: Our results suggest that graphical models based on integrative genomic data are
computationally efficient, work well with small samples, and can describe complex interactions
among genes and polymorphisms that could not be identified by pair-wise association testing.

Background
Jansen and Nap [1] proposed expression quantitative trait
locus (eQTL) mapping by considering gene transcript
abundances as quantitative phenotypes. Identified eQTLs
could then be tested as potential disease-susceptibility

candidates in genetic association studies, with the expec-
tation that variants with functional influence on gene
expression would have a higher likelihood of influencing
clinical traits. Initial studies examining the feasibility of
such integrative genomic strategies in a variety of model
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organisms and in human populations have demonstrated
that a substantial proportion of transcripts exhibit herita-
ble expression, and initial genome-wide eQTL surveys
have identified putative regulatory variants for several
thousand genes [2,3]. Most of the regulatory variants
identified to date are situated proximal to the target tran-
script (i.e. cis-acting variants) despite the much larger
search space for distal variants (i.e., those in trans), and it
is notable that regulatory variation has been identified for
only a fraction (~13.1 14.8% in [2] and [3], respectively)
of the transcripts demonstrating heritable expression. It is
likely that much of the remaining unexplained heritable
variation is due to unidentified trans-acting or epistatic
effects. However, identifying these effects has become an
extremely difficult problem, with the number of potential
tests dwarfing the number of samples available for analy-
sis. One potential solution is graphical modeling. Graph-
ical modeling is a powerful tool for describing complex
interaction patterns among variables in high-dimensional
data used frequently in microarray analysis [4]. Though
graphical modeling provides a simple way to infer and vis-
ualize complicated networks among genes and gene prod-
ucts, estimating such networks can be very difficult when
considering the impact of millions of variant-gene combi-
nations. To overcome this problem, Schäfer and Strimmer
[5] proposed an empirical Bayes methods for fitting Gaus-
sian graphical models, which performs well in inferring
large-p small-n gene networks. In this paper, we extend

their method and develop new strategies to infer a gene-
SNP network in an integrative genomic setting. First we
build the gene network based on the empirical Bayes
method, then we identify a subnetwork of genes (edges)
that interact with a candidate gene of interest (target
gene). Finally, we identify cis-associated variants (arbitrar-
ily defined as SNPs located within 50 Kb of the genes) for
the interacting genes to complete the network and identify
those cis-acting variants that in turn have trans-acting
effects (greater than 50 Kb) on the target candidate gene.
The genetic association testing is conditional on the devel-
oped graph network; the method is robust to false-posi-
tive association due to collinearity. Herein, we describe
the basic model and the methods for its inference, its
validity (through computer simulations), and its applica-
tion to several data sets.

Methods
To demonstrate the key features of our model, consider a
very simple network consisting of one SNP and two genes,
where the measured transcript abundance of each gene is
significantly associated with SNP genotype. Figure 1
shows two possible modules that could explain the
observed associations. These modules are analogous to
the Independent (Model 1) and Causal (Model 2) models
in [6], respectively. In Model 1 the SNP influences the two
genes independently, while in Model 2 the SNP influences
gene 2 through gene 1. We note that pair-wise association

Two types of SNP-gene modulesFigure 1
Two types of SNP-gene modules.
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testing cannot distinguish between the two models. Figure
2 contrasts more complex, genome-wide association test-
ing. Figure 2a depicts genome-wide pair-wise association
testing, akin to that from recent studies of the genetics of
gene expression [2,3], whereas Figure 2b depicts the use of
graphical modeling to test for SNP-gene associations
while considering the interdependence of co-expressed
genes.

Model
Here we describe the GGM of the gene-SNP network. Our
observed data include a gene matrix Y with G genes and N
samples, and a SNP matrix Z with H SNPs and N samples.
The model for the gene matrix follows [5], where Y fol-
lows a multivariate normal distribution:

where ygi represents the expression observation for gth
gene in the ith sample, μ is the mean vector and Σ is the
covariance matrix.

Let Hg denote the collection of SNPs within 50 Kb
upstream and downstream of the transcription start cite of
gene g, g = 1, ... G. Similarly, define Gh as the collection of
genes in the 50 Kb neighborhood of SNP h, h = 1, ... H. Kg
and Kh represent the number of variables in Hg and Gh,
respectively.

