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ABSTRACT
PI 3-kinase α (PI3Kα) is a lipid kinase that converts phosphatidylinositol-4,5-bisphosphate (PIP2) to
phosphatidylinositol-3,4,5-triphosphate (PIP3). PI3Kα regulates a variety of cellular processes such
as nutrient sensing, cell cycle, migration, and others. Heightened activity of PI3Kα in many types of
cancer made it a prime oncology drug target, but also raises concerns of possible adverse effects
on the heart. Indeed, recent advances in preclinical models demonstrate an important role of
PI3Kα in the control of cytoskeletal integrity, Na+ channel activity, cardioprotection, and preven-
tion of arrhythmias.
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Introduction

Phosphoinositide 3-kinases (PI3Ks) phosphorylate
phosphatidylinositol lipids in intracellular mem-
branes at the 3ʹ position of the inositol ring.
Class I PI3Ks act at the plasma membrane by
phosphorylating phosphatidylinositol-4,5-bispho-
sphate (PIP2) to produce phosphatidylinositol-
3,4,5-triphosphate (PIP3). In addition to catalytic
functions, class I PI3Ks also act as scaffold proteins
to create regulatory complexes independent of the
kinase action of PI3Ks [1–3]. Class I PI3Ks have
four isoforms (PI3Kα, PI3Kα, PI3Kγ, and PI3Kδ)
consisting of a p110 catalytic and regulatory sub-
unit. Based on the regulatory subunit preference,
class I PI3Ks are grouped into class IA enzymes
(p110β, p110β, and p110δ), which bind to a p85
family regulatory subunit, and the class IB PI3K
(p110γ), which binds to p84 or p101 regulatory
subunit. PIP3 produced by these PI3Ks binds with
effectors that have a PI3K-lipid-binding pleckstrin
homology (PH) domain. These effector proteins,
including the AKT Ser/Thr protein kinase, regu-
late various biological processes such as nutrient
sensing, survival, cell cycle, migration, and others
[3–8]. Different isoforms are activated by distinct
mechanisms: PI3Kα and PI3Kδ are activated by
receptor tyrosine kinase (RTK) and Ras small

GTPases, PI3Kγ is activated by Gαγ subunits
released following G protein-coupled receptor
(GPCR) activation and by Ras, and PI3Kα can be
activated by RTKs, Gαγ and the Cdc42 and Rac
small GTPases. The catalytic subunits, p110β,
p110β, p110γ, and p110δ, are encoded by the
PIK3CA, PIK3CB, PIK3CG, and PIK3CD genes,
respectively. Upregulation of class IA PI3K signal-
ing is frequently found in cancer and occurs
through various mechanisms, including inactiva-
tion of the PI3K antagonizer phosphatase and
tensin homolog (PTEN), overactivation of RTKs
upstream of PI3K and gain-of-function somatic
mutations in genes coding for catalytic subunits
[9–11]. Among PI3K gene mutations, mutations in
PIK3CA are the most frequent, with much lower
frequency in PIK3CB and PIK3CD [12]. The cru-
cial role of the PI3K pathway in cancer develop-
ment and progression made this pathway
a promising target for cancer treatment [13–15].
However, the development of PI3K-targeted drugs
has raised a need to investigate the role of PI3K
isoforms in wider physiology and pathophysiology.
Recent preclinical studies have revealed that PI3Ks
plays a critical role in hypertrophy, electrical
remodeling, cardiovascular diseases, including
cytoskeletal regulation during heart failure, cardi-
oprotection from ischemic injury, and channel
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activity regulation [6–8,16,17]. In this review, we
will focus on the novel role of PI3Kα as
a modulator of cytoskeletal integrity, channel
activity, Ca2+ cycling, and the mechanisms under-
lying arrhythmogenicity upon PI3Kα inhibition.

PI3K inhibitors in cancer therapy

The involvement of various PI3K isoforms in can-
cer made them a prime target for cancer therapies
[13–15]. The PI3Kα isoform is the main target for
solid tumors, and PI3Kδ is targeted in hematolo-
gical tumors, whereas PI3Kα and PI3Kγ receiving
less attention (Table 1). Since PI3Kα is the func-
tionally-dominant isoform expressed in the heart,
in this review, we will focus on the cardiac effects
of PI3Kα inhibition.

