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Calcific aortic valve disease (CAVD) is a complex trait disorder characterized by

calcific remodeling of leaflets. Genome-wide association (GWA) study and Mendelian

randomization (MR) have highlighted that LPA, which encodes for apolipoprotein(a)

[apo(a)], is causally associated with CAVD. Apo(a) is the protein component of

Lp(a), a LDL-like particle, which transports oxidized phospholipids (OxPLs). Autotaxin

(ATX), which is encoded by ENPP2, is a member of the ecto-nucleotidase family of

enzymes, which is, however, a lysophospholipase. As such, ATX converts phospholipids

into lysophosphatidic acid (LysoPA), a metabolite with potent and diverse biological

properties. Studies have recently underlined that ATX is enriched in the Lp(a) lipid fraction.

Functional experiments and data obtained in mouse models suggest that ATX mediates

inflammation and mineralization of the aortic valve. Recent findings also indicate that

epigenetically-driven processes lower the expression of phospholipid phosphatase 3

(PLPP3) and increased LysoPA signaling and inflammation in the aortic valve during

CAVD. These recent data thus provide novel insights about how lipoproteins mediate

the development of CAVD. Herein, we review the implication of lipoproteins in CAVD

and examine the role of ATX in promoting the osteogenic transition of valve interstitial

cells (VICs).
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INTRODUCTION

Calcific aortic valve disease (CAVD) is a prevalent cardiovascular disorder. Fibro-calcific
remodeling is one key process involved in the development of CAVD. During CAVD, fibrosis and
mineralization of the aortic valve (AV) cusps progressively lead to a narrowing of the aortic orifice,
a clinical condition referred to as aortic valve stenosis (1). Different risk factors such as age,
male gender, hypertension, diabetes, and bicuspid aortic valve (BAV) have been associated with
CAVD (2). Studies have highlighted that osteogenic transition of valve interstitial cells (VICs) is a
predominant feature in surgically explanted aortic valves (3, 4). Inflammation and growth factors
are active players that promote the synthesis of extracellular matrix (ECM) and also trigger an
osteogenic program (5). For instance, mice deficient for interleukin 1 receptor antagonist (Il1rn), a
natural circulating inhibitor of interleukin 1 beta (Il1b), develop a thickening of the aortic valve and
a rise of transaortic velocities (6). VIC, a heterogeneous mesenchymal cell population, has a high
degree of plasticity in response to environmental cues (7). As such, different environmental signals
along with genetic predisposition are likely interacting in driving the osteogenic response of VICs.
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Familial aggregation observed in CAVD has underlined that
a strong genetic component is involved in the development
of this valve disorder (8). Though the genetic architecture
of CAVD is just emerging, genome-wide association (GWA)
studies and Mendelian randomization (MR) analyses have
underlined in the last 5 years that LPA, which encodes for
apoliprotein(a) [apo(a)], is causally associated with CAVD
(9, 10). This finding has fuelled considerable interest to decipher
themolecular processes whereby lipoprotein(a) [Lp(a)] promotes
the development of CAVD. Recent findings have shed some
light on this issue and suggest that an enzymatic pathway
along with Lp(a) promote inflammation and osteogenesis
in the aortic valve (11). Isolated Lp(a) fraction showed an
enrichment for autotaxin (ATX), a lysophospholipase D, which
is transported in the aortic valve (12). ATX is a ubiquitous
enzyme that transforms oxidized phospholipids (OxPLs), a
significant cargo transported by Lp(a), into lysophosphatidic
acid (LysoPA). LysoPA is a highly active metabolite and
promotes inflammation, fibrosis and osteogenesis (13).
Herein, we are reviewing the genetic association of LPA
with CAVD and the underpinning processes whereby this
lipoprotein promotes the development of CAVD through
ATX-LysoPA pathway.

