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Abstract: Compounds of the silsesquioxane type are attractive material precursors. High molecular
weights and well-defined structures predestine them to create ceramics with a controlled composition
at the molecular level. New molecular precursors of ceramic materials with the ratio of Si:Ge = 7:1
atoms were obtained. The influence of organic substituents on the thermal decomposition processes
of germasilsesquioxanes was investigated. Some of the structures obtained are characterized by a high
non-volatile residue after the thermal decomposition process. The introduction of the germanium atom to
the structure of the silsesquioxane molecular cage reduces the thermal stability of the obtained structures.

Keywords: silsesquioxanes; germasilsesquioxanes; POSS; thermal analysis; decomposition; sublimation;
ceramics precursors; FT-IR; Raman spectroscopy

1. Introduction

Polyhedral Oligomeric Silsesquioxanes, of the general formula [RSiO1.5]n, are well-
defined, hybrid cage compounds with a three-dimensional structure and nanometric size [1].
Silsesquioxanes have a siloxane core with inert or reactive organic and inorganic functionali-
ties located at silicon atoms. The type of substituents attached to the silsesquioxane skeleton
defines many of the physicochemical properties of these systems (e.g., solubility, composite
compatibility and thermal and chemical stability) [2–8]. The most widely described and
researched silsesquioxanes classes in literature are silsesquioxanes with a closed structure
of the T8 type, of which the structure of the silicon core resembles a cube (Figure 1A) [9].
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On the other hand, germasilsesquioxanes (Figure 1B) combine the features of silsesquiox-
anes and the properties of systems containing Si–O–Ge groups, i.e., germasiloxanes [10].
Germasiloxane motifs can be seen as the resultant of siloxane (Si–O–Si) and germoxane (Ge–O–
Ge) units in terms of their reactivity and other properties. Germoxanes are analogs of higher
molecular weight siloxanes that contain much more reactive linkages than siloxanes; they also
show high refractive index values, low dielectric constants, and biocompatibility [11,12].
Compounds with the Si–O–Ge bonds exhibit intermediate properties. The change from
the silicon atom to germanium shifts the electron density from the oxygen atom towards
silicon, increasing Ge–O bond polarization. Compared to siloxanes, the introduction of the
Si–O–Ge group significantly increases the refractive index values, which directly affects
the optical properties of the compounds. Such systems can be precursors of the inor-
ganic SiO2/GeO2 phases used to produce specialized spin glasses, glass films, microlenses,
lasers and adhesive layers [13]. From an economic standpoint, germanium-containing
compounds will certainly be more expensive than silicon-based compounds. However, it
should be emphasized that due to their different properties and possible applications, it is
definitely worth examining them carefully.

Many research groups have studied the thermal properties of silsesquioxanes. The in-
fluence of the nature of substituents (reactive and inert groups) on the thermal stability and
degradation mechanism of various classes of POSS has been investigated. There are reports
available on the thermal degradation of silsesquioxanes, e.g., an excellent work of Fina [14].
The thermal parameters have been surveyed for the cubic [14–17], double-decker [18] and
open-caged silsesquioxanes with various functionalities [19]. So far, however, no data have
been published on the thermal characteristics of germasilsesquioxanes.

Silsesquioxanes and their derivatives are treated almost as a remedy for all problems
related to the properties of materials [1,20] and used as molecular fillers [21,22] or com-
ponents which improve the physical parameters of given substances [21–25]. However,
although they have been studied for many years and by many research groups, they have
not found widespread use in material or composite systems. One of a few areas in which
they have been effectively applied is in the production of cosmetics [26].

2. Results and Discussion
2.1. Synthesis of Cubic Germasilsesquioxanes

In our previous studies on germasilsesquioxanes, we focused on obtaining derivatives
with reactive functional groups, their spectroscopic characteristics and the functionaliza-
tion of these compounds. However, there are no reports in the literature concerning the
physicochemical properties of germasilsesquioxanes. It has inspired us to synthesize a
range of physiochemically well-characterized derivatives of germasilsesquioxanes, which
may open new paths for the development of this group of compounds.