Clinical trials of inhibitors that block PI3Kα
commonly reported hyperglycemia as the major
side effect [18–30], which is unsurprising consid-
ering the critical involvement of PI3Kα in insulin
signaling [31,32]. Corrected QT (QTc) prolonga-
tion was observed for alpelisib (BYL719) [18,23],
but not for serabelisib (MLN1117) [26] or taselisib
(GDC0032) [27] (Table 1). General inhibition of
PI3K and/or tyrosine kinase activity had been
linked to cardiotoxicity and drug-related heart fail-
ure [13,14]. Pan-PI3K inhibitors exhibit similar
cardiac side effects as PI3Kα inhibition suggesting
that the effects might be due to inhibition of this
PI3K. So far, arrhythmogenic side effects are
known for the pan-PI3K inhibitor copanlisib
[15]. For copanlisib, which now has regulatory
approval, prolonged QTc (ΔQTcB ≥ 60 ms) was
found in 6.6% of patients, prompting a request
by the FDA for further monitoring [15].

Tyrosine kinase inhibitors may indirectly sup-
press PI3Kα. Inhibition of PI3Kα has been put
forward as an explanation of the arrhythmogenic
effects of ibrutinib [33]. Only ibrutinib (Bruton
tyrosine kinase inhibitor) has been linked to
instances of atrial fibrillation, ventricular arrhyth-
mias, and sudden cardiac death [34–36].

Cardiac effects of PI3Kα inhibition in diabetes

In murine models of diabetes, reduced sensitivity to
insulin is associated with diminished PI3Kα activity
which has been linked to both hyperglycemia and

arrhythmias [37,38]. Prolongation of the action
potential and QTc interval was observed in different
animal models of diabetes [39,40]. The reduced
PI3Kα activity causes the dis-inhibition (activation)
of late Na+ current leading to prolongation of the
action potential [37,38]. Conversely, upregulation of
PI3Kα activity in the heart has been shown to protect
from ventricular arrhythmias and sudden death
associated with pathological hypertrophy and heart
failure [17,41].

PI3Kα in cardioprotection

PI3Kα signaling has recently emerged as an impor-
tant cardioprotective pathway. In murine animal
models, PI3Ka pathway has been shown to be
protective in the model of tamoxifen toxicity [42]
and various models of heart failure [6,43,44]. For
pressure overload model of heart failure, a recent
study by Patel et al. [6]. elucidated a mechanism
underlying the accelerated progression of heart
failure observed in a murine model of PI3Kα defi-
ciency, suggesting that PI3Kα activation is part of
a compensatory response during heart failure.
They also reported reduced PI3Kα activity in
human and dog hearts with dilated cardiomyopa-
thy, additionally suggesting that PI3Kα is a part of
compensatory response mechanisms to maintain
heart function under adverse conditions [6]. In the
murine model of ischemic preconditioning, PI3Kα
was also found to be the key PI3K isoform to limit
myocardial infarct size [43]. In the murine model
of doxorubicin-induced heart failure, the loss of
PI3Kα exacerbates cardiac atrophy, leading to
biventricular atrophy associated with right ventri-
cular dysfunction [44]. Similarly, patients receiving
anthracyclines and trastuzumab, which indirectly
inhibits PI3Kα activity, exhibit biventricular dys-
function and reduced heart mass [45]. Taken
together, the PI3Kα pathway appears to play
a crucial cardioprotective role.

