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Introduction
Brain-derived neurotrophic factor (BDNF), a member of 
the neurotrophin family (consisting of nerve growth fac-
tor, BDNF, neurotrophin-3, and neurotrophin-4), has been 
intensely studied concerning its positive effect on survival 
promotion and synaptic regulation in the central nervous 
system. TrkB, a high affinity receptor for BDNF, and its 
downstream signals including phosphoinositide 3-kinase 
(PI3K)/Akt, extracellular signal-regulated kinase (ERK) and 
phospholipase Cγ pathways, are activated to maintain neu-
ronal survival and regulate synaptic plasticity (Kuczewski 
et al., 2010; Numakawa et al., 2013). Evidence suggests that 
decreased BDNF and TrkB-related signaling are involved 
in the pathogenesis of neurodegenerative diseases such as 
Parkinson’s disease (PD), Alzheimer’s disease (AD), and 
Huntington’s disease (HD), establishing this neurotrophin 
as a therapeutic target in treating neurodegeneration (Allen 
et al., 2011; Lu et al., 2013). As a result, the biological mech-
anisms of small chemicals and natural compounds that can 
stimulate the BDNF/TrkB system have attracted researchers. 

Beneficial effect of natural compounds in PD 
models
Dopamine toxicity and resultant oxidative stress are involved 
in the pathogenesis of PD. In order to make in vitro and in 
vivo models of PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine (MPTP) and 6-hydroxydopamine (6-OHDA) have 

been applied to cell cultures and animals (Bové and Perier, 
2012). Therefore, the potential effect of natural compounds 
obtained from plants on neural cells under dopamine toxic-
ity has become an interesting issue. Puerarin derived from 
kudzu roots exerts a protective effect on neurons in the sub-
stantianigra (SN) after 6-OHDA-induced tissue lesion (Li 
et al., 2013). Puerarin treatment increases both dopamine 
concentration and BDNF levels in SN neurons in addition to 
improving Parkinson-like behavior evoked by apomorphine 
(Li et al., 2013). Recently, Wei et al. (2013) observed that 
increased levels of glutathione, an endogenous antioxidant, 
play a role in cell protection by using (2S)-5,2′,5′-trihy-
droxy-7-methoxyflavanone (TMF), a natural chemical from 
abacopterispenangiana, in differentiated PC12 cells under 
dopamine exposure. They also found that TMF reversed 
reduction of spatial learning, memory and hippocampal 
BDNF expression in mice receiving D-galactose treatment 
(Wei et al., 2013). 

Neuroprotection by flavonoids in AD models
Given that a growing body of evidence suggests that oxida-
tive stress is also implicated in the pathophysiology of AD, 
natural antioxidants (including polyphenols) obtained from 
fruits, nuts, leaves and roots of plants are extensively exam-
ined. It is possible that bioactive nutrients are effective for 
prevention of neurodegeneration (Essa et al., 2012). Specifi-
cally, flavonoids, a major population of polyphenols obtained 
from plants, are speculated to be effective for treatment of 
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AD. Indeed, the antioxidant effect of flavonoids in neurode-
generative diseases such as AD has been demonstrated (Al-
barracin et al., 2012). In addition, other mechanisms behind 
neuroprotection have been proposed. Although it is well 
known that an aggregation of 42 residue amyloid-protein 
is implicated in the onset of AD, catechol-type flavonoids 
diminish aggregation via acting on the lysine residue of 
amyloid-protein (Sato et al., 2013). Using amyloid precur-
sor protein/presenilin-1 double transgenic mice, Zhao et al. 
(2013) demonstrated that apigenin, 4′,5,7-trihydroxyflavone, 
improves deficits in learning and memory in these mice 
while rescuing downregulation of BDNF and its downstream 
signaling including ERK and cAMP response element-bind-
ing protein (CREB). Rutin(3,3′,4′,5,7-pentahydroxyfla-
vone-3-rhamnoglucoside) administration also increases hip-
pocampal expression of ERK1, CREB and BDNF genes, and 
improves memory deficits of amyloid-injected rats (Moghbe-
linejad et al., 2014). Recently, we also found that flavonoids 
extracted from Iris Tenuifolia (IT; plant observed in Mongo-
lian and East Asian regions) protected cultured cortical neu-
rons against oxidative stress, and the neuroprotection by IT 
flavonoids was completely dampened by an inhibitor for Src 
homology 2 domain-containing phosphatase 2 (shp2) (Jalsrai 
et al., 2014). In our cultures, IT flavonoids indeed caused 
phosphorylation (activation) of shp2, although no change 
in levels of BDNF was observed (Jalsrai et al., 2014). Impor-
tantly, Jang et al. (2010) demonstrated that 7, 8-dihydroxy-
flavone acts as a potent TrkB agonist and is neuroprotective 
in a PD model using MPTP administration. A recent study 
demonstrated efficacy of 7, 8-dihydroxyflavone on recovery 
from deficits in spatial memory in a mouse model of AD-
like neuronal loss (Castello et al., 2014). Detailed character-
ization of various flavonoids (radical scavenger properties, 
involvement in intracellular signaling, production of BDNF, 
etc.), and specificity to particular brain regions with respect 
to neuroprotection should be clarified in future studies. 
Specifically, the effect of flavonoids on BDNF production or 
direct stimulation of TrkB as an agonist should be consid-
ered separately, in order to explore novel drugs targeting the 
BDNF/TrkB system.