All studied germasilsesquioxanes were synthesized via a corner-capping reaction of
cubic silsesquioxane silanetriols with respective organotrichlorogermanes (Figure 2).
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high-resolution mass spectrometry). Compounds 4 and 9 were previously synthesized in
our research group and successfully studied in their reactivity toward ruthenium hydride
complexes in catalytic trans-germylation [27] as well as in olefin cross-metathesis [28].
Compound 3 was only recently obtained by Hreczycho et al. via a new catalytic protocol
involving the corner-capping of (2-methylallyl)germanes with silsesquioxane silanols that
were catalyzed by Sc(OTf)3 [29]. All the obtained germasilsesquioxanes are listed in Table 1.

Table 1. The cubic germasilsesquioxanes obtained in this study.

iBu7Si7O8Ge–R Ph7Si7O8Ge–R

No. R No. R

1
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2.2. Thermal Degradation Analysis of Cubic Germasilsesquioxanes

One of the most often discussed physicochemical parameters describing the POSS type
compounds is thermal resistance or stability. The majority of authors, however, content
themselves with thermogravimetric analysis (usually in the nitrogen atmosphere) and take
into account the temperature of the first mass loss, usually of 5% or 1%. This generally
repeated approach is due to the fact that POSS compounds were quite widely used as
additives to polymeric or composite materials, and the aspects of thermal degradation
of silsesquioxane-containing polymer systems were described, taking into account both
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the thermal transformations of the silsesquioxane component and the polymer matrix
itself [30–37]. This approach, however, resulted in adopting a research methodology for the
molecular type of materials. However, the silsesquioxane-type compounds are neither com-
posites nor polymers, but most often (except for the so-called mix-cage systems) molecular
type compounds. From the point of view of characterizing silsesquioxane as a molecular
chemical compound, this approach seems incorrect. The analysis of the phenomena taking
place in the temperature gradient should take into account the molecular aspects of the
structure and composition of the tested compound. Thus, they should be characterized
by such parameters as melting point, boiling point or sublimation point. Because of their
relatively large molecular mass and specific structure with a characteristic oxygen-silicon
core, the silsesquioxane compounds have slightly different thermal characteristics than
typical organic compounds [15]. In normal conditions, both in the oxidizing and inert
atmosphere (Ar, N2), they do not evaporate, but they often undergo sublimation [17–19].
The understanding of the transitions and transformations of silsesquioxane compounds
under different thermal and atmospheric (oxidative or non-oxidative) conditions, both
physical and chemical, are of utmost importance when considering their application as
preceramic materials for special applications, e.g., protective coatings for materials applied
in harsh service environments [38,39].

Another important observation is that it is impossible to reliably predict the behavior
of a new compound at a temperature gradient for silsesquioxanes. Usually, the thermal
behavior of newly obtained compounds complies with the rules established for the sub-
stituents, but the thermal processes are not so distinctly defined and unambiguous as those
observed for low-molecular organic compounds. The behavior of silsesquioxane com-
pounds can be treated as a hybrid between that of low-molecular organic compounds and
polymers. For the silicon structures of the silsesquioxane type, specific numerical models
have been devised that—with a high probability—permit prediction of their behavior [15].
However, introducing another atom, like germanium, into their structure may lead to
severe disturbances of such models.

The structures of the obtained new derivatives of POSS-type compounds are analogous
to those known in the literature and differ only in the presence of an atom of germanium
linked via a Ge–C bond to organic groups Me, Ph, Et, vinyl or benzyl, localized at the
vertex of an octahedral cage. Considering that the process of thermal decomposition is
strictly related to the stability of the chemical bonds, therefore, it should be taken into
account that the introduction of the germanium atom to the cage structure will reduce
the stability of the structure. The bond dissociation energies of SiO2 and GeO2 have been
reported to be 800 and 659 kJ/mol, respectively. The strength of the Ge–C covalent bond
is 238 kJ/mol [40] and is lower than that of the Si–C bond, which is 318 kJ/mol. Another
important factor that should be taken into account in the analysis of the thermal decom-
position of silsesquioxane-type compounds is the effect of the intermolecular bonds [19].
However, it should be remembered that the phase transition that may occur at a tempera-
ture gradient will decrease the significance of this factor and increase that of the stability
of the bonds within the molecule. In silsesquioxane-type compounds, the phase transitions
take place at high temperatures (Table 2) 180–300 ◦C, which indicates that the intermolecular
interactions are strong. In contrast to the analogous structures of an open cage [19], the
benzyl derivatives containing a germanium atom at the vertex do not undergo sublimation,
but at a high temperature, their phenyl groups undergo decomposition (Table 2) leaving a
ceramic deposit of the composition close to that of the core of the cage structure. For each
germasilisesqioxane-type compound, the glassy residue obtained after the thermal decompo-
sition in an inert atmosphere is made of a ceramic mass containing an amorphous structure
rich in Si–C bonds and containing different proportions of the Si–O and Ge–O bonds [15].
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Table 2. A summary of the TG data from the measurements.