GENETICS, LPA AND CAVD

Previous work conducted in the western part of France
underscored that CAVD is clustering in some extended families
(14). More recently, nationwide epidemiological assessment in
Sweden reported an increased risk of developing CAVD among
subjects with at least one sibling diagnosed with the disorder (15).
The risk was magnified among siblings (HR = 3.4) as compared
to spouses of index cases (HR = 1.2), suggesting that the genetic
component is likely having a stronger effect compared to shared
environmental risk factors (15). Raremutations inNOTCH1 have
been documented in some families with BAV, an abnormal valve
configuration with two cusps instead of three and a risk factor for
CAVD (16). However, rare mutations in NOTCH1 only explain a
small fraction of cases. In the last decade, GWA studies, which
test genetic associations between common single nucleotide
polymorphisms (SNPs) and traits/disorders, have underlined
the genetic architecture of these traits and have fuelled the
development of novel therapies. Though the genetic architecture
of CAVD is just emerging, recent findings have transformed
the field and have helped to pinpoint causal pathways (17).
Thanassoulis et al. reported in the first GWA study conducted
on CAVD that a common gene variant rs10455872 (MAF =

0.07 in European population), which is located in LPA, reached
genome-wide significance (9). The LPA locus is complex and
includes copy number variants (CNVs) in the region encoding
for kringle IV type 2 domain (KIV2), which is inversely related
to the circulating level of Lp(a) (18). The index SNP at the LPA
locus rs10455872 is associated with the number of KIV2 repeats
and with plasma level of Lp(a). It is worth highlighting that
plasma level of Lp(a) is largely determined by genetic factors and
heritability may explain up to 90% of the variance (19). In a MR

study design, LPAwas identified as a plausible causal candidate in
CAVD (9). These findings were corroborated in different studies
(10, 20). However, a recent GWA study found that rs10455872
was not associated with congenital BAV, a common cause of
CAVD (21). In a large meta-analysis including 1,797 CAVD
cases and 131,932 controls, carriers of rs10455872 had a 1.66-
fold risk of developing CAVD (22). Also, genetically-determined
lower level of Lp(a) has been shown to reduce the risk of
CAVD by 37% (23). Among subjects of European ancestry, the
population attributable risk for Lp(a) in CAVD is 13% (24). These
findings thus indicate that decreasing Lp(a) and/or blocking
specific pathway(s) whereby this lipoprotein promotes CAVD
could possibly translate into therapies in at-risk individuals.

OXIDIZED PHOSPHOLIPIDS AND Lp(a)

Apo(a) is a highly polymorphic lipoprotein, which is linked to
apolipoprotein B(apoB) moiety of low-density lipoprotein (LDL)
by a disulfide bridge (25). Lp(a) is thus a LDL-like particle with
an additional lipoprotein. However, some distinctive features
characterize Lp(a). Among those, the cargo of Lp(a) includes a
significant proportion of OxPLs, which binds to apo(a) moiety
(26). Specifically, KIV10 domain of apo(a) is attached covalently
to OxPL (26). Of note, genetically-determined level of OxPL
linked to apo(a) [OxPL-apo(a)] increases the risk of CAVD by
1.09-fold (27). Also, the circulating levels of Lp(a) and OxPL
are associated with a faster progression of aortic valve stenosis
(28). OxPL is considered as a danger associatedmolecular pattern
(DAMP), which is recognized by the innate immune system and
is a potent trigger for the inflammatory process(29, 30).

DEVELOPMENT OF CAVD: OSTEOGENIC
TRANSITION AND INFLAMMATION

One key feature in CAVD is the transition of VICs toward
osteoblast-like cells. One of the first step involves the
reprograming of cells into activated VICs, which express
myofibroblast markers such as alpha smooth muscle actin
(ACTA2) and secrete ECM components such as collagen and
remodeling enzymes (31). Transforming growth factor beta
1 (TGFB1) is expressed during the early stages of CAVD and
promotes the transformation of quiescent cells into activated
VICs (32). Secretion of bone morphogenetic protein 2 (BMP2)
is a powerful stimulus that instigate an osteogenic program
and the deposition of mineralized matrix (33). Key signaling
pathways such as NOTCH1 and WNT/beta catenin are involved
and promote the expression of osteogenic genes in VICs (34).
NOTCH1 is a crucial regulator of osteogenic fate and lower
signaling through this cascade increases the expression of BMP2
(35). The osteogenic reprograming is tightly associated with the
expression of key transcription factors (TFs) such as RUNX2,
which coordinates the expression of several potent promoters of
mineralization such as tissue non-specific alkaline phosphatase
(ALPL). ALPL along with other ecto-nucleotidases, such as
ENPP1, are overexpressed in surgically explanted mineralized
aortic valves (36). ALPL and ecto-nucleotidases are embedded
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in matrix vesicles, which are secreted by VICs and promote the
mineralization of the ECM by controlling the production of
inorganic phosphate (37). Collagen type 1, secreted by VICs,
contributes to the stiffening of the ECM and also serve as scaffold
for biomineralization (38, 39).

