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A B S T R A C T

COVID-19 is an ongoing viral pandemic disease that is caused by SARS-CoV2, inducing severe pneumonia in
humans. However, several classes of repurposed drugs have been recommended, no specific vaccines or effective
therapeutic interventions for COVID-19 are developed till now. Viral dependence on ACE-2, as entry receptors,
drove the researchers into RAS impact on COVID-19 pathogenesis. Several evidences have pointed at Neprilysin
(NEP) as one of pulmonary RAS components. Considering the protective effect of NEP against pulmonary in-
flammatory reactions and fibrosis, it is suggested to direct the future efforts towards its potential role in COVID-
19 pathophysiology. Thus, the review aimed to shed light on the potential beneficial effects of NEP pathways as a
novel target for COVID-19 therapy by summarizing its possible molecular mechanisms. Additional experimental
and clinical studies explaining more the relationships between NEP and COVID-19 will greatly benefit in de-
signing the future treatment approaches.

1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious viral disease
that is caused by a newly discovered coronavirus, namely severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) [1]. It is a virus
belonging to order Nidovirales of family Coronaviridae, which are
single-stranded RNA viruses [2] and broadly distributed in both hu-
mans and other mammals [3].

Majority of the people infected with 2019 novel coronavirus (2019-
nCoV) may recover without requiring special treatment [4], except the
elderly people and those with some medical problems such as hy-
pertension, diabetes [5] and chronic respiratory disease [6]. Such pa-
tients are more liable to be infected with COVID-19 and might develop

a fatal pneumonia with clinical presentation greatly resembling that
caused by the previous beta-coronavirus SARS-COV appeared in 2003;
severe acute respiratory syndrome (SARS) [7].

In such cohort, patients firstly complain of fever, dry cough, and at
late stage, may suffer from dyspnea that makes them in a desperate
need of intensive care unit (ICU) admission and oxygen therapy [8].
However, the time between ICU admission and ARDS development is
recorded to be as short as 2 days [9], being the reason for the high
mortality rate associated with COVID-19 at this stage [10].

Till present, no COVID-19-specific vaccines or medications are
available, although some national medical authorities recommend
testing the efficacy of antiviral medication in especially sever clinical
trials [11]. In addition, several medical researchers suggest starting the
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supportive and symptomatic treatment till the new medications are
developed [12,13].

Early evidences have shown that the pathogenicity for COVID-19
may be enhanced with increased the body susceptibility to induce a
phenomenon called cytokine storm, in which the immune system gears
up by overreacting and producing more inflammatory mediators to
fight the infection [14]. As a result, a severe inflammatory reaction is
produced accompanied with significant damage, including organ
failure [15,16].

In view of cytokines storm caused by COVID-19 infection, high
amounts of proinflammatory cytokines (e.g. IL-1β, IL-6, TNF-α, VEGF,
GM-CSF and MCP-1) are detected [10], probably leading to associated
pulmonary inflammation that can drive fibrosis in the injured tissues
[17].

In addition to the dysregulated lung inflammation, emerging re-
search and clinical studies increasingly indicate an alternative point of
view for COVID-19 pathogenesis. They suggest that extreme lung tissue
injury in COVID-19 may be attributed to vascular endothelial dys-
function, associated with subsequent activation, accumulation of pla-
telets, and then, thrombus formation at the injured site [18,19], de-
veloping a stroke which is suggested to be the leading cause of death in-
between sever COVID-19 cases [20].

Lymphocytopenia, a common striking finding in acute infections, is
suggested to be a significant indicator of COVID-19 severity [16].
However, this decrease in lymphocytes count is noticed in both severe
and non-severe COVID-19 patients [21], expecting that there may be
another critical factor driving the development and deterioration of the
disease. The most supportive observation now is the disclosure of
higher neutrophil–lymphocyte-ratio (NLR) in COVID-19 severe patients
than others [22]. Moreover, COVID-19 patients’ laboratory examina-
tions recently show thrombocytopenia, indicating the association of
platelet-to-lymphocyte ratio (PLR) with COVID-19 progression and
prognosis [23].