HD and small molecules targeting BDNF
It is also suggested that decreased expression of BDNF plays 
a role in the pathogenesis of HD, and that application of 
BDNF (including gene delivery with viral systems) is ef-
fective towards improving HD-like behaviors using animal 
models (Sari et al., 2011). Furthermore, as huntingtin regu-
lates intracellular transport of BDNF (Gauthier et al., 2004), 
the relationship between HD and BDNF function is very 
close. Because peripheral BDNF application has poor brain 
penetration, small molecules aimed to upregulate the en-
dogenous BDNF/TrkB system are powerful therapeutic tools 
for neurodegenerative diseases such as HD. Simmons et al. 
(2013) showed that TrkB and downstream Akt and PLCγ 
were activated in the striatum of R6/2 mice after 7-week 
treatment with LM22A-4. LM22A-4 decreased aggregated 
huntingtin in striatal and cortical neurons of R6/2 mice, 
which have about 130 CAG repeats of human huntingtin 

(Simmons et al., 2013). Recently, a report has demonstrat-
ed significant improvements in aggregation of huntingtin 
and downregulation of BDNF transcripts in R6/2 mice after 
knock-down of histone deacetylase 4 (HDAC4), which is 
shown to associate with huntingtin (Mielcarek et al., 2013). 
Because HDAC4 is a potential target for HD (Mielcarek et 
al., 2013), possible alterations in the expression of HDAC4 
serve as an attractive marker when applying natural com-
pounds or small molecules stimulating BDNF signaling. 
Because mutant huntingtin, which causes polyglutamine 
expansion, negatively affects intracellular BDNF transport 
resulting in loss of neurotrophic maintenance by BDNF 
(Gauthier et al., 2004), natural compounds that have high 
specificity for the BDNF/TrkB system may be promising 
drugs for HD treatment. 

As described above, evidence suggests that natural and 
small compounds activating the BDNF/TrkB system are 
promising therapeutic targets for the treatment of neurode-
generative diseases. On the other hand, Todd et al. (2014) 
demonstrated that an antibody which acts as an agonist for 
TrkB exerts a beneficial effect on the BDNF/TrkB system 
although both 7,8-dihydroxyflavone and LM22A-4 failed to 
prevent cell death in rat striatal neurons, implying that much 
more in vitro and vivo studies to characterize the functioning 
of natural compounds as TrkB agonists are needed. Recently, 
glial production and secretion of growth factors including 
BDNF, stimulated by a variety of flavonoids, has been re-
ported (Xu et al., 2013). In treating HD, the transplantation 
of stem cells overexpressing growth factors is considered to 
be a novel approach to improve disease symptoms (Maucksch 
et al., 2013). In addition, involvement of altered BDNF forms 
(proBDNF precursor or mature BDNF) in the pathophysiol-
ogy of mental disorders and AD has been suggested (Carlino 
et al., 2013). Precursor proneurotrophins, before proteolysis 
into mature neurotrophins, bind to the low affinity common 
receptor p75 with high affinity, ultimately causing cell death 
(Lee et al., 2001; Teng et al., 2005). To accelerate develop-
ment of novel therapeutic agents for neurodegenerative dis-
eases, not only are investigations of underlying mechanisms 
of BDNF upregulation in neurons necessary, but also studies 
investigating natural compounds using another cell popula-
tion (glia and neural stem cells) and biosynthesis of BDNF 
(pro or mature forms).
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