PI3Kα in compensatory response during heart
failure

Under quiescent conditions, lack or reduced PI3Kα
activity does not significantly affect heart function
[6,46,47], but lack of PI3Kα activity is known to
accelerate heart failure progression in the pressure
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overload model of heart failure [6,47]. However, the
exact mechanisms of this increased susceptibility to
heart failure were unknown. Recently, Patel et al [6].
proposed that in response to biomechanical stress,
PI3Kα is recruited to intercalated disks and the
plasma membrane where it produces PIP3, which
is required to suppress the activity of gelsolin (GSN),
an actin-severing protein. When PI3Kα activity is
suppressed, GSN activity is markedly increased,
leading to lower levels of actin polymerization and
a less resilient actin cytoskeleton. Tissue of human
and dog hearts with dilated cardiomyopathy also
showed reduced levels of actin polymerization, and
in human samples, there was a negative correlation
between cardiac function and actin depolymeriza-
tion (the lower ejection fraction corresponded to
higher depolymerization levels) [6]. In addition,
human and canine hearts with dilated cardiomyo-
pathy showed reduced PI3Kα activity. In a murine
dilated cardiomyopathy model, the exacerbation of
cardiac dysfunction in PI3Kα-deficient mice was
prevented by experimental GSN deficiency, suggest-
ing that PI3Kα is an important in vivo cytoskeletal
regulator during cardiac remodeling in pressure
overload heart failure. In the proposed framework
[6], PI3Kα produces PIP3 which suppresses GSN
activity, preventing depolymerization of the actin
cytoskeleton by GSN (Figure 1a). In the case of
heart failure, reduced PI3Kα activity leads to low
PIP3 levels and increased GSN activity, which in
turn favors the depolymerization of the actin cytos-
keleton (Figure 1b). Another possible mechanism of
cardioprotection mediated by PI3Kα is suppression
of late Na+ current by PI3Kα-generated PIP3 [7,48].
Since activation of late Na+ current accompanied

heart failure in the pressure overload model[49],
lack of PI3Kα activity and the ensuing reduction in
PIP3 to suppress late Na+ current may contribute to
the accelerated transition to heart failure. The link
between PI3Kα inhibition, late Na+ current, Ca2+

cycling, and arrhythmias is discussed in more detail
below.

PI3Kα and QT prolongation

PI3Kα upregulation and QT. PI3Kα activity controls
expression levels of many channel forming proteins
(K+: Kir, Kv, TASK; Ca2+: Cav1; Na+: SCN5A). In
murine models, an increase in PI3Kα activity, for
example, due to exercise leads to an increase in the
protein levels of K+, Ca2+, and Na+ channels as well
as their current densities [17]. Increasing PI3Kα
activity via expression of constitutively-active
PI3Kα also produces higher protein levels and cur-
rent densities [41]. Overall, upregulation of PI3Kα
due to exercise or overexpression did not affect QT
interval due to balanced increase in protein levles of
both repolarizing K+ channels (Kir, Kv, TASK) and
depolarizing channels (Ca2+: Cav1; Na+: SCN5A).
Moreover, PI3Kα upregulation was protective
against arrhythmias, pathological hypertrophy, and
dilated cardiomyopathy [16,17,41].

PI3Kα inhibition prolongs QT. Over the last dec-
ade, there has been a steady accumulation of obser-
vations linking pharmacological inhibition of PI3Kα
to activation of late Na current (INa-L). Apparently,
some classical blockers of rapidly-activating delayed
rectifier K+-channels, such as dofetilide and E4031,
can also inhibit PI3Kα activity and activate INa-L [50].
In patients, ibrutinib (inhibitor of Bruton tyrosine

a. Normal heart

PIP2 PIP3 GSN

F-actin G-actin
polymerized
cytoskeleton

PI3Kα

b. Heart failure

PIP2 PIP3 GSN

F-actin G-actin

PI3Kα

depolymerized
cytoskeleton

Figure 1. Regulation of actin cytoskeletal integrity by PI3Kα in the normal heart and heart failure. (a) Normal heart: PI3Kα produces
PIP3, which inhibits gelsolin (GSN) activity preventing actin severing action of GSN and favoring a polymerized state of the
cytoskeleton (prevalence of F-actin). (b) Heart failure: diminished PI3Kα activity results in reduced PIP3 levels, which leads to active
GSN severing F-actin and depolymerized cytoskeleton (prevalence of G-actin).
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kinase, an upstream effector of PI3Kα) increased
cardiac disorders (2-fold) and atrial fibrillation
(3-fold) [34], as well as instances of sudden death
and ventricular arrhythmias [35,36]. In mice, high
doses of ibrutinib produce analogous results (an
increase in susceptibility to induced atrial and ven-
tricular arrhythmias) and was associated with inhibi-
tion of PI3Kα activity [51].