Different pathobiological processes that involve ectopic
biomineralization are associated with inflammation. It is
likely that in response to diverse pathogenic stimuli some
tissues respond by secreting mineralized matrix as a defensive
mechanism. Hence, the production of biomineralized matrix
can be interpreted as a response to injury (40). Hence, DAMPs
and pathogen-associated molecular pattern (PAMP) receptors,
which are expressed by VICs, contribute to activate cells and
to promote a fibro-calcific response (41). Activation of toll-like
receptors 2 and 4 (TLR2/4) promote a potent inflammatory
response and the mineralization of isolated VIC cultures (42).
Moreover, increased oxidative stress related to the uncoupling
of nitric oxide synthase (NOS) and the overactivation of
NADPH oxidase (NOX) during CAVD contribute to exacerbate
the inflammatory response (43, 44). VICs secrete interleukin-
6 (IL6), which potently induces ECM production and the
expression of BMP2 (45). IL6 also promotes the endothelial-to-
mesenchymal transition (endoMT) of aortic valve endothelial
cells into activated VICs (46). Histological examination of
explantedmineralized AVs has consistently revealed the presence
of macrophages and some T cells (47). In surgically explanted
mineralized aortic valves, clonally expanded population of T
cells is present and suggests that immunity is associated with
the development of CAVD (48). In human explanted AVs, the
number of inflammatory cell clusters is associated with the
degree of tissue remodeling (47). These data, thus, highlight that
inflammation and osteogenesis are intertwined together during
the development of CAVD. However, it is worth pointing out that
despite mounting evidence for a participation of inflammation
to CAVD, it is presently unclear if it plays a causal role in the
development and progression of this disorder. Further work is
needed to identify key causal drivers in CAVD.

AUTOTAXIN

ATX, which is encoded by ENPP2, is a lysophospholipase D
enzyme that was initially identified in melanoma cell line as
a motility factor (49). It transforms lysophosphatidylcholine
(LysoPC) into LysoPA. Oxidative transformation of lipoproteins
generates significant amount of LysoPC through a lipoprotein-
associated phospholipase A2 pathway (50). Mahmut et al.
showed that LysoPC is a reactive metabolite that promoted
an osteogenic program in VICs (51). However, subsequent
analysis by using thin layer chromatography showed in explanted
mineralized AVs that the amount of LysoPA surpassed by
manifold the level of LysoPC (12). Chromatography-tandem
mass spectrometry performed in explanted mineralized AVs
confirmed the presence of LysoPA with a predominance of
16:0 and 18:1 species (52). These data, thus, suggested that
active processes were likely at play in promoting the production
of LysoPA in the AV (Figure 1). Measurements performed in

control non-mineralized and explanted CAVD tissues showed
that enzymatic activity of ATX was increased by 60% in
mineralized cusps (12). In the latter study, ATX activity in
mineralized aortic valves was increased in both tricuspid and
BAVs. Confocal analysis of mineralized aortic valves also
demonstrated that immunofluorescence for apo(a) was co-
distributed with ATX (12). ATX activity was enriched in isolated
Lp(a) fraction and proximity ligation assay in aortic valves
confirmed the interaction between ATX and apo(a). Moreover,
we found a high level of ATX in VICs, which was secreted in
response to LysoPC and OxPLs treatment. Further experiments
showed that LysoPC-induced VIC culture mineralization relied
on ATX (12). To this effect, ATX-dependent transformation of
LysoPC into LysoPA promoted the expression of IL6 and BMP2,
which, in turn, triggered the mineralization of VIC cultures.
In LDLR−/−/apoB100/100/IGFII mouse, the administration of
LysoPA enhanced the expression of BMP2 and promoted a faster
progression of aortic valve stenosis (12). Recently, Bouchareb
et al. also showed that VIC-derived ATX associates with platelets,
which are recruited to the aortic valve during CAVD, and
produces LysoPA (53). Hence, both lipoproteins and activated
platelets are potential sources of LysoPA in the aortic valve
during CAVD.

Nsaibia et al. showed in patients that circulating ATX activity
was independently and positively associated with CAVD risk
(OR:1.57) (54). Of interest, a significant interaction term was
found between ATX activity and Lp(a) level. Stratified analysis
showed that an elevated ATX activity and Lp(a) level (≥50
mg/dL) increased the risk of CAVD by 3.5-fold (54). Taken
together, these data indicate that ATX is carried by Lp(a) and is
also secreted by VICs and contributes to produce LysoPA with
pro-inflammatory and osteogenic activities.