Given that the pulmonary tissue damage and microvascular injury
recorded in COVID-19 patients is mainly caused by uncontrolled in-
flammatory reactions and its associated pro-thrombotic conditions, in-
hibiting the release of underlying inflammatory cytokines may be of
great importance [24]. Hence, many studies targeted the utilization of
some immunomodulatory agents including hydroxy chloroquine and
corticosteroids as COVID-19 therapies to minimize the disease severity
[22]. However, that therapeutic direction may interfere with the body
immune system to efficiently act as a defense weapon against any other
infections [25,26].

Simultaneously, many studies emphasized on the exploitation of
COVID-19 virus to the angiotensin converting enzyme-2 (ACE-2) found
on the host pulmonary system as entry receptors [27]; disrupting, of
course, the normal physiological function of ACE-2/Ang (1–7)/MasR
axis of the renin–angiotensin system (RAS) pathway [28].

Therefore, researchers suggested that the use of angiotensin con-
verting enzyme inhibitors (ACEIs) and/or angiotensin receptor blockers
(ARBs), may show a positive trend towards the severe inflammatory
reactions and endothelial dysfunction caused by stimulating the func-
tion of ACE/Ang II/AT-1 axis and thereby, towards the bad pulmonary
effects associated with the COVID-19 infection [29,30]. However, no
clinical trial, till this time, has been proved its efficacy in preventing or
even reducing the COVID-19 severity [31,32].

Pursuing clinical trials with the absence of whole data describing
the structure of COVID-19 virus and its related mechanisms may lead to
unsatisfied outcomes. As well, understanding such data will greatly
help in determining the most appropriate effective treatment protocols.
Consequently, the first step to prevent and slow down the disease
progression should involve the deduction of proper pathophysiology of
that novel viral disease.

Identifying ACE-2 as a viral entry receptor will emphasize on the
important role of classical RAS pathway in COVID-19 pathophysiology,
however, neither the link between ACE-2 and other RAS components

nor their exact roles in the COVID-19 pathogenesis have been neatly
studied till now.

One RAS component, namely neprilysin (NEP), has been established
to potentiate the physiological beneficial role ascribed to the ACE-2/
ang (1–7)/MasR axis; by an alternative pathway [33]. Nowadays, NEP
has emerged as a pharmaceutical target for many drugs; especially
those used in treating cardiovascular diseases and Alzheimer's disease
(AD) [34,35].

Considering the respiratory system, NEP was reported to play a vital
role in protecting lungs from inflammation and fibrosis [36–38]. A long
time ago, Borson et al.,1989 mentioned that rats infected with common
respiratory tract pathogens, such as parainfluenza virus type-1, rat
coronavirus, and Mycoplasma pulmonis showed low NEP activity; re-
sulting in an increase in their susceptibility to inflammatory responses
[39]. However, the precise NEP's role against life-threatening lung in-
juries has not been investigated yet.

Consequently, this current review aims to examine the cellular
signaling pathways involving NEP in COVID-19 pathogenesis and to
summarize the evidences supporting the potential beneficial effects of
NEP as a novel target for therapy.

2. COVID-19 virus structure and disease pathophysiology

All previous and recent studies agreed with the fact that the surface
of all human pathogenic coronaviruses is covered with crown like
projections called spike (S) glycoproteins; giving the viruses their name
[40]. In addition to S protein, another three main structural proteins
have been recognized in SARS-CoV-2, namely envelope (E), nucleo-
capsid (N) and membrane (M) proteins [41], Fig. 1.

Specifically, S proteins are very important for SARS-CoV-2 infection
to get started [42]. They possess two functional subunits by which the
virus can enter into its target host cells involving; S1 subunit, which
enables it to bind with receptors on the host cell surface and S2 subunit,
that allows the virus to fuse into the cellular membrane [43].