In murine models, inhibition of PI3Kα produced
QT prolongation or long-QT (LQT) and was asso-
ciated with activation of INa-L [50], whereas in canine
cardiac myocytes the use of pan PI3K inhibitors lead
to inhibition of delayed rectifier K+ currents and
activation of INa-L [52]. The isoform-specific PI3Kα
inhibitor (BYL719) increased INa-L and resulted in
a triggered activity in murine cardiomyocytes [48]
and isolated murine hearts [7,53], but had no effect
on murine K+ currents [7]. These results suggest
a straightforward link between PI3Kα activity, the
prolongation of the action potential, and QT interval
(Figure 2). In this framework, an indirect inhibition of
PI3Kα activity by cancer therapies by receptor tyro-
sine kinase-based therapies (e.g., ibrutinib) [34–36] or
directly (e.g., alpelisib) [18,23] may reduce PI3Kα
activity leading to reduced PIP3. Since PIP3 sup-
presses INa-L, a reduction in PIP3 levels will dis-
inhibit (activate) INa-L, which as a depolarizing current
will promote action potential and result in QT pro-
longation (Figure 2). This QT prolongation due to
PI3Kα inhibition may be somewhat compensated in
large mammals (including humans) by the influence
of PIP3 on L-type Ca2+ current (ICa,L). Indeed, PIP3
has stimulatory effects on depolarizing L-type Ca2+

current (ICa,L); therefore, the reduction of PIP3 levels
due to PI3Kα inhibition will promote QT prolonga-
tion via INa-L and counteract it via ICa,L (Figure 2).
A promising approach therefore to prevent QT

prolongation is to block the activation of INa-L with
adjuvant therapy (e.g., ranolazine) (Figure 2) [7].
Besides direct pro-arrhythmic effects of INa-L activa-
tion, the increased INa-L may potentially contribute to
the development dilated cardiomyopathy since
increased influx of Na+ due to gain-of-functionmuta-
tions in SCN5A and SCN10 (genes encoding Na+

channels) has been implicated in the development of
heart failure in rodents [49] and was associated with
dilated cardiomyopathy [54] as well as sudden cardiac
death [55,56]. Another implication of increased INa-L
activity is sarcoplasmic reticulum Ca2+ overload,
which we will discuss below.

PI3Kα, Ca2+ cycling, and triggered
arrhythmias

Dis-inhibition of INa-L due to inhibition of PI3Kα
[7,48,50,52] can exacerbate Ca2+ overload by modulat-
ing Ca2+ cycling and α-adrenergic stimulation [7], both
of which are important contributors to the develop-
ment of several arrhythmias [56–58]. In this frame-
work, dis-inhibited INa-L will produce an additional
Na+ influx (INa-L; see (1) in Figure 3a), which will
increase cytosolic Ca2+ either via a reverse mode of
Na+-Ca2+ exchanger at the plateau of action potential
(2) or by reduction of Ca2+ extrusion via forwardmode
during resting potential. Increase in cytosolic Ca2+ will
facilitate Ca2+ uptake to the sarcoplasmic reticulum
(SR) via SERCa2 (3) leading to Ca2+ overload (4)
(Figure 3a,b) [7]. This Ca2+ overload will promote
prolongation of the action potential, abnormal auto-
maticity, early and delayed afterdepolarization, and
increased dispersion of repolarization [59,60]. This
increase in SR Ca2+ load is additive to α-adrenergic
stimulation [7] and thus will create a risky situation
similar to catecholaminergic polymorphic ventricular

Cancer
therapies

Adjuvant
therapy

(ranolazine)

Effect of
Cancer

Therapies

Late INa

RTK PI3Kα
PIP3

PIP2

QT QT

QT QTL-type ICa

Figure 2. Cancer therapies prolong QT interval via inhibition of PI3Kα. Inhibition of PI3Kα activity either at receptor tyrosine kinase
(RTK) step or directly at Pi3Kα will lead to a reduction in PIP3 levels, which exert an inhibitory effect on late INa. In the absence of
PIP3-related inhibition, additional depolarizing INa will prolong action potential and QT interval. The QT prolongation could be
moderated in large mammals due to the opposite effect of PIP3 on L-type Ca2+ current (ICa). Reduction in PIP3 levels will translate in
the smaller amplitude of depolarizing current ICa, which will favor QT shortening.
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tachycardia (CPVT) [58,61]. The combined effect of
INa-L and α-adrenergic stimulation will lead to an
excessive Ca2+ load that may result in spontaneous
Ca2+ release, which will generate depolarizing current
(INCX) via forward mode of NCX producing delayed
afterdepolarization (DAD) and possibly triggered
activity (premature action potential) (Figure 3c) [7].
In this framework, excessive Ca2+ overload can be
prevented either by inhibition of INa-L by ranolazine
or reverse mode of NCX by KB-R7943 (Figure 3a) [7].

