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Abstract: A deep eutectic solvent (DES) composed of sulfamic acid and glycerol allowed for the
sustainable preparation of cellulose nanofibrils (CNF) with simultaneous sulfation. The reaction time
and the levels of sulfamic acid demonstrated that fibers could be swelled and sulfated simultaneously
by a sulfamic acid-glycerol-based DES and swelling also promoted sulfation with a high degree of
substitution (0.12). The DES-pretreated fibers were further nanofibrillated by a grinder producing
CNF with diameters from 10 nm to 25 nm. The crystallinity ranged from 53–62%, and CNF maintained
the original crystal structure. DES pretreatment facilitated cellulose nano-fibrillation and reduced
the energy consumption with a maximum reduction of 35%. The films prepared from polyvinyl
alcohol (PVA) and CNF showed good UV resistance ability and mechanical properties. This facile
and efficient method provided a more sustainable strategy for the swelling, functionalization and
nano-fibrillation of cellulose, expanding its application to UV-blocking materials and related fields.

Keywords: cellulose nanofibril (CNF); deep eutectic solvent (DES); sulfamic acid-glycerol; sulfation;
characterization

1. Introduction

Cellulose nanofibrils (CNFs) are promising, high-performing materials due to their
high mechanical strength and chemical versatility as well as the diversity and abundance
of raw materials in which they are found [1]. CNFs have been widely used in nanocom-
posites, electronic and optical devices, packaging, biomedical engineering, and advanced
materials [2–6].

CNFs are typically liberated under mechanical nano-fibrillation. Unfortunately, due
to the inter- and intramolecular hydrogen bonding evident in cellulose, mechanical nano-
fibrillation requires intense energy [7]. Thus, various pretreatments have been recently
adopted to reduce energy consumption such as enzymes, bases, and chemical modifica-
tion [8–10]. Such pretreatment allows for a modification of the large number of hydroxyl
groups of cellulose with carboxylates (e.g., carboxymethyls) and aldehydes [11–13].

Sulfation is a process that introduces sulfate groups to the surface of cellulose [14].
Sulfation cellulose can be given special properties (a strong electronegativity, good solution
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stability, and good film formation), and is widely used in food, cosmetics, washing products,
coatings, drilling and other products. The sulfation reaction in nanocellulose preparation
is usually carried out to prepare cellulose nanocrystal (CNC) via sulfuric acid hydrolysis
or mixed acids hydrolysis [15,16]. However, there is little information available in the
literature about the sulfation of CNF. It is not suitable to modify CNF due to the high
acidity of sulfuric acid, which can easily hydrolyze the amorphous region in CNF [17].
Furthermore, sulfated cellulose was reported to prepare CNF, but it was not suitable for
the further mechanical treatment to prepare sulfated CNF, since the fibril structure of the
prepared sulfated cellulose was destroyed or aggregated [18,19]. Post-sulfonation was
also used to prepare sulfated CNF, as described by Luo et al. CNF were successfully
post-sulfonated with a dimethylformamide and chlorosulfonic acid with a high surface
charge while retaining a fibrous morphology [20]. However, this method was complex and
the chlorosulfonic acid used was hazardous.

The deep eutectic solvent (DES) is the new generation of a green solvent composed of
a hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) [21]. The melting point
of the DES system is lower than that of each component [22]. It has the advantages of low
cost, biodegradability, non-toxicity and renewability [23]. Recently, DES has been applied
for organic synthesis, catalysis, material chemistry, and electrochemistry [24]. Lately,
studies on the use of DES in cellulose functionalization (e.g., cationic functionalization,
phosphine functionalization, and carbamate functionalization) and the preparation of
various types of nanocellulose have emerged [25–27]. Sulfamic acid (amidosulfonic acid) is
an inorganic solid acid formed by treating urea with a mixture of sulfur trioxide and sulfuric
acid. It is a frequently used sulfation reagent with a low toxicity and low cost. Directly
sulfated cellulose was successfully achieved via a sulfamic acid and urea DES to prepare
nanocellulose, as described by Sirviö et al. [28]. In this study, sulfamic acid was used as the
HBA, while urea was used as the HBD. Although the sulfated CNF had been prepared with
a high degree of substitution, the temperature of the processed slurry was high (150 ◦C).
Moreover, urea can engage in side reactions with cellulose, which can hinder the sulfation
of cellulose [28]. In order to avoid the side reaction, it is necessary to find a reagent to
replace urea in order to prepare DES with sulfamic acid and pretreat the biomass to produce
sulfated CNF. However, there is little information in the literature about substituting urea
in sulfamic, acid-based DES for the sulfation of cellulose. As a green and sustainable
organic chemical, glycerol is a colorless, odorless, nontoxic and sweet liquid with a low
price (USD 2 per kilogram) [29], which does not react with cellulose. It has been reported
in the literature that glycerol is used as a hydrogen bond donor in DES to prepare CNF [30];
therefore, glycerol is a suitable alternative for urea in DES to sulfate CNF and reduce
side reactions. In addition, DES provides a more sustainable strategy for the swelling
because its preparation process is green, environmentally friendly, low-cost and can reduce
energy consumption. Additionally, there is a lack of research focusing on reducing energy
consumption in the preparation of CNF [12]. Polyvinyl alcohol (PVA) is a biodegradable
polymer, which has biodegradability and a good film-forming performance [31]. In recent
years, PVA has been mixed with CNF to prepare nanomembrane materials due to its good
solubility and water affinity [32].