We assume that there is an unobserved continuous varia-
ble Wh driving the SNP h and Y and W follow a joint nor-
mal distribution:

where the matrix V represents the association between
genes and SNPs and we assume that Vgh = 0 if g ∉ Hg and
h ∉ Gh.

The observed SNP matrix Z, represented in minor allele
count and take value of 0,1, or 2, is related to W in the fol-
lowing way:

To enable development of a computationally feasible
algorithm, our model includes several reasonable
assumptions:

1. Multivariate normality: We assume that gene
expression and SNP genotypes follow a multivariate
normal distribution. Multivariate normality may be a
good approximation for gene expression given the
preprocessing procedures for expression measure-
ments. Though SNP genotypes are discrete, normality
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(a)Association test vs. (b)graphical modelsFigure 2
(a)Association test vs. (b)graphical models. Pink node denotes the candidate gene.
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is assumed to drive genotype effects under an additive
genetic model.

2. Linear or pair-wise association: We assume that
associations between the gene and polymorphisms are
linear and there are no higher-order interactions. We
recognize that higher-order relationships are likely
present, but modeling such relationships, especially
with a small sample, can be a very difficult problem.

3. Conditional independence of SNPs: We assume a
unidirectional causal relationship between a SNP and
a gene (that is, variants can alter gene expression
whereas gene expression does not alter genoytpe).
Given this assumption, the graphical model theory
tells us that, if two or more SNPs are highly correlated
(that is, in high linkage disequilibrium, LD), their
effects on gene expression are statistically indistin-
guishable in our model. Therefore, although LD is typ-
ically present in genome-wide SNP datasets, we can
(incorrectly) assume that all SNPs are independent
conditional on all genes.

Estimation
As the genes and SNPs considered in the model usually
outnumber the samples, we take a multistep approach
that takes advantage of the conditional independence
assumption to estimate the gene-SNP network based on
the correlation σY and V:

1. First estimate the covariance ΣY for Y based on the
shrinkage estimation described in [7]. The partial cor-
relation matrix ∏ can be derived from the inverse of
ΣY. The standard graphical model theory shows that
gene i and gene j are independent if the corresponding
partial correlation coefficient ∏ij is zero. Schäfer and
Strimmer [5] describe a testing procedure for the null
hypothesis ∏ij = 0. Alternatively, we can calculate the
empirical posterior probability that ∏ij ≠ 0, i.e., there
is an edge between i and j in the graph.

2. Even though it is possible to analyze the whole gene
network in the next steps, sometimes one wishes to
focus on part of the gene network and the correspond-
ing cis-acting SNPs. For example, we might be inter-
ested in a particular candidate gene and the network
surrounding it. It is straight forward to extract the sub-
network that we need, as the subnetwork can be
defined as the collections of edges connected to the
candidate genes that passed a certain threshold of FDR
(False Discovery Rate) adjusted p-values or posterior
probabilities P(∏ij ≠ 0|Y).

3. Let G* be the collection of genes in the subnetwork
that we are interested in; we can narrow down the SNP
list to a subset H*:

For each h ∈ H*, to avoid testing against all genes we

consider the collection , which is the union of Gh

and the genes connected to a member of Gh, we use the

observed SNP data Zh as an approximation of the

underlying variable Wh:

where  and  represent the gene data and cov-

ariance matrix for , respectively. Now the partial

correlation coefficient for SNP h related to Vh and 

can be estimated in the same way as in step 1. Notice

that the partial correlations among members in 

have been established on the basis of the whole-gene

matrix Y, so we can ignore the result from  here.

4. The same FDR multiple testing or posterior proba-
bility thresholding procedure as in step 2 can be
applied to the partial correlation coefficients between
genes and SNPs. After we identify the significant edges
the network is complete.