Unlike other coronaviruses, several experimental analyses proved
that SARS-CoV-2 does not use the common known viral entry receptors,
such as aminopeptidase N (APN) [41] and dipeptidyl peptidase 4
(DPP4) [44], but, instead, can utilize ACE-2 receptor [27].

Additionally, it was revealed that transmembrane protease serine 2
(TMPRSS2) is very critical for the host cell entry of SARS-CoV-2 [45]
and its plasma membrane fusion [46] resembling SARS-CoV [47].
Firstly, the virus starts its destructive journey with binding of S1 sub-
unit to ACE-2 enzyme receptor on the cell membrane surface, which in
turn activates TMPRSS2. Activation of TMPRSS2 is followed by clea-
vage of both virus’s S1 subunits from its S2 subunits and so of the ACE-2
receptors. Secondly, activated TMPRSS2 can also act on the S2 subunit,
activating it through prompting an irreversible conformational change
that will facilitate the virus-cell fusion [48,49].

Within this view, understanding the precise involvement ACE-2, as
a member of pulmonary RAS pathway, in COVID-19 pathophysiology
may open new therapeutic possibilities for management.

3. Pulmonary Renin–Angiotensin system (RAS) and COVID-19

3.1. RAS overview

For years, RAS was depicted as a hormonal circulating system in-
volved in fluid and electrolyte balance, systemic vascular resistance and
blood pressure regulation [50,51]. However, a wealth of data showed
that lung epithelial cells, fibroblasts and alveolar macrophages could
also express the major constituents of the RAS [52,53] supporting the
existence of a “local” pulmonary RAS that can be differentiated from
the “systemic” circulating RAS [54].

As regards “local” RAS in the lung, it has been reported to involve
multiple cellular mechanisms affecting the vascular permeability, fi-
broblast activity and alveolar epithelial cells [55,56]. By the time, it is
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well recognized that activating pulmonary RAS can influence the pa-
thogenesis of lung injury in different lung diseases such as pulmonary
hypertension, acute respiratory distress syndrome (ARDS), asthma and
pulmonary fibrosis [54]. As a consequence, pulmonary RAS has been
described to participate in disease process or play a protective role
against tissue injury [57] and thus, modulating RAS in the lung can
successfully play a good role in the treatment of inflammatory lung
disease [52,58].

The functional steps of RAS was firstly initiated by hepatic synthesis
of a plasma globulin called renin substrate (or angiotensinogen) which
could be enzymatically converted through renin secreted by juxtaglo-
merular cells of the kidney, into the biologically inactive decapeptide,
namely angiotensin (Ang) I [59]. Subsequently, RAS exhibits two main
axes based on two distinct enzymes responsible for cleavage of Ang I
into angiotensin (Ang) II or Ang 1–7 [51], Fig. 2.

First axis involves generation of Ang II as the main effector via the
angiotensin converting enzyme (ACE) and named the classical vaso-
pressor axis ACE/ Ang II/ Ang II type 1 receptor (AT1) [60]. For the
second axis, angiotensin converting enzyme II (ACE-2) was identified as
a depressor for RAS activation through producing Ang 1–7 [61]. Hen-
ceforth, this axis ACE-2/ Ang 1–7/ Mas-1 has become an important area
of scientific research interest [62].

3.2. ACE/Ang II/AT-1 axis and COVID-19

The ACE/Ang II/AT-1 axis has been well documented to drive a set

of deleterious reactions in the lung through generating Ang II, the
principal effector of this classical axis, involved in RAS mediated va-
soconstriction, sodium retention, fluid overload, inflammation and fi-
brosis [63,64]. In addition, ACE has been reported to evoke bradykinin
and substance P degradation, two local pro-inflammatory and protus-
sive peptides which can stimulate cough reflex and nitric oxide (NO)
release [65,66].

Specifically, pulmonary vascular inflammation contributes to a
phenomenon called ACE “shedding,” in which endothelial surface-
bound ACE is released into the interstitium resulting in significant in-
crease in the level of Ang II [67], which explains the detection of higher
Ang II level in COVID-19 patients than normal [68].