A DES synthesized by sulfamic acid (HBA) and glycerol (HBD) was used as the
pretreatment medium to synthesize sulfated CNF by a supermasscolloider. In addition, the
prepared CNF was used to produce polyvinyl alcohol (PVA)/CNF nanocomposite films.
The sulfated fiber was analyzed through a fiber quality analysis, an elemental analysis, the
degree of polymerization (DP) and Fourier transform infrared spectrometry (FTIR). The
CNF was analyzed by the water retention value (WRV), atomic force microscopy (AFM),
and X-ray diffraction (XRD). The mechanical energy consumption during CNF production
was also analyzed. PVA/CNF nanocomposites were prepared by solvent casting, whose
transparency and mechanical properties were characterized.
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2. Materials and Methods
2.1. Materials

Bleached kraft poplar pulp board (with 85.05% cellulose, 14.55% hemicellulose, and
0.4% lignin) was obtained from Huatai Paper Co., Ltd. in Dongying, Shandong Province,
China. It was disintegrated in water, filtered, and dried in an oven at 60 ◦C for 24 h. Sulfamic
acid (99.5%) and glycerol (≥99%) were purchased from Shanghai Macklin Biochemical
Co., Ltd. (Shanghai, China) and Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China),
respectively. PVA (Mw 31,000–50,000) was purchased from Shanghai Macklin Biochemical
Co., Ltd. (Shanghai, China). All chemicals were of reagent grade, without any further
purification. All experiments were conducted using deionized water.

2.2. DES Sulfated Pretreatment

The DES system (sulfamic acid with glycerol) was prepared at mass ratios of 1:3
(45.93 g and 130.69 g, respectively) [33]. The sulfamic acid and glycerol were mixed together
at 90 ◦C with a magnetic stirrer in an oil bath until a clear liquid was formed (~two hours).
The physical characteristics of DES were shown in Table 1 and were determined according
to the method described by Skulcova et al. [34]. An amount of 2 g of original fibers was
added to the DES (39.25 g, 58.87 g, and 78.49 g, respectively) at a constant temperature.
The reaction was carried out with continuous stirring. The reaction mixture was taken out
from the oil bath after a certain reaction time and cooled at room temperature for 5 min.
The pretreated pulp suspensions were filtered to remove DES, physically adsorbed on the
pulp surface, and washed with deionized water until the filtrate was neutral.

Table 1. Physical characteristics of sulfamic acid and glycerol DES at 25 ± 2 ◦C.

pH Viscosity (mPa·s) Melting Point (◦C)

2.36 ± 0.03 1389 ± 2 −63.6 ± 0.1

2.3. Nano-Fibrillation of Sulfated Cellulose

The preparation scheme of DES-untreated and DES-treated CNF are shown in Figure 1.
The DES-untreated, DES-treated pulp were disintegrated into nanofibrillation with a
grinder (Supermasscolloider MKCA6-5J, Masuko Sangyo Co., Ltd., Saitama, Japan). Both
DES-untreated and DES-treated pulp were diluted with deionized water to 1% consistency.
The preparation process was carried out according to a method described by He et al. [7].
CNF was collected after 10 passes. The DES-untreated and DES-treated CNF samples
were labeled CNF, CNF-6-1, CNF-6-1.5, CNF-9-1, CNF-9-1.5, CNF-12-1, and CNF-12-1.5,
as shown in Table 2, respectively. Among them, the first digit in the code represented
the sulfonic acid:cellulose mass ratio, and the second digit represented the reaction time
between DES and cellulose. The energy consumption in the supermasscolloider was
calculated using the amperage, flow rate, and voltage. The unit of energy consumption
was kWh per kg of CNF produced on a dry basis.
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Table 2. Pretreatment conditions of cellulose in sulfamic acid and glycerol DES.