Simulation Studies
To assess the sensitivity and specificity of the GGM
approach, we performed a series of simulation studies. We
generate a partial correlation matrix from which our gene
expression data matrix will be generated. Generating a
random correlation matrix that is both realistic and con-
tains strong correlations is a challenging problem as it is
difficult to assign random correlation coefficients and
make it a positive definite matrix. Schäfer and Strimmer
[5] use an algorithm generating random diagonally dom-
inant matrices, which often produces very weak associa-
tions and structures unlikely to resemble real gene
networks. As a result, the power to detect those weak links
can be very poor. To simulate more realistic networks, we
used the CAMP integrative genomics dataset. We fit a
GGM for the 3,191 most variably expressed genes, from
which we derive the 100 genes with highest correlation.
We preserve all the significant correlation coefficients
(posterior probability ≥ 0.5)and set the remaining non-
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significant correlations to zero. The resulting simulated
true gene network includes 256 significant edges out of
4,950 possible edges. Once this partial correlation matrix
is established, it is straightforward to derive the covariance
matrix ΣY and sample Y from it.

The locations for 100 genes and 2,500 SNPs are sampled
from uniform (0,1) distribution. Cis-acting subsets Gh and

Hg are defined as genes and SNPs within 0.005 of each

other. The partial correlation coefficient between each
SNP h and genes in Gh follows a mixed distribution of

50% probability zero and 50% probability from uniform
(-1, 1) distribution. Once the partial correlation coeffi-
cients have been assigned, they can be combined with

, the rows and columns corresponding to Gh

extracted from the master correlation matrix ∏, to form a
joint correlation matrix for SNP h and Gh. The matrix can

be made diagonally dominant and standardized, follow-
ing the algorithm by [5], then converted to the joint cov-

ariance matrix . To generate the SNP data, first we

generated Wh from its conditional distribution:

After Wh has been generated, we will assign cutoff points
a0 and a1 to convert it to minor allele count. The cutoff
points are determined by a random sample from 534,290
genotyped SNPs and make the distribution of the geno-
types identical to the real data.

Results and Discussion
Simulation Results
The performance of GGM was evaluated with both large
(N = 200) and small (N = 50) datasets. The simulated gene
network contains 256 true edges. With large-sample data
GGM identified 140 significant edges (54.69%), out of
which 126 are true (90%), while only 97 (37.89%) signif-
icant edges (83 of which are true, 85.57%) were identified
with small-sample data. The false-positive rate is about
0.3% in both cases. In [7] the power (the proportion of
true edges identified) is about 50–60% for N = 200 and
about 10–20% for N = 50; therefore our observed power
is comparable to the simulation results in the large-sam-
ple case, and significantly better in the small-sample case,
which may be due to the design of the "true network"
based on a real data set.

We next added SNP data to the defined networks by test-
ing the association between the SNPs and the genes for
gene pairs with strong links. The large-sample case simu-
lation includes 1,777 true cis-acting (i.e., within 0.005)
SNP-gene associations. Though conditional dependency

between SNPs and genes mapping to distances greater
than 0.005 were permitted in the simulation (that is, cis-
associated SNP with gene A could be associated with gene
B due to correlations between genes A and B), we did not
simulate any independent trans-acting effects. We
detected 1,120 significant associations (63.03%), of
which 1,113 were true (99.38%, i.e., only 7 false posi-
tives). We note that no significant independent trans-act-
ing associations were detected, consistent with the
simulated model. In contrast, failure to consider condi-
tional dependence would reveal a large number of indi-
rect associations: linear regression of all possible SNP-trait
associations (regardless of distance) identifies 507 signifi-
cant associations (out of a possible 3,447), though these
associations are all indirect. As expected in light of the
large number of comparisons performed, SNP-association
mapping in the small-sample case is underpowered (only
170 of 1,244 true associations are detected, 13.67%),
though no false-positive cis-acting association were
observed, and again, no false-positive direct trans-acting
associations were identified (compared with 61 of 2,414
detected by linear regression).