Several studies declared that Ang II could act through two distinct G
protein-coupled receptors (GPCR) subtypes, angiotensin II receptor type
1 (AT1R) and type 2 (AT2R), that were found to be expressed in human
lung tissue; proving the local generation of Ang II in lung [65,69].

The majority of actions evolved by Ang II could be mediated by AT1
receptor via enhancing many complex intracellular signaling pathways
including MAPK/ERK, PLCb/IP3/diacylglycerol, tyrosine kinases, and
NF-kB [70]. Activating AT1 receptor had been shown to further sti-
mulate monocytes, macrophages and vascular smooth muscle cells to
produce the proinflammatory cytokines such as TNF-α and IL-6
[71–73]. On the contrary, AT2 receptor was documented to have a
number of counterregulatory interactions against lung tissue injury via
inhibiting inflammation, and fibrosis [74,75].

In addition to the known Ang II effects on promoting

Fig. 1. A schematic representation of COVID-19 virus structure and disease pathophysiology. SARS-CoV-2 virus is one of coronaviruses that is covered with
crown like projections called spike (S) glycoproteins and other three structural proteins; namely envelope (E), nucleocapsid (N) and membrane (M) proteins. SARS-
CoV-2 can start infection by (A) binding S proteins functional subunits to the angiotensin converting enzyme-2 receptors on host cell surface; (B) activating
transmembrane protease serine 2; followed by (C) cleavage of virus’s S1 subunits from its S2 subunits and so, of the angiotensin converting enzyme-2 receptors;
facilitating the virus-cell fusion. ACE-2 = Angiotensin converting enzyme-2; SARS-CoV-2 = Severe acute respiratory syndrome coronavirus-2;
TMPRSS2 = Transmembrane protease serine 2.
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vasoconstriction, and pro-inflammatory cytokine release, there is also
an increasing evidence that Ang II could induce vascular endothelial
dysfunction [76,77], promoting the activation and aggregation of pla-
telets and thereby, pro-thrombotic milieu [78].

Ang II could be associated with noticeable rise in the plasma level of
endothelin-1 (ET-1) [79], which is a peptide secreted mainly from
vascular endothelial cells (ECs), and basically works through the en-
dothelin type A receptor (ETA) in vascular smooth muscle cells and the
endothelin type B receptor (ETB) in ECs [80]. Consequently, ET-1 is
described as the most potent bronchoconstrictor [81] and vasocon-
strictor in the airways [82]. Practically, ET-1 acts as a key player of
angiotensin II-induced endothelial dysfunction and platelets activation
via inducing IL-6 release [83,84], which was documented to be corre-
lated directly with the extent of endothelial dysfunction [85].

Endothelial dysfunction is generally characterized by an imbalance
between endothelium-dependent relaxing and contracting factors, at-
tributed to reduced production/availability of nitric oxide (NO);
namely endothelium-derived relaxing factor (EDRF) [86,87]. NO acts as
a potent endogenous vasodilator that could prevent platelet aggrega-
tion and leukocyte adhesion to ECs [88,89]. Since IL-6 would inactivate
endothelial nitric oxide synthase (eNOS), it could disrupt NO produc-
tion [90], decreasing its level and inducing a state of oxidative stress
that may lead to Ang II-induced impairment in endothelial responses
[91]

Postulating impaired endothelium functions as a principal factor in
the pathogenesis of heart failure, hypertension and diabetes, it will be
expected to classify the patients of such diseases as high risk groups for
COVID-19 development [92–94].

Furthermore, platelets activation and aggregation may be noticed as
a result of inflammatory reactions aggravated by endothelial dysfunc-
tion, leading to imbalance between coagulation and fibrinolysis [87]. It
is clearly evident that continuing release of IL-6 can enhance hepatic
thrombopoietin (TPO) mRNA expression resulting in thrombopoiesis
stimulation and increase in circulatory platelets' numbers, known as
(inflammatory thrombocytosis). Within this context, ET-1 can also
mediate the synthesis of platelet activating factor (PAF), a potent
phospholipid mediator of platelet activation and aggregation, that may
activate platelets to stick together and aggregate. As a result, a platelet
plug is formed as an initiator for blood clotting and intravascular
thrombus formation [88,89], which is considered as a starting point for
developing stroke [95].