Air Nitrogen

Ge
POSS M mC

[%]
mA
[%]

mB
[%]

pD
[%]

pTG
[%]

P5
[%]

P98
[%]

DTGmax
[◦C]

pTG
[%]

P5
[%]

P98
[%]

DTGmax
[◦C]

1 876 53.5 38.79 1.72 59.9% 46.7 246 751 297 2.6 229 752 304

2 938 50.0 36.23 8.22 55.9% 47.3 278 756 320 0 267 329 320

3 890 52.7 38.18 3.26 58.9% 44.5 252 696 300 0 242 314 300

4 888 52.8 38.27 3.05 59.1% 56.24 303 660 N.a. 13.5 238 770 Na.

5 952 49.3 35.69 9.57 55.1% 31.5 276 680 329 0 250 336 321

6 1016 46.2 53.13 1.48 51.6% 60.3 424 741 431 63.8 410 >850 407/437

7 1078 43.5 50.07 7.15 48.7% 58.8 472 755 467 52.6 460 719 466

8 1030 45.6 52.4 2.82 50.9% 63.3 422 738 394/631 66.1 397 828 412/639

9 1028 45.6 52.5 2.63 51.0% 65.4 459 773 378/634 69.9 467 >850 382/646

10 1092 43.0 49.43 8.34 48.0% 66.4 475 753 472 60.0 471 740 470

M—molar mass, mC—core mass, mA—mass of A groups, mB—mass of B groups, pD—theoretical dry residue,
pTG—TG dry residue, p5—5% of the efect, p98—98% max. of the efect, DTGmax—1st DTG max.

It is highly probable that the obtained ceramic material will contain a high admix-
ture of the Ge–O and Ge–C bonds/connections. Figure 3 shows in which materials
the pre-ceramic residue bring a dominant contribution. Analogously, the compounds
that do not undergo pre-ceramization tend to undergo sublimation, as illustrated in
Figures 4 and 5. The exceptions are the vinyl group containing compounds. In con-
trast to their silicon analogues, they do not undergo sublimation, but the vinyl groups
probably undergo polymerization with formation of polymeric structures. The dry residue
obtained for the germasilsesquioxane phenyl derivatives is much greater in amount than
the theoretically calculated oxide residue (for the processes taking place in either oxidizing
or reducing atmosphere, see Table 2). This is a consequence of the formation of thermally
stable carbon residue and stable ceramic connections Si–C and Ge–C.

The samples treated with the high temperature show either a glassy or porous mi-
crostructure morphology (Figure 6). In the case of the isobutyl derivatives (except for the
derivative containing the vinyl group), the residue is porous (Figure 6—1–3 and 5). There
is clearly a glassy morphology for the remaining materials. The next part of the research
focuses on systems characterized by a glassy nature of the microstructure.

Tests of the residues after thermal treatment in a more inert atmosphere showed that
in the case of high-temperature treatment of the samples, the phase separation of SiO2 and
GeO2 occurs (Figure 7).