Sample Sample Sulfamic Acid:Cellulose Mass
Ratio Time (h)

Pulp-6-1 CNF-6-1 1:6 1
Pulp-6-1.5 CNF-6-1.5 1:6 1.5
Pulp-9-1 CNF-9-1 1:9 1

Pulp-9-1.5 CNF-9-1.5 1:9 1.5
Pulp-12-1 CNF-12-1 1:12 1

Pulp-12-1.5 CNF-12-1.5 1:12 1.5

2.4. Preparation of Neat PVA and PVA/CNF Films

PVA was dissolved in distilled water (3 wt%) and stirred for 3 h at 90 ◦C. After
PVA solutions were cooled to room temperature, the CNF suspension was added to the
PVA solutions. The dry mass of each nanocomposite was 0.6 g, the proportion of PVA
was 95%, and the proportion of CNF was 5%. Finally, the dispersions were casted into
polytetrafluorethylene (PTFE) Petri dishes and dried in the oven at 40 ◦C for 24 h. The
obtained composite films were labeled PVA, PVA-CNF-6-1, PVA-CNF-6-1.5, PVA-CNF-9-1,
PVA-CNF-9-1.5, PVA-CNF-12-1, and PVA-CNF-12-1.5. Among them, PVA was a film
prepared from pure PVA. PVA/CNF films were composed of PVA and CNF samples
(CNF-6-1, CNF-6-1.5, CNF-9-1, CNF-9-1.5, CNF-12-1, and CNF-12-1.5) which were named
PVA-CNF-6-1, PVA-CNF-6-1.5, PVA-CNF-9-1, PVA-CNF-9-1.5, PVA-CNF-12-1, and PVA-
CNF-12-1.5, respectively.

2.5. Characterizations
2.5.1. Characterizations of Sulfated Pulp

Yield and fiber width were analyzed. The yield was calculated according to the
absolute dry quality of pulp before and after DES treatment. The widths of original
fibers and DES-treated fibers were analyzed using a fiber quality analyzer (FS5, Valmet,
Espoo, Finland):

yield =
m0

m
× 100% (1)

where m0 is the absolute dry quality of pulp after DES treatment, and m is the absolute dry
quality of pulp before DES treatment.

The average degrees of polymerization (DP) of original fibers and DES-treated pulp
were obtained from the intrinsic viscosity values of the freeze-dried samples, which were
dissolved in copper ethylenediamine (CED) solution according to the ISO 5351 standard.
The DP was calculated from the limiting viscosity as described by Liimatainen et al. [35].

The FTIR spectra of original fibers and DES-treated pulp were performed using a
FTIR instrument (ALPHA, Bruker, Karlsruhe, Germany) using oven-dried samples. The
spectra were recorded in the 600–4000 cm−1 range, and 32 scans were taken at a resolution
of 2 cm−1 for each sample.

The elemental analysis of DES-treated pulp before nano-fibrillation were performed
with an elemental analyzer (UNICUBE, Elementar, Frankfurt, Germany). The degree of
substitution (DS) was calculated using Equation (2) [36]:

DS =
S × 162.15

3206 − (S × 97.10)
(2)

where S is the sulfur content, 162.15 mmol/g is the molecular weight of the anhydroglucose
unit, and 97.10 mmol/g is the molecular weight of the ammonium sulfate group.
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2.5.2. Characterizations of Sulfated CNF

The water holding capacity of CNF was measured by a WRV measurement, according
to the standard SCAN-C 62:00. The water holding capacity of CNF was determined using
a modified WRV measurement. The WRV of CNF was calculated using Equation (3) [37]:

WRVCNF =
WRVmix − WRV0·0.9

0.1
(

g
g
) (3)

where WRVmix is the WRV of the mixture of 90% raw pulp with 10% CNF. WRV0 is the
WRV of the raw pulp. An average of five measurements was reported.