Even though the high incidence of inflammatory thrombocytosis in
COVID-19 patients, the laboratory results of severe cases showed the
opposite; suffering from thrombocytopenia [23].The possible explana-
tion is the depletion of both platelets and megakaryocytes as a result of
multiple blood clots formed at the injured site, leading to less platelet
production with more consumption as the disease severity increases
[96].

Fig. 2. A schematic diagram of pulmonary renin-angiotensin system (RAS) cascade. The pulmonary RAS cascade is initiated by converting angiotensinogen
(synthesized in liver) through renin (secreted by juxtaglomerular cells of the kidney) into the biologically inactive angiotensin I. Based on angiotensin I degradation,
RAS exhibits two main counterregulatory axes: the classical vasopressor arm; named ACE/ Ang II/ AT-1 axis, involves the conversion of angiotensin I by angiotensin
converting enzyme into angiotensin II. Angiotensin II acts via angiotensin II type 1 receptor to induce vasoconstriction, fibrotic, oxidative and inflammatory
reactions, which can be counteracted via stimulating angiotensin II type 2 receptor. The second depressor arm; named ACE-2 /Ang (1–7)/MasR axis, competes for
hydrolyzing angiotensin I into angiotensin (1–9) by angiotensin converting enzyme-2 and then, into angiotensin (1–7) by angiotensin converting enzyme, in addition
to neprilysin that directly produce angiotensin (1–7) from angiotensin I. To the same extent, angiotensin converting enzyme-2 can also degrade angiotensin II into
angiotensin (1–7), that acts via MasR receptor to produce vasodilatation, anti-fibrotic, anti-oxidative and anti-inflammatory reactions. ACE=Angiotensin converting
enzyme; ACE-2 = Angiotensin converting enzyme-2; Ang (1–9) = Angiotensin (1–9); Ang (1–7) = Angiotensin (1–7); AT-1 = Angiotensin II type 1 receptor; AT-
2 = Angiotensin II type 2 receptor; NEP = Neprilysin.
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Interestingly, endothelial dysfunction and platelet activation can
successively together worsen the severity of COVID-19 infection. As
known, both ET-1 and activated platelets, associated with endothelial
dysfunction, [97] could promote leukocytes rolling, adherence to en-
dothelium, activation and migration into the inflammatory sites,
sharing in enhancement of leukocytes recruitment [98,99]. In addition,
endothelial dysfunction can drive the fibrotic consequences following
SARS-CoV-2 infection, developing pulmonary fibrosis as a result of re-
leasing transforming growth factor- β1 (TGF-β1), the main fibrogenic
cytokines implicated in pulmonary fibrosis, which could be induced by
ET-1 action [100,101].

Taken into consideration the numerous harmful effects possibly
induced by Ang II during COVID-19 pathogenesis, we found that most
novel studies aim to use the anti-hypertensive drugs which act either by
inhibiting the ACE activity or by blocking AT1 receptor, suggesting that
action may mitigate the disease severity in COVID-19 patients.

On the other side, it has been proposed that enhancing the counter
regulatory axis composed by ACE-2/Ang (1–7)/MasR axis may be the
most helpful.

3.3. ACE-2/Ang (1–7)/MasR axis and COVID-19

ACE-2/Ang (1–7)/MasR axis, the depressor arm of RAS, was iden-
tified to mitigate the deleterious actions mediated by ACE/ Ang II/ AT1
[51]. Within this axis, ACE-2 competes with ACE by hydrolyzing Ang I
into the nonapeptide angiotensin (Ang 1–9) which is further cleaved by
the action of ACE into heptapeptide angiotensin (Ang 1–7), thus de-
creasing the amount of Ang I available for Ang II generation by ACE
[102,103]. To the same extent, ACE-2 could also hydrolyze Ang II
converting it into Ang (1–7) [104,105].