The performed Raman measurements reveal that the free carbon phase is present in
all tested materials. As shown in Figure 8, typical carbon bonds are present—the G and D
bands [41]. The difference between the two selected spectra is the presence fluorescence.
As described in the text, samples 10A–6A have Si–Ph bonds, which result in presence of
well-defined bands. The G band is characteristic for the vibrations of the graphite phase in
sp2 hybridization, while the D band, the so-called defect band, corresponds to dandling
sp3 bonds and defects [41,42]. The presence of the 2D band indicates that the measured
sample, despite a fairly weak signal and the presence of fluorescence, has probably a
graphite-like phase obtained from the pyrolysis of Si-bonded functional groups, in this case
phenyl groups. In the case of sample 4A, the presence of D and G bands is also visible, but
their intensity is very low. In addition, it is overlapped with the presence of a very strong
fluorescence signal, which probably results from the decomposition of functional groups
used on the silicon atoms—iBu. The breakdown of this group generates the presence of
free radical groups that contribute to this undesirable effect.
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Figure 3. The TGA and DTG curves of obtained cubic germasilsesquioxanes. 

Figure 3. The TGA and DTG curves of obtained cubic germasilsesquioxanes. compounds No. 1–curve
A, No. 2–curve B, etc. Test in oxidizing atmosphere (air)—solid line, inert atmosphere (nitrogen)
dashed line.
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Figure 4. The lower part of the capillary after the heating process to 500 ◦C. Numbers 1–10 represent
the compound given in the Table 1.
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up to 1000 ◦C. Numbers 1–10 represent the compound given in the Table 1.
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The conducted FT–IR measurements of samples pyrolyzed in the argon atmosphere
are summarized in Figure 9. As it can be seen, the spectra samples with a phenyl side group
(6A−10A) are very similar.
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Figure 9. The FT-IR spectra of pyrolyzed samples.

On the other side is the 4A spectrum, which looks significantly different from the
rest of the spectra in the list, as in the case of the Raman measurements. The change of
the functional group at the silicon atom changes the structure of the obtained materials.
The analysis of the results proves that the spectra of samples 6A–10A look like the spectra
of silicon oxycarbide [43,44]. In order to analyze the structure of the studied materials in
depth, the selected extreme spectra were subjected to the process of decomposition into
component bands.

The presented results of the decomposition for sample 4A (Figure 10) indicate the
remaining organic part in the form of bands typical for Si-CH3 groups at approx. 1250 cm−1,
as well as Si-O-Si vibrations in the range of 1000–1150 cm−1, which indicate the remains
of siloxane cages [43,45]. The band at approx. 800 cm−1, which is characteristic for
symmetrical Si-O-Si stretching vibrations, is probably also a superposition with the band
characteristic for vibrations of the C-H groups [43]. At the same time, the bands from
the vibrations of broken silica bridges at approx. 950 cm−1 are already visible, proving
the ongoing process of rearrangement of bonds and the formation of the so-called black
glass [43,44]. The presence of germanium is confirmed by the bands at approx. 1020,
870 and 600 cm−1, characteristic for the vibrations of Si-O-Ge and Ge-O-Ge [46,47].
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The spectrum of the 10A sample after the decomposition process exhibits bands typical
for materials from a Si-O-C system (Figure 11) [42,43]. This is confirmed by the presence of
Si-O©-Si characteristic bands in the range of 1000–1200 cm−1 along with Si=O double bonds
and Si-O− [42,43]. The presence of Ge-O bonds is also confirmed, in similar wavenumbers
as for sample 4A. The existence of OH species bonded to both Si and Ge [42,43,47] allows us
to state that the ceramization process is not completed at the selected temperature and/or
open porosity is present, which, in terms of usage of this kind of material, opens up possible
applications—e.g., energy storage and catalysis.
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The structural differences between the 10A and 4A samples result from the type of
functional group used at the silicon atom. Its influence is visible both in Raman and FT-IR
spectroscopy. In the case of the first method, the fluorescence effect in the iBut group makes
it almost impossible to register any signal, while the phenyl group forms a graphite-like
free carbon phase, which is confirmed by the presence of the characteristic D, G and 2D
bands. In the case of FT-IR analysis, a similar relationship is observed. The use of the
phenyl group leads to a structure typical for silicon oxycarbide, but this time, it is modified
with Ge atoms, as evidenced by Figures 10 and 11, while the second of the functional
groups used causes the cage structure to be partially preserved even at a temperature of
800 ◦C. Structural analysis of pyrolyzed materials allows us to assume their usefulness in
obtaining materials from the Si-O-C system.