PI3Kα inhibition and heart failure in the clinic

Besides the arrhythmogenic effects of PI3Kα inhibition
associatedwith INa-L activation and relatedCa

2+overload,
these processes may contribute to the development and
exacerbate heart failure. The activation of INa-L and
increased Ca2+ influx via NCX have been linked to the

development of heart failure in a murine pressure over-
load model [49] via hypertrophic calcineurin-NFAT sig-
naling [62]. In heart failure, when α-adrenergic signaling
is upregulated to maintain cardiac output [63], an addi-
tional Ca2+ from INa-L-NCX axis would compound with
the effects of α-adrenergic stimulation resulting in the
accelerated progression of heart failure. Pro-arrhythmic
effects of PI3Kα inhibition will be amplified because of
the higher levels ofNa+-Ca2+ exchanger protein observed
both in human failing heart [64] and in rodentmodels of
heart failure [65].

This means that the risk of cardiac-specific side
effects of PI3Kα inhibitionwill be greater in the elderly
patients who are more likely to suffer from heart fail-
ure or preexisting cardiac dysfunctions [66].
Polymorphisms in genes involved in all steps that
produce Ca2+ overload (Figure 3a,b) could also con-
tribute to susceptibility of PI3Kα-dependent cardiac

Ranolazine KB-R

NCX
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sarcoplasmic reticulum T-tuble

2+
Ca

2+
Ca

2+
Ca

2+ Ca overload
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+
3Na

+
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LTCC

+Na
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Figure 3. Effect of PI3Kα on Ca2+ cycling, α-adrenergic stimulation, and arrhythmias. (a) Effect of the PI3Kα inhibition on Ca2+ cycling.
Inhibition of PI3Kα (1) reduces the inhibitory action of PIP3 on late Na+ current (INa-L). Increased INa-L will generate an influx of Na+,
which will promote the influx of Ca2+ via Na+-Ca2+ exchanger (NCX) (2). Increased Ca2+ influx and thus increased cytosolic Ca2+ will
stimulate additional Ca2+ uptake via sarco-endoplasmic reticulum Ca2+ ATPase type 2 (SERCa2) (3) leading to increased Ca2+ levels in
sarcoplasmic reticulum or Ca2+ overload (4). (b) Schematic representation of the sequence of the events depicted in A. (c) Interaction of
activation of late INa and α-adrenergic stimulation. Both late INa and α-adrenergic stimulation are known to contribute to sarcoplasmic
(SR) Ca2+ overload. The SR Ca2+ overload may result in spontaneous Ca2+ release (increase in cytoplasmic Ca2+i) via ryanodine receptor
channels (RYR2). An increase in cytoplasmic Ca2+ will produce depolarizing current via the forward mode of NCX (NCX(F)) leading to
arrhythmogenic delayed afterdepolarization (DAD).
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side effects. Polymorphisms and mutations in SCN5A
and SCN10A (genes that are responsible forNa+ influx
via INa-L) have already been linked to dilated cardio-
myopathy, arrhythmias, and sudden cardiac death
[54–56,67]. Other LQT-related polymorphisms and
mutations may aggravate QT prolongation due to
PI3Kα inhibition exacerbating arrhythmic risk.
Additionally, since PI3Kα inhibition leads to Ca2+

overload, polymorphisms and mutations related to
CPVT, especially the ones that increase sensitivity to
Ca2+ overload [58], will also magnify arrhythmogenic
effects PI3Kα inhibition. The link between genetic
background and arrhythmogenic effects of PI3Kα
inhibition warrants further in-depth studies.

Currently, there are two possible approaches to
mitigate cardiotoxicity related to PI3Kα inhibition.
One is the use of an INa-L blocker (e.g., ranolazine)
that will prevent AP prolongation and Ca2+ over-
load resulting from inhibition of PI3Kα [7,68].
Ranolazine is known to improve heart function
in heart failure patients (not related to drug-
induced cardiotoxicity) [69–71] as well as to pre-
vent anthracycline-induced cardiotoxicity [72].
The other less explored approach is to block the
reverse mode of NCX; however, currently, there
are no approved drugs to achieve this effect.
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