Atomic force microscopy (Multimode 8, Bruker, Karlsruhe, Germany) was used to
scan the surface of the CNF. Before use, the aqueous suspension of 0.001% cellulose
nanofibril was ultrasonically treated for 15 min. The samples were prepared by spin-
coating (Easy Coater 6, Anseth Co., LTD, Beijing, China) at 3000 rpm for 30 s by depositing
a drop of aqueous suspension of cellulose nanofibril (20 µL) on a freshly cleaved mica
surface (TO-3P MICA, TOSAI, Tokyo, Japan) and air dried.

The zeta potential of the CNF was determined by a zeta sizer (Malvern Zetasizer
Nano ZS90, Malvern Instruments Ltd., Worcestershire, UK). All samples were diluted to
0.005 wt% before analysis.

The crystallinity of the original cellulose pulp, DES-treated cellulose, and CNF were
analyzed by wide-angle X-ray diffractometry (WAXD) using a Bruker D8 ADVANC X-ray
diffraction (Bruker, Karlsruhe, Germany) using Cu K(alpha) radiation operated at 40 kV
and 20 mA. The diffraction data were taken over a 2θ range from 10◦ to 45◦ at a scanning
rate of 10◦/min. The degree of crystallinity (CrI) was calculated according to Segal’s
methods [38].

2.5.3. Characterizations of PVA/CNF Films

Light transmittance of the neat PVA and PVA/CNF films were tested in the 200–800 nm
range by using a UV-Visible spectrometer (UV-2600, Shimadzu, Kyoto, Japan).

Tensile tests were carried out by using a texture analyzer (TA.XT Express C, Stable
Micro Systems, Surrey, UK). Tensile strength, Young’s modulus and elongation at break
were measured. Specimens were cut into rectangles of 80 mm long and 10 mm wide. The
crosshead speed used was 5 mm/min. The result was the average of five measurements.

3. Results and Discussion
3.1. Preparation of Sulfated CNF via DES

The poplar bleached pulp was pretreated by a sulfamic acid-glycerol-based DES, then
the treated pulp was grinded through a supermasscollider, and sulfated CNF was finally
obtained. The mass ratios between cellulose and sulfamic acid were 1:6, 1:9, and 1:12 at
100 ◦C; 1 or 1.5 h was selected as the pretreating time. All pretreated pulp and CNF samples
were labeled, as shown in Table 2. In order to investigate the influence of different DES
pretreatment conditions on the physicochemical properties of pulp fibers and final CNF
products, several analyses were carried out.

3.2. Characteristics of Sulfated Fibers
3.2.1. The Yields and Fiber Width of Sulfated Fibers

The yields of DES-treated pulp are presented in Table 3. It could be seen that reaction
time and level of sulfamic acid all had obvious effects on the yields of DES-treated cellulose
pulp. The yields of DES-treated cellulose pulp ranged from 80.9% to 95.2%. The yields of
pulp decreased with the increase in reaction time and the level of sulfamic acid, especially
pulp-12-1.5, which had the lowest yield (80.9%), likely due to the dissolution of cellulose
by the formation of hydrogen bonds between DES and the hydroxyl groups of cellulose, as
well as the interrupted hydrogen bonds [39].
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Table 3. Characterization of pulp fibers and CNFs.

Sample Yield (%) Width (µm) DP S (mmol/g) 1 DS Sample ZP (mV) CrI (%)

Original
cellulose

pulp
- 13.4 1012 0.00 0.00 CNF −18.3 64.0

Pulp-6-1 95.2 15.5 638 0.18 0.01 CNF-6-1 −29.4 61.7
Pulp-6-1.5 86.5 15.6 517 0.50 0.09 CNF-6-1.5 −30.2 60.2
Pulp-9-1 94.9 15.8 517 0.20 0.03 CNF-9-1 −31.0 57.6

Pulp-9-1.5 84.5 17.3 460 0.53 0.09 CNF-9-1.5 −31.8 54.5
Pulp-12-1 92.2 16.9 513 0.28 0.05 CNF-12-1 −31.3 54.8

Pulp-12-1.5 80.9 17.4 412 0.70 0.12 CNF-12-1.5 −35.2 53.3
1 Calculated from the elemental content of sulfur.