Until the year 2000, ACE has emerged as the key enzyme in the
pulmonary RAS, but this was challenged by the discovery of its
homologue; ACE-2 [106] which was found out to be broadly expressed
in almost all types of lung cells, within the vascular endothelial and
smooth muscle cells, types I and II alveolar epithelial cells and bron-
chial epithelial cells [107,108].

ACE-2 could negatively regulate the RAS in the lung through re-
ducing Ang II/AT1 receptor signaling and activating the counter-
regulatory Ang (1–7)/ Mas receptor pathway [54]. That finding was
compatible with the animal studies showed that the use of RAS in-
hibitors could effectively relieve the symptoms of acute severe pneu-
monia and respiratory failure [109]. Consequently, the increased ACE-2
was addressed as a target for protection from predisposition to in-
flammatory lung diseases such as, acute respiratory distress syndrome
(ARDS) [108,110].

Concerning COVID-19 pathogenesis, binding of SARS-CoV-2 to ACE-
2 resulted in exhaustion of ACE-2, breaking the balance of the RAS
system within the lung and then, exacerbation of pulmonary in-
flammatory reactions [109,111].

Being ACE-2 receptors widely expressed on vascular endothelial
cells (EC) within the lungs [112], SARS-coV-2 can exploit them to in-
duce and diffuse inflammatory cascades within endothelial cells dis-
rupting their function; evidenced by the existence of viral elements and
inflammatory cells within endothelial cells [113].

Thus, distributing ACE-2, as the main functional receptor for SARS-
CoV-2, within human tissues will be the determinator for spreading of
viral infection within the lung and other organs [108,114]. Both al-
veolar and bronchial membranes were reported to highly express ACE-
2, which may explain the higher tendency of SARS-CoV-2 virus to
harmfully affect lower airways than the upper ones [110,115]. How-
ever, recent reports indicate that few COVID-19 patients may also de-
velop some signs and symptoms of upper respiratory tract infection
(e.g. rhinorrhea, sneezing, or sore throat) [7,17,116].

Furthermore, it was reported that ACE-2 is also expressed in many
epithelial cells of other organs than lung including kidney, blood ves-
sels, intestine [110] and brain [117]. The fact which may explain the

existence of some extra-pulmonary co-morbidities as myocardial dys-
function [30] and acute kidney injury (AKI) [118], gastrointestinal
manifestations (diarrhea, vomiting or abdominal pain) [119], neuro-
logic manifestations (altered mental status or seizures) [120,121].

Therefore, increased ACE-2 may be useless by promoting viral entry
into lung cells, potentiating its devastating effect and enhancing mor-
tality [122]. Consistent with these findings, suggesting ACE-2 activators
such as, Diminazene aceturate (DIZE) [65], 4-[2-(4-carbamimidoyl
phenyl) imino hydrazinyl] benzene carboximidamide and Xanthenone
(XNT) [54] for counteracting COVID-19 pathogenesis will be in vain.

As a consequence, in order to diminish SARS-CoV-2 entry and its
subsequent lung injury, pulmonary ACE-2 activity should be reduced.
However, at the same time, reduced ACE-2 activity may contribute to
worsening of the lung inflammation, by unopposed angiotensin II ac-
cumulation [31] and forcing the RAS to continuously increase the ex-
pression of cytokines [123].

Simultaneously, a previous data indicated that the decrease in the
ACE-2 activity in a rat model of ARDS was paralleled by low amounts of
Ang-(1–7) [124], which has been reported to play a beneficial role
against pulmonary inflammation and fibrosis [125,126]. In this context,
another study stated that treatment with protease-resistant, a cyclic
form of Ang (1–7) (cAng 1–7), could restore the ACE-2 activity; atte-
nuated the inflammatory response; decreased lung injury and improved
lung function [124,127]. That confirms the positive relationship be-
tween Ang 1–7 and preserving the depressor role of ACE-2/Ang (1–7)/
MasR axis in pulmonary RAS. Hence, these data will attract the atten-
tion to the pivotal role of Ang (1–7) in COVID-19 pathophysiology and
therapy.