PLPP3: A NEGATIVE REGULATOR
OF LysoPA

Phospholipid phosphatases (PLPPs) are membrane-associated
enzymes involved in the degradation of LysoPA. As such,
PLPPs, which reside at the cell membrane along with LysoPA
receptors (LPARs), are key modulator of LysoPA signaling in
cells. Transcriptomic analysis of control non-mineralized and
mineralized aortic valves showed that among the PLPP enzymes
PLPP3 was significantly downregulated during CAVD (55).
Analysis in independent series of tissues showed that mRNA
encoding for PLPP3 was decreased by 49% in mineralized AVs.
These data were corroborated by measuring PLPP activity, which
was also reduced by 31% in mineralized AVs (55). Of note,
the level of LysoPA in valves with less expression of PLPP3
(median value) was increased by 1.5-fold. Mapping provided
evidence that a dysregulated epigenetic process was impinging
on the expression of PLPP3 during the mineralization of cusps.
DNA methylation mapping showed that CpG methylation in
intron 1 (cg02468627) of PLPP3 was inversely associated with
the expression of this gene and was increased in mineralized
portion of explanted aortic valves (55). This CpG site is located
within a mammalian interspersed repeat (MIR) transposon, a
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FIGURE 1 | Circulating Lp(a) particles associate with ATX and enter the aortic valve, where ATX can metabolize lysophosphatidylcholine (LysoPC) presents in the Lp(a)

particles into lysophosphatidic acid (LysoPA). Pericellular LysoPA can then associate with LPAR1, which promotes NF-κB nuclear translocation. NF-κB activation

results in elevated expression of the IL-6 and BMP-2 pro-osteogenic factors. ATX, autotaxin; LPAR1, lysophosphatidic acid receptor 1; IL-6, interleukin 6; BMP2, bone

morphogenetic protein 2; NF-κB, nuclear factor kappa B.

highly conserved repeat element that often harbors enhancers.
In this region, the level of monomethylation on lysine 4
of histone 3 (H3K4me1), an histone mark of enhancer, was
elevated in aortic valve cusps. Reporter assay confirmed that
intron 1 had enhancer activity. Further epigenetic mapping
showed an increased level of trimethylation on lysine 27 of
histone 3 (H3K27me3) at the intron 1 of PLPP3 in mineralized
aortic valves. H3K27me3 is a histone repressive mark often
associated with increased level of CpG methylation. Hence, these
findings raised the hypothesis that increased CpG methylation
at this site could be a causal event in downregulating the
expression of PLPP3 (Figure 2). Epigenetic editing with clustered

regularly interspersed short palindromic repeats (CRISPR)-
Cas9 fused with DNA methyltransferase (DNMT) showed that
increased CpG methylation at intron 1 of PLPP3 reduced
gene expression by 38% (55). These findings prompted further
functional testing to verify if lower expression of PLPP3 in
VICs may promote/exacerbate osteogenic transition induced by
LysoPA. Short interfering RNA-mediated knockdown of PLPP3
in VICs, promoted an accrued response to LysoPAwith increased
expression of ALPL and higher deposition of mineralized
matrix. These findings underscored that an epigenetic process
downregulates the expression of PLPP3 during CAVD and is
conducive to elevated LysoPA signaling.
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FIGURE 2 | DNA methylation and H3K27 trimethylation in intronic enhancer results in decreased PLPP3 expression and leads to increased LysoPA level, which

promotes osteogenic signaling (With permission from Mkannez et al. (55). EED, embryonic ectoderm development; SUZ12, SUZ12, polycomb repressive complex 2

subunit; EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit; DNMT3, DNA methyltransferase 3 like.