3. Materials and Methods
3.1. Materials

TriSilanolIsobutyl silsesquioxane and TriSilanolPhenyl silsesquioxane were purchased
from Hybrid Plastics (Hattiesburg, MI, USA). The chlorogermanes were purchased from Gelest
(Morrisville, PA, USA)—benzyltrichlorogermane, ethyltrichlorogermane and phenyltrichloroger-
mane; and ABCR (Karlsruhe, Germany)—methyltrichlorogermane, and used as received. Vinyl-
trichlorogermane was prepared according to the literature’s procedure [48]. The solvents were
purchased from Fisher Chemical (Mumbai, India)—THF, and Avantor Performance Materials
Poland (Gliwice, Poland)—MeOH. THF was dried by distillation from benzophenone ketyl. The
deuterated chloroform was purchased from Deutero (Kastellaun, Germany).

3.2. Synthesis of Cubic Germasilsesquioxanes iBu7Si7O8Ge–R

TriSilanolIsobutyl silsesquioxane (1 g, 1.26 mmol), deoxygenated and dried tetrahy-
drofuran (25 mL) and triethylamine (0.58 mL, 4.15 mmol) were placed in an argon-filled
50 mL single neck flask equipped with a rubber septum. The respective chlorogermanane
(1.39 mmol) was then added dropwise to the reaction mixture at room temperature, which
resulted in the precipitation of the ammonium salt. The suspension was vigorously stirred
for 24 h at room temperature (for R = Ph and Bn, the syntheses were carried out in refluxing
solution). Subsequently, the suspension was filtered through a G4 frit funnel connected to
a membrane pump. The obtained filtrate was passed through a short silica gel column and
then evaporated to dryness. After that, cold methanol was added to the crude powder, and
the solids were collected on a G4 frit funnel. The products were obtained in the form of a
white powder and thoroughly dried in vacuo on a Schlenk line.

(Methyl)heptaisobutylgermasilsesquioxane (1) (Yield: 89%) 1H NMR (300 MHz, DCCl3): δ 0.6
(m, 14H), 0.72 (s, 3H, Ge-CH3), 0.95 (d, 42H), 1.86 (m, 7H); 13C NMR
(75 MHz, DCCl3): δ −0.69 (Ge-CH3) 22.70, 22.79, 23.14, 24.05, 24.16, 25.88; 29Si NMR
(79 MHz, DCCl3) δ −66.26, −67.65, −68.17; FT-IR: 1073.66 cm−1.

(Phenyl)heptaisobutylgermasilsesquioxane (2) (Yield: 90%) 1H NMR (300 MHz,
DCCl3): δ 0.64 (m, 14H), 0.97 (d, 42H), 1.88 (m, 7H) 7.54 (m, 5H, Ge-C6H5); 13C NMR
(75 MHz, DCCl3): δ 22.73, 22.81, 23.15, 24.06, 24.19, 25.87, 25.91, 128.70, 130.03, 131.61, 133.30
(Ge-C6H5); 29Si NMR (79 MHz, DCCl3) δ −66.26, −67.65, −68.17; FT-IR: 1074.61 cm−1.

(Ethyl)heptaisobutylgermasilsesquioxane (3) (Yield: 89%) 1H NMR (300 MHz,
DCCl3): δ 0.6 (m, 14H), 0.95 (d, 42H), 1.22 (m, 5H, Ge-CH2CH3), 1.86 (m, 7H); 13C NMR
(75 MHz, DCCl3): δ 6.74 (Ge-CH2CH3) 6.79 (Ge-CH2CH3), 22.72, 22.81, 23.17, 24.06, 24.19,
25.89; 29Si NMR (79 MHz, DCCl3) δ −66.05, −67.67, −68.21; FT-IR: 1074.94 cm−1.