The fiber widths of pulp fibers and DES-treated pulp are shown in Table 3. The average
widths of the fibers all increased after DES pretreatment. With the same level of sulfamic
acid, the average width of the fibers treated with a 1.5 h reaction time was greater than
the average width treated with a 1 h reaction time. Additionally, the maximum average
width was 17.4 µm (pulp-12-1.5). In the case of the mass ratio of 10:1 (sulfamic acid to
cellulose), the average width of the fibers changed little with the reaction time. The increase
in fiber widths was due to an increase in the swelling degree of the fibers, because DES
penetrated into the cellulose fiber structure and weakened its internal hydrogen bonds [24]
in accordance with Ji et al. [40].

3.2.2. The Degree of Polymerization of Sulfated Fibers

The DP values of the original fibers and DES-treated pulp are presented in Table 3.
The DP values of cellulose decreased with the reaction time and level of sulfamic acid. In
particular, pulp-12-1.5 showed a reduction of 59% compared with the original cellulose
pulp. The decrease in the DP values of cellulose was likely due to the hydrolysis of the
cellulose structure induced by the sulfamic acid [41]. This was similar to the previously
reported DP value of the pulp pretreated with carboxylic acid-based DES [42].

3.2.3. The FTIR and Elemental Analysis Sulfated Fibers

The FTIR spectra of pulp fibers and DES-treated pulp are shown in Figure 2. The
intensive broad band at ~3275 cm−1 is attributed to the OH stretching vibrations of the
hydroxyl functional groups [43], whereas the peak at 2910 cm−1 is attributed to CH
stretching. The absorption peak at 1633 cm−1 corresponded to the deformation vibration
modes of OH from the absorbed water. The absorption peak at 1025 cm−1 was associated
with the C-O-C pyranose ring stretching of cellulose. Two new absorption peaks at 1244 and
810 cm−1 could be correlated to the S=O vibration and C-O-S vibration, respectively, which
indicated the formation of sulfation groups between the cellulose and sulfamic acid [44].
The absorption peak at 1466 cm−1 could be attributed to the deformation vibration of NH4+

from the ammonium salt of sulfate ester, all of which substantiated cellulose sulfation [45].
Compared with the method of Sirviö et al. [27], no side effects occurred due to the treatment
in the present study.

The elemental content of sulfur is shown in Table 3. It was evident that the DES-treated
pulp of the sulfur content increased which could be due to the reaction of sulfamic acid
with cellulose, making sulfate groups replace the hydroxyl groups on the surface of the
fibers [46]. According to Table 3, the sulfur content increased to 0.70 mmol/g with the
increase in sulfamic acid and time, which might prove that a sulfation reaction between
cellulose and sulfamic acid occurred. The trend of DS was consistent with the sulfur content
in which the DS value of the sample pulp-12-1.5 reached a maximum of 0.12. The longer
the reaction time, the better the swelling and the higher DS. This was due to the longer
swelling time and the longer interactions between the cellulose fibers and DES, but caused
the serious degradation of the fibers and a notable decrease in DP. The increase in DS



Nanomaterials 2021, 11, 2778 7 of 16

indicated that the reaction was more intense, and it would be accompanied by a decrease
in DP.
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3.3. Characterization of Cellulose Nanofibril
3.3.1. Water Retention Value and Energy Consumption of Cellulose Nanofibril

The water retention value (WRV) of the CNF samples as a function of energy con-
sumption in the supermasscolloider is shown in Figure 3. The curves were fitted and
the R2 were in the range of 0.97–0.99. The WRV increased with fibrillation, consistent
with previous studies [47]. It was reported that the external cell wall, the primary (P),
and the first secondary (S1) layers of the cellulose fibers were gradually stripped from
the fiber surface, and the thick secondary cell wall was exposed by the refining cellulose
fibers with a disk refiner [48]. Similar to refining, the fracture and dissociation of the fibers
happened under the mechanical grinding by the supermasscolloider, which resulted in
the improvement of the inter-fiber bonding and water retention capacity [49]. The high
water retention value indicated that the hydrophilicity of the fibers was high, and that the
fibers could swell and became easier to fibrillate under the action of mechanical shear force.
At the same WRV, the energy consumption of CNF from DES-treated cellulose pulp was
lower than that of the CNF prepared from the original cellulose pulp, which indicated
that the pretreatment of sulfamic acid and glycerol DES could reduce energy consumption,
and cellulose was more easily fibrillated. This was explained by DES penetrating into the
cellulose fiber structure, which weakened the connection between the fibers, promoting
fiber fracture and unraveling. Compared with the energy consumption of CNF prepared
from raw materials, the energy consumption of CNF pretreated with DES had a maximum
reduction of 35% (CNF-12-1.5). The DES treatment could reduce energy consumption,
especially with the extension of the reaction time and the increase in sulfamic acid.
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3.3.2. The Preparation Mechanism of Sulfated Cellulose Nanofibril