Asthma Integrative Genomics Dataset

An integrative genomics study of the genetics of gene
expression was performed in a subset of young adult asth-
matics (n = 299) participating in the Childhood Asthma
Management Program (CAMP) Phase 2, a multicenter fol-
low-up study of childhood asthma. CD4+ lymphocytes
were isolated from peripheral blood samples with anti-
CD4+ microbeads by column separation (Miltenyi Biotec,
Auburn CA). Total RNA was extracted from CD4+ lym-
phocytes with the QIAGEN RNeasy Mini Protocol (Valen-
cia, CA). Expression profiles were generated with Illumina
HumanRef8 v2 BeadChip oligonucleotide arrays (Illu-
mina, San Diego CA) and scanned with the BeadArray
scanner. Raw expression intensities were processed with
the lumi package [8]. Each array underwent background
adjustment with RMA convolution [9] and log2 transfor-
mation for variance stabilization. The combined samples
were quantile normalized. Adequate DNA for genome-
wide genotyping was available for 154 subjects of self-
reported white ancestry with RNA samples. Genotyping
was performed with the Illumina Infinium II
HumanHap550 Genotyping BeadChip. We apply our
method to a dataset of genome-wide SNP genotype data
(534,290 autosomal markers) and peripheral blood
CD4+ lymphocyte gene expression profiles (22,177 tran-
scripts) in 154 asthmatic subjects. Schäfer and Strimmer
[7] suggest that the power and positive discovery rate drop
to zero when the number of genes outnumbers the sam-
ples by fivefold. These effects are also evident in our sim-
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ulations. We therefore performed necessary data
reduction using genefilter [10] by focusing only on 3,203
RefSeq-annotated genes variably expressed across samples
(minimum interquantile range of 1.0 on log2 scale).
Though p exceeded n by more than 20-fold, our GGM
modeling identified 513,203 gene-gene associations (i.e.,

edges) with posterior probability ≥ .50, representing

10.01% of all possible  edges. To validate the

gene network, we apply the same algorithm on an inde-
pendent, publicly available gene expression set from
CD4+ lymphocytes in both asthmatics and normal sub-
jects (GEO series 473, see [11]). With a more stringent

threshold (posterior probability ≥ 0.90), we find that a
significant proportion of edges overlap in the two data
sets (1,913 edges, p = 5.5 × 10-106). We also find 40 genes
with over 100 significant connections with other genes in
both datasets [See Additional file 1], which can be consid-
ered as hubs [12]. The extensive and reproducible connec-
tivity of these 40 hub genes suggests they are of particular
biological interest in CD4+ lymphocytes.

To illustrate the utility of network modeling using GGM,
we focus on the network segment surrounding one of the
identified hub genes – the beta-2 subunit of the Inter-
leukin-12 receptor (IL12RB2, OMIM *601642). The IL12
receptor is constitutively expressed on CD4+ lymphocytes
and is induced by antigen receptor triggering, and its lig-
and (IL12) is a potent immunomodulator in allergic air-
ways disease [13]. GGM identified 306 genes with direct
edges to IL12RB2 in the CAMP dataset [see Additional file
2]. 5,611 SNPs map to within 50 kb of these genes.
Because the number of SNPs per gene is generally small
(18.34 SNPs on average), we can efficiently estimate par-
tial networks over the 5,611 SNPs quickly, as described in
step 3. After FDR adjustment we identify 225 SNP-gene
pairs (4.01%) with significant association [see Additional
file 3]. Given the simulation results, we expect few of them
to be false positives. Target candidates of interest include
RAP1A [14] and TBKBP1 [15].

SNP-association mapping is productive for non-hub
genes as well. For illustrative purposes, we mapped regu-
latory variants for genes linked to Interleukin-1B (IL1B,
OMIM *147720), another biological asthma candidate
gene. 353 SNP-gene pairs (5.2% of all cis-acting pairs
tested) with significant association were identified with
FDR-adjusted p-value ≤ 0.05 [see Additional file 4].

GeneVar Dataset
We used the publicly available GeneVar dataset http://
www.sanger.ac.uk/humgen/genevar/ to assess the repro-

ducibility of our network building. GeneVar consists of
gene expression profiling of Epstein-Barr virus-trans-
formed lymphoblastoid cell lines for the 270 HapMap
Consortium (Phase II) individuals and their available
genotype data (3,967,792 SNPs) [3].