(Vinyl)heptaisobutylgermasilsesquioxane (4) (Yield: 89%) 1H NMR (300 MHz,
DCCl3): δ 0.6 (m, 14H), 0.95 (m, 42H), 1.86 (m, 7H), 6.01 (dd, 1H, JHH = 19.9, 12.6 Hz,
CH=CH2), 6.11 (dd, 1H, JHH = 19.9, 3.1 Hz, CH=CH2), 6.19 (dd, 1H, JHH = 12.6, 3.1 Hz,
CH=CH2);13C NMR (75 MHz, DCCl3): δ 22.60, 22.92, 23.86, 23.97, 25.68, 25.72, 126.50
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(=CH2), 137.12 (=CH−Ge); 29Si NMR (79 MHz, DCCl3) δ −66.26, −67.65, −68.17; MS (ESI);
FT-IR: 1075.14 cm−1.

(Benzyl)heptaisobutylgermasilsesquioxane (5) (Yield: 88%) 1H NMR (300 MHz, DCCl3): δ 0.59
(m, 14H), 0.95 (d, 42H), 1.83 (m, 7H), 2.72 (s, 2H, Ge-CH2-Ph), 7.24 (m, 5H, Ge-CH2-C6H5);
13C NMR (75 MHz, DCCl3): δ 22.61, 22.94, 23.88, 25.72, 24.81 (Ge-CH2-Ph), 125.80, 128.39,
128.98, 133.68 (Ge-CH2-C6H5); 29Si NMR (79 MHz, DCCl3) δ −65.82, −67.67, −68.24; FT-IR:
1073.93 cm−1.

3.3. Synthesis of Cubic Germasilsesquioxanes Ph7Si7O8Ge–R

Similarly, the syntheses were carried out as described in Section 3.2, using TriSi-
lanolPhenyl POSS (1 g, 1.07 mmol) as a starting material.

(Methyl)heptaphenylgermasilsesquioxane (6) (Yield: 90%) 1H NMR (300 MHz,
DCCl3): δ 0.89 (s, 3H, Ge-CH3), 7.42 (m, 35H); 13C NMR (75 MHz, DCCl3): δ−0.42 (Ge-CH3)
127.98, 130.73, 130.81, 131.59, 134.38; 29Si NMR (79 MHz, DCCl3) δ −77.45, −78.11, −78.57;
FT-IR: 1058.85 cm−1.

Octaphenylgermasilsesquioxane (7) (Yield: 42%) 1H NMR (300 MHz, DCCl3): δ 13C NMR (75
MHz, DCCl3): δ 127.69, 130.54 133.15, 134.14 29Si NMR (79 MHz, DCCl3) δ −77.48, −78.16,
−78.61; FT-IR: 1057.95 cm−1.

(Ethyl)heptaphenylgermasilsesquioxane (8) (Yield: 88%) 1H NMR (300 MHz, DCCl3): δ 13C NMR
(75 MHz, CDCl3): δ 6.86 (Ge-CH2CH3), 10.05 (Ge-CH2CH3), 127.85, 130.54, 131.56, 134.11,
134.25; 29Si NMR (79 MHz, DCCl3) δ −77.22, −78.12, −78.59; FT-IR: 1059.09 cm−1.

(Vinyl)heptaphenylgermasilsesquioxane (9) (Yield: 90%) 1H NMR (300 MHz, DCCl3): δ 6.16
(dd, 1H, JHH = 19.8, 12.3 Hz, CH=CH2), 6.25 (dd, 1H, JHH = 17.1, 2.7 Hz, CH=CH2), 6.30
(dd, 1H, JHH = 9.7, 2.7 Hz, CH=CH2), 7.56 (m, 35H); 13C NMR (75 MHz, DCCl3): δ 127.78
(=CH2), 130.44, 130.52, 130.63, 131.19, 134.17 (=CH−Ge); 29Si NMR (79 MHz, DCCl3) δ
−76.96, −78.12, −78.58; FT-IR: 1057.95 cm−1.

(Benzyl)heptaphenylgermasilsesquioxane (10) (Yield: 87%) 1H NMR (300 MHz, DCCl3): δ 2.86
(s, 2H, Ge-CH2-Ph), 7.38 (m, 40H); 13C NMR (75 MHz, DCCl3): δ 25.08 (Ge-CH2-Ph), 126.38,
127.87, 127.92, 128.87, 129.24, 130.63, 130.76, 131.34, 132.96, 134,92, 134.35; 29Si NMR (79
MHz, DCCl3) δ −77.22, −78.12, −78.59; FT-IR: 1058.41 cm−1.