A representation of CNF preparation with sulfamic acid and glycerol DES pretreat-
ment is shown in Figure 4. Sulfamic acid was used as a hydrogen bond donor and glycerol
as a hydrogen bond acceptor. The original fibers were treated with DES for 1 or 1.5 h to
make the fiber swell and sulfate the hydroxyl of the cellulose. The glycerol entered the
cellulose fiber interior to disrupt the inter- and intra-molecular hydrogen bonds between
the fibers, resulting in swelling [50]. The swelling caused a greater surface area, reveal-
ing more hydroxyl groups [51]. Sulfamic acid was a zwitterionic tautomer, expressed as
H2NSO2(OH) in the form of H3NSO3 [52]. The sulfation reaction led to the replacement of
the hydroxyls by the sulfate group. The swelling of glycerol facilitated the penetration of
sulfamic acid and the reaction with the hydroxyl groups and promoted nano-fibrillation.
Utilizing the deep eutectic solvent system allowed for the simultaneous swelling and
ensuing sulfation. Moreover, glycerol did not engage in side reactions, as was the case
with urea. After DES pretreatment, the cellulose fiber was further fibrillated by the super-
masscolloider. Friction and tearing occurred under the extrusion pressure of DES-prepared
cellulose fiber bundles resulting in a reduction in the radial size of the expanded cellulose
fiber bundles [53]. Finally, the cellulose fibers were separated by the interaction of fiber
and mechanical grinding to obtain sulfated CNF.
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3.3.3. The Morphology and Size Dimensions of Cellulose Nanofibril

The morphology and dimensions of the nanofibril samples were characterized by
AFM. Figure 5a is the AFM topograghy image and diameter distribution histogram of CNF
from the original cellulose pulp; typical CNF is visible with interwound networks and a
diameter of CNF in the range of 30–35 nm, attributed to the mechanical shearing force of the
supermasscolloider that promoted the fracture of the cellulose chain and nano-fibrillation.
Figure 5b–g illustrate the AFM topograghy image and diameter distribution histogram
of CNF-6-1, CNF-6-1.5, CNF-9-1, CNF-9-1.5, CNF-12-1 and CNF-12-1.5, respectively. The
shorter fibrils compared with CNF from the original cellulose pulp were visible, with
diameters in the range of 20–25 nm, 15–20 nm, 15–20 nm, 15–20 nm, 10–15 nm, and
10–15 nm, respectively. This result was related to the interaction between sulfamic acid
and the hydroxyl groups to graft the sulfate group onto the surface of cellulose, thereby
weakening the hydrogen bond of the fiber. Meanwhile, the effect of mechanical shear force
cut the fibers swollen in the DES pretreatment process into shorter CNFs, which could be
used for applications in composites requiring robust mechanical properties.

Nanomaterials 2021, 11, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 4. Schematic diagram for preparation of CNF through DES pretreatment. 

3.3.3. The Morphology and Size Dimensions of Cellulose Nanofibril 

The morphology and dimensions of the nanofibril samples were characterized by 

AFM. Figure 5a is the AFM topograghy image and diameter distribution histogram of 

CNF from the original cellulose pulp; typical CNF is visible with interwound networks 

and a diameter of CNF in the range of 30–35 nm, attributed to the mechanical shearing 

force of the supermasscolloider that promoted the fracture of the cellulose chain and nano-

fibrillation. Figure 5b–g illustrate the AFM topograghy image and diameter distribution 

histogram of CNF-6-1, CNF-6-1.5, CNF-9-1, CNF-9-1.5, CNF-12-1 and CNF-12-1.5, respec-

tively. The shorter fibrils compared with CNF from the original cellulose pulp were visi-

ble, with diameters in the range of 20–25 nm, 15–20 nm, 15–20 nm, 15–20 nm, 10–15 nm, 

and 10–15 nm, respectively. This result was related to the interaction between sulfamic 

acid and the hydroxyl groups to graft the sulfate group onto the surface of cellulose, 

thereby weakening the hydrogen bond of the fiber. Meanwhile, the effect of mechanical 

shear force cut the fibers swollen in the DES pretreatment process into shorter CNFs, 

which could be used for applications in composites requiring robust mechanical proper-

ties. 