We apply our method to the 30 Caucasian trios in Gene-
Var. The dataset contains expression values from 47,293
probes for each individual, and we use the same filtering
criteria as in CAMP to filter it down to 2,247 genes. The
gene network contains 146,310 (5.8%) significant edges
with posterior probability greater than 0.5, 67,345
(2.67%) with posterior probability greater than 0.8, and
44,207 (1.75%) greater than 0.9. With only 90 samples in
the dataset, the latter categories are likely most reliable.

To compare the networks from GeneVar and CAMP, we
focus on a subset of 608 genes that appear in both datasets
after filtering. Using the posterior probability threshold of
0.9, we find 3,302 significant edges in CAMP and 2,239 in
GeneVar. There are 86 edges that appear in both sets (See
Figure 3), considerably more than would be expected by
chance (p-value of 6.77 × 10-11), but far fewer than the
large overlap of 1,913 noted between the two datasets.

IL1B is in both datasets after filtering. Using the 0.9
threshold, we find 51 genes directly linked to IL1B in
GeneVar, and we estimate the gene-SNP network with
5,404 SNPs within 50 Kb of those genes. We find 133 sig-
nificant SNP-gene pairs [see Additional file 5]. In CAMP,
however, there are only 4 genes connected to IL1B in the
reduced dataset and no overlap with GeneVar. Note that
the subset accounts for only 2.74% of the genes in the
original dataset.

We note that graph models can facilitate biologic interpre-
tation of observed associations of SNP with multiple
genes by distinguishing between conditionally independ-
ent (Model 1 in Figure 1) and dependent (Model 2) SNP-
gene associations. For example, of the 133 significant
SNP-gene associations noted in the GeneVar IL1B subset
analysis, 25 (18.8%) of these SNPs are associated with
IL1B expression in a univariate analysis (for example, by
linear regression of SNP genotype on the expression trait
– see Additional file 5). None of these trans-associations
remain significant when the effects of the cis-associated
genes are considered, suggesting that the SNPs identified
influence IL1B expression by first altering the expression
of the cis-associated gene, thereby strengthening support
for a true gene-gene interaction. Without considering con-
ditional dependency, these insights would be missed.

Conclusion
Identifying regulatory sequence variants that impact gene
expression will be helpful for the identification of func-
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tional disease susceptibility genes. Though several pub-
lished integrative genomic studies have highlighted the
utility of these approaches, the current bipartite-univari-
ate approach (see figure 2a) limits the scope in which the
problem can be explored. As we see in [12] and [16], the
underlying biology network between genes and other
phenotypes often cannot be adequately described by a
bipartite graph. In this paper we describe a novel
approach using a GGM to infer a gene-SNP network based
on the algorithm by [5]. Our results from simulations and
applications show the method works well in large-p small-
n settings. The simulation results are similar to [17] in
terms of sensitivity and specificity, which compare favora-
bly with other standard methods in large-p small-n set-
tings, such as LASSO [18]. We have also found that the
networks derived with GGM are fairly reproducible across

real datasets, as manifest by the significant overlap
between the CAMP CD4+ lymphocyte data and other
datasets. The graph networks presented here are intuitive
and easy to visualize. We also note that once we identify
the candidate genes and the set of cis-acting SNPs to test
on, the algorithm for superimposing SNP associations can
be run in minutes on a desktop computer.

One natural extension of this method is to integrate addi-
tional clinical phenotypes (such as disease status or quan-
titative traits) with the genotype and expression data
network and explore the interaction among genes, regula-
tory variation, and clinical phenotype to enable identifica-
tion of critical disease susceptibility loci. We recognize
that the prohibitively high dimensionality of the data will
still pose a problem (particularly if sample size is small),

Sub-network of 86 edges appeared in both CAMP and GeneVar network using a subset of 608 genes and threshold of poste-rior probability of 0.9Figure 3
Sub-network of 86 edges appeared in both CAMP and GeneVar network using a subset of 608 genes and 
threshold of posterior probability of 0.9. Color nodes denote hubs (pink = CAMP, cyan = GeneVar, yellow = both). The 
color of the edges denote the direction (Green = both positive, Black = both negative, Red = opposite).

Common Edges between CAMP and GeneVar (posterior prob>=0.9)
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and, as we rely on the assumption of conditional inde-
pendence in this paper, we may need additional assump-
tions in the disease network for a computationally
feasible solution.
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