LysoPA AND SIGNALING CASCADE
IN VICs

LysoPA is a bioactive lipid-derived metabolite with a vast array of
biological activities. At least 6 different LPARs mediate the action
of LysoPA. Fine-grained molecular analysis recently deciphered
the signaling cascade whereby LysoPA and OxPLs promoted
inflammation and osteogenesis in VICs (56). We highlighted that
LPAR1 was highly expressed in human mineralized valves and
promoted the expression of COL1A1 and the mineralization of
VIC cultures through a nuclear factor kappa B (NFκB) pathway.
In VICs, LPAR1 activated RhoA and Rho kinase (ROCK), which
promoted a robust expression of NFκB-dependent genes such as
IL6 and IL8. In addition, we found that BMP2, a morphogenetic
protein that drives osteogenesis, was overexpressed downstream
of LPAR1-NFκB. Analysis showed that promoter region of BMP2
contained κB responsive elements and that LysoPA promoted
the phosphorylation of p65 on serine 536 (p65 S536) (56).
Of interest, phosphorylated p65 S536 was recruited to the
promoter of BMP2 in chromatin immunoprecipitation (ChIP)
assay. During NFκB signaling the inhibitor of κB (IκB) is rapidly
induced and transits to the nucleus where it competes with
p65 for κB sites. This process ensures a negative feedback
loop to control the inflammatory response mediated by the
NFκB pathway. However, phosphorylation of p65 S536 is not
sensitive to the nuclear inhibition provided by IκB. Hence, genes
dependent on phosphorylated p65 S536 are less sensitive to
negative retro-feedback and experienced sustained expression.
Experiments carried out with constitutively active mutant IκB
super repressor (IκBα SS32-36AA) showed that LysoPA-induced
expression of BMP2 was not sensitive to the repression (56).
These data thus indicate that LysoPA-induced activation of BMP2
is dependent on phosphorylated p65 S536 and is not responsive

to the negative feedback regulation provided by IκB. In a
mousemodel, pharmacological inhibition of LPAR1with Ki16425
reduced the progression of aortic stenosis and downregulated
the expression of BMP2 in aortic valve cusps (56). In this
model, the administration of Ki16425 was not associated with
significant modification in the lipid profile. It thus suggests that
the protection provided by the pharmacological inhibition of
LPAR1was likelymediated by direct valvular effect and decreased
osteogenic signaling in the aortic valve.

NOVEL THERAPEUTIC OPPORTUNITIES
IN CAVD

Randomized control trials (RCTs) conducted with statins have
been negative in CAVD and have questioned the role of
lipoproteins as causal factors in CAVD. However, the strong
genetic signal for LPA in CAVD, which has been validated
in different cohorts, has provided considerable interest to
understand the role of lipoproteins in CAVD.MR studies showed
that Lp(a) is causally associated with CAVD. Thus, these data
strongly suggest that interventions aimed to modify the level of
Lp(a) could provide therapeutic benefit (57). The failure of statins
in RCTs is probably multifactorial (58). For instance, pleiotropic
properties of statins include a pro-osteogenic effect and also
this class of LDL-lowering drugs increases the level of Lp(a)
significantly (25). Recently, oligoantisense therapy that lowers
Lp(a) level by more than 80% have been developed and could
be tested in RCT to reduce the progression of aortic stenosis
(59). Also, inhibitors of proprotein convertase subtilisin/kexin
type 9 (PCSK9), which provides drastic reduction of LDL and
a moderate reduction of Lp(a) (20–25%), could be tested in
CAVD (60). In addition, promising data showed a reduction
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of aortic valve mineralization in Ldlr−/− mice expressing a
natural antibody against OxPL (EO6) (61). Further exploration
of blocking antibodies directed at OxPL epitopes in humans
could lead to novel therapies. On the other hand, considering
the identification of enzymatic pathways that mediate OxPL-
induced mineralization of the aortic valve, several promising
drugs in development are of interest and should be valuated in
pre-clinical models as well as in RCTs. In this regard, inhibitors
of ATX and LPARs are in different phases of development
and could be evaluated as potential therapeutic agents in
CAVD (62).

CONCLUSION

Genetic studies have underscored that Lp(a) is causally associated
with CAVD. Molecular analyses have provided evidence that
interaction between ATX and Lp(a) is promoting inflammation
and osteogenic reprograming in VICs. Dysregulation of LysoPA
signaling inmineralized aortic valve includes a higher and a lower
expression of LPAR1 and PLPP3 respectively. LPAR1 promotes
a signaling cascade that culminate in the phosphorylation
of p65 S536 and a sustained expression of BMP2, a key
driver of osteogenic transformation in VICs. On the other
hand, epigenetically reprogrammed VICs at a transposon-based
enhancer is a proximal event that contributes to lower PLPP3
and to promote/exacerbate LysoPA signaling in VICs. Together,

these data suggest that lipoprotein metabolism during CAVD
is perturbed and promotes inflammation and mineralization.
Further work and elucidation of key processes in lipoprotein
metabolism during CAVD could lead to the development of
novel therapies.
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