  

Figure 5. Cont.



Nanomaterials 2021, 11, 2778 10 of 16
Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 16 
 

 

  

  

 

 

Figure 5. AFM topography images, and diameter distribution histograms of (a) CNF, (b) CNF-6-1, 

(c) CNF-6-1.5, (d) CNF-9-1, (e) CNF-9-1.5, (f) CNF-12-1, and (g) CNF-12-1.5. 

3.3.4. The Zeta Potential and Crystallinity of Cellulose Nanofibril 

The zeta potential value of CNF suspension is shown in Table 3. Zeta potential could 

be used to indicate the degree of electrostatic repulsion between similar charged particles 

in the dispersion [54]. The zeta potential value of CNF suspension had a potential range 

between −18.3 mV and −35.2 mV, which was in compliance with the values measured in 

recent studies [55,56]. Compared with the CNF obtained from the original fibers, the zeta 

potential value of CNF obtained from DES-pretreatment increased. The maximum in-

crease in CNF-12-1.5 was 92% compared with the original CNF because sulfamic acid in-

troduced sulfate groups to the surface of the fibers with negative charges and increased 

the anion zeta potential. Generally, the zeta potential values between −30 mV and −40 mV 

showed a moderate stability [57]. Principally, the high value of zeta potential indicated a 

Figure 5. AFM topography images, and diameter distribution histograms of (a) CNF, (b) CNF-6-1,
(c) CNF-6-1.5, (d) CNF-9-1, (e) CNF-9-1.5, (f) CNF-12-1, and (g) CNF-12-1.5.

3.3.4. The Zeta Potential and Crystallinity of Cellulose Nanofibril

The zeta potential value of CNF suspension is shown in Table 3. Zeta potential could
be used to indicate the degree of electrostatic repulsion between similar charged particles
in the dispersion [54]. The zeta potential value of CNF suspension had a potential range
between −18.3 mV and −35.2 mV, which was in compliance with the values measured
in recent studies [55,56]. Compared with the CNF obtained from the original fibers, the
zeta potential value of CNF obtained from DES-pretreatment increased. The maximum
increase in CNF-12-1.5 was 92% compared with the original CNF because sulfamic acid
introduced sulfate groups to the surface of the fibers with negative charges and increased
the anion zeta potential. Generally, the zeta potential values between −30 mV and −40 mV
showed a moderate stability [57]. Principally, the high value of zeta potential indicated
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a high degree dispersion of CNF. The negative zeta potential caused by sulfation led to
electrostatic repulsive forces and well-dispersed CNF suspensions.

Each sample in Figure 6 exhibited three typical diffraction peaks at 2θ = 16.3◦, 22.6◦,
and 34.8◦, characteristic of cellulose I allomorphism, attributed to the 110, 200, and 004
crystalline planes, respectively [58]. This result revealed the DES modification in which
the consequent mechanical nano-fibrillation did not change the crystal structure. The
CrI values were 64.0%, 61.7%, 60.2%, 57.6%, 54.5%, 54.8%, and 53.3%, corresponding to
CNF, CNF-6-1, CNF-6-1.5, CNF-9-1, CNF-9-1.5, CNF-12-1, and CNF-12-1.5, respectively,
as summarized in Table 3. The CrI values of CNF prepared from DES-treated pulp all
decreased compared with the CNF prepared from the original fibers, this might imply
that the sulfate groups on the sulfated CNF were detected as amorphous regions [59]. In
addition to the influence of sulfate groups, the mechanical grinding force disrupted the
hydrogen bonds between the crystalline and amorphous regions and ultimately led to a
decrease in CrI.
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3.4. Characterization of Neat PVA and PVA/CNF Films