3.4. Analytical Methods

The 1H NMR spectra were recorded on a Bruker Ultrashield 300 MHz (Billerica, MA,
USA). The 13C and 29Si NMR spectra were recorded on a Bruker Ascend (Billerica, MA, USA)
400 MHz operating at 101 and 79 MHz, respectively. Benzene-d6 was used as a solvent.

The MALDI-TOF mass spectra were recorded on an UltrafleXtreme mass spectrometer
by Bruker Daltonics (Billerica, MA, USA) equipped with a SmartBeam II laser (355 nm) in
the 500–4000 m/z range, and 2,5-dihydroxybenzoic acid (DHB) served as the matrix.

Thermogravimetry (TG) was performed using a NETZSCH 209 F1 Libra gravimetric
analyzer (Selb, Germany). Samples of 2 ± 0.2 mg were placed in Al2O3 crucibles. Measure-
ments were carried out under nitrogen (flow of 20 mL/min) in the range of 50–800 ◦C and
at a 20 ◦C/min heating rate.

Melting point was measured using a Büchi M-565 analyzer (Flawil, Switzerland).
Based on the optical parameters of the phase change course of the sample in the capillary,
an automatic measurement was performed with the determination of the melting point
(temperature increase of 5 ◦C/min). The result is the average of the three measurements.

The capillaries’ photos were analyzed under a Digital Light Microscope Keyence VHX
7000 with 100× to 1000× VH-Z100T lens (Osaka, Japan). All of the pictures were recorded
with a VHX 7020 camera.
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The energy-dispersive spectroscopy (EDS) analyses were conducted at a beam accel-
eration voltage of 15 kV using an EDAX Octane SDD detector. The EDS maps of element
overlay were made at a resolution of 0.3 µm.

The FTIR measurements were carried out using a Thermo Scientific Nicolet iS50 FTIR
spectrometer (Mumbai, India). A total of 2 mg of samples were mixed with 200 mg of KBr
and pressed at 10 tons press into the form of discs.

The FT-IR measurements were performer with the help of a Bruker Vertex 70v spec-
trometer (Billerica, MA, USA). The standard KBr pellet method was used. A total of
256 scans in the range of 4000–400 cm−1 were collected with 2 cm−1 resolution. The ob-
tained spectra were subjected to baseline correction and normalization using Bruker OPUS
7.2 software (Billerica, MA, USA).

The fitting procedure was carried out using Bruker OPUS 7.2 software. A Levenberg-
Marquart algorithm was used. The RMS noise after deconvolution process was below 1.

The Raman studies were carried out using a WITec Alpha 300M+ spectrometer (Ulm,
Germany). A 488 nm laser with 600 grating was chosen along with a 100× ZEISS objective
(Oberkochen, Germany). Each sample was measured 3 times for 2 min each.

4. Conclusions

The introduction of a germanium atom to the cage structure of POSS type weakens
the stability of the structure relative to that of the analogous one based on silicon. The
vinyl derivatives have a tendency towards cross-linking, dimerization or polymerization,
leading to decomposition with a low emission of volatiles. Their behavior can be used for
the production of pre-ceramic systems, in particular the Si–C materials admixtured with
Ge–C domains.

The POSS derivatives with phenyl substituents do not show a tendency towards
sublimation; with increasing temperatures, they undergo decomposition, emitting volatile
organic residues and leaving a large amount of solid residue. Therefore, these derivatives
can be used as pre-ceramic materials. The isobutyl derivatives with Me, Ph, Bn or Et
substituents undergo effective sublimation that is undisturbed with chemical reactions,
which can be used for the purification of a given derivative from the post-reaction mixture.
In the processes of thermal decomposition, some parts of silicon and germanium atoms
become components of volatile species and are liberated from the dry residue.
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27. Frąckowiak, D.; Żak, P.; Spólnik, G.; Pyziak, M.; Marciniec, B. New Vinylgermanium Derivatives of Silsesquioxanes and Their

Ruthenium Complexes—Synthesis, Structure, and Reactivity. Organometallics 2015, 34, 3950–3958. [CrossRef]
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