As shown in Figure 7, in the UV spectrum and the transmittance of PVA/CNF films
decreased compared to the neat PVA film. For example, at 277 nm, the UV light trans-
mittance of the neat PVA film was 86%, but the UV light transmittance of the samples
PVA-CNF, PVA-CNF-6-1, PVA-CNF-6-1.5, PVA-CNF-9-1, PVA-CNF-9-1.5, PVA-CNF-12-1
and PVA-CNF-12-1.5 were 84%, 82%, 72%, 81%, 68%, 64% and 61%, respectively. This
indicated that the UV resistance ability of the PVA/CNF films improved, consistent with
Niu et al. [60]. The addition of sulfated CNF improved the UV resistance of the film more
than the addition of unfunctionalized CNF in the PVA matrix. The UV resistance ability of
the sample PVA-CNF-12-1.5 was the most effective. In the visible light region (400–800 nm),
the addition of CNF had a notable effect on the total transmittance. The transparency of
the film could be assessed by UV-Visible spectrometry. The transmittance of all samples
was almost same at the wavelength of 700 nm, which indicated that the addition of CNF
had little effect on the transparency of the visible light of PVA.
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The stress–strain curves and tensile properties from the tensile measurements of
PVA/CNF films are shown in Figure 8 and Table 4. The addition of CNF improved the
tensile strength and the elastic modulus was compared to the neat PVA film, especially
in PVA-CNF-12-1.5 where the maximum tensile strength and Young’s Modulus increased
to 44 ± 3 MPa and 1629 ± 128 MPa, respectively. Because of the high aspect ratio and
high elastic modulus of cellulose, the Young’s modulus and tensile strength of PVA/CNF
composite films improved. However, the elongation at the break decreased after adding
CNF that was ascribed to the intramolecular and intermolecular hydrogen bonds formed
between PVA and CNF [61]. The improvement effect of CNF with DES treatment was
more effective than without DES treatment. The amount of sulfamic acid used in the
pretreatment of CNF influenced the mechanical properties of the composite films. At the
same reaction time, Young’s modulus and the tensile strength increased with the increase in
the content of sulfamic acid, which could be due to that the introduction of sulfate groups
on the CNF surface, and this caused less aggregation in the PVA matrix under the action of
electrostatic repulsion, which enhanced the contact between the CNF surface and the PVA
matrix and made it easier to form hydrogen bonds between the two [62].
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Table 4. Mechanical properties of neat PVA and PVA/CNF films.

Sample Young’s Modulus
(MPa)

Maximum Tensile
Strength (MPa)

Elongation at Break
(%)

PVA 221 ± 74 11 ± 3 8.9 ± 0.4
PVA-CNF 444 ± 68 19 ± 2 8.4 ± 0.2

PVA-CNF-6-1 569 ± 59 23 ± 2 7.5 ± 0.2
PVA-CNF-6-1.5 602 ± 81 31 ± 4 6.2 ± 0.1
PVA-CNF-9-1 576 ± 93 26 ± 3 7.2 ± 0.3

PVA-CNF-9-1.5 1493 ± 101 40 ± 5 5.8 ± 0.1
PVA-CNF-12-1 584 ± 76 27 ± 7 6.8 ± 0.8

PVA-CNF-12-1.5 1529 ± 128 44 ± 3 5.5 ± 0.4

4. Conclusions

Sulfamic acid-glycerol DES was successfully applied to prepare sulfated CNF com-
bined with mechanical disintegration. The DES pretreatment was carried out with a
sulfamic acid:glycerol mass ratio of 1:3 under 100 ◦C for 1 or 1.5 h. The results showed
that the fiber width of the pulp fibers increased by 16–30% after DES pretreatment, which
indicated that the fibers were swollen. Meanwhile, sulfation was corroborated according
to FTIR spectra and elemental analysis, in which the maximum DS of the sulfated cellulose
was 0.12. The sulfamic acid-glycerol DES may swell and sulfate fibers in one-step, in which
swelling also promoted sulfation. After further nano-fibrillation, the sulfated CNF was
obtained in the diameter range 10–25 nm. Moreover, DES pretreatment facilitated cellulose
nano-fibrillation and reduced energy consumption, with a maximum reduction of 35%. The
obtained CNF maintained the original crystal structure, but the crystallinity was reduced
to 53% due to the introduction of the sulfate groups. In addition, the prepared PVA/CNF
composite film showed excellent UV resistance ability and tensile strength.
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