3.4. Ang (1–7) and COVID-19

Ang (1–7) is a biologically active metabolite of the RAS that had
become a peptide of interest in the last decade, because of its effective
role in activating a number of crucial events for the homeostasis of
normal physiological functions [128]. It was reported that Ang (1–7)
could exert various effects, which are greatly in opposition to those of
AT-1 receptor activation such as vasodilator, anti-inflammatory, anti-
hypertrophy, anti-proliferative, anti-fibrosis and antioxidant effects
[54,129].

Clinical and epidemiological studies have revealed the existence of a
powerful link between the vasodilator effect of Ang 1–7 and its higher
plasma levels in females; making them less liability to hypertension
than males [130,131]. Several mechanisms have been attributed to Ang
1–7 in lowering blood pressure which can be explained as follows (i)
Triggering eNOS to stimulate the release of NO, which could play a
critical role in promoting the relaxation of blood vessels and inhibiting
the platelet aggregation [132,133] (ii) Inducing natriuresis/diuresis
[134], and (iii) Activating peroxisome proliferator activator receptors
(PPARs), which in turn supports the availability of NO [135].

Interestingly, Ang 1–7 was documented to directly blunt the acti-
vation of pro-inflammatory signaling pathways induced by the Ang II-
associated phosphorylation of MAPKs and NF-kB signaling [136,137],
suggesting also the anti-hypertrophic effects of Ang 1–7 through nor-
malization of MAPKs activity [130]. Moreover, Ang (1–7), by coun-
teracting the Ang II effects, could also preserve the endothelial function
through increasing nitric oxide bioavailability and inhibiting oxidative
stress [138].

Taken together, Ang 1–7 could also reduce lung injury by suppres-
sing the expression of fibrogenic molecules such as TGF-β1[139], which
acts as a key mediator involved in pulmonary fibrosis [140].

Moreover, several researches have pointed out the antioxidant role
of Ang 1–7 [54,130] that might be established by; (i) limiting the ac-
tivation of NADPH oxidase, which is a membrane-bound enzyme
complex involved in triggering ROS production through generating
superoxide radicals [141], and/or (ii) normalizing the expression of
antioxidant enzymes such as catalase and heme oxygenase-1 (HO-1)
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[130], as well as the nuclear factor erythroid 2–related factor 2 (Nrf2),
that acts as an emerging regulator of cellular resistance to oxidants
[142].

Other observation and experimental evidence suggested that en-
dogenous ACEIs effects of Ang (1–7) can be mediated by its unique
membrane bound G protein-coupled receptor known as Mas (MasR)
[143], which was revealed to be found in the thin areas of the bronchial
epithelium and smooth muscle [144]. MasR could direct the Ang 1–7
biological responses via the MasR/cAMP/protein kinase A (PKA) sig-
naling [145], which was previously validated by administrating AVE
0991 (a nonpeptide mimetic of Ang 1–7 as a specific ligand (agonist) for
MasR [130].

Subsequently, attention should be drawn to specifically trigger the
Ang (1–7) as a potential therapeutic agent able to mitigate the lung
injury in patients with COVID-19 infection, without increasing ACE-2
activity.

There are different formulations of Ang 1–7 are being developed e.g.
AVE-0991 [146], HPβCD/Ang 1–7 [147], CGEN-856 [148], NorLeu3-A
[149] and cyclic Ang 1–7 [150] and used to demonstrate its therapeutic
potential in numerous animal models of human diseases, including
hypertension, heart failure, stroke, diabetes mellitus, atherosclerosis,
renal disease and pulmonary arterial hypertension [130,145,151].
However, therapeutic attempts and clinical trials are still underway
because of Ang (1–7) rapid in vivo degradation by ACE [130].

On the other hand, previous studies emphasized that Ang (1–7)
could induce vasodilatation in rats of Mas-deficient vessels [152] and in
rats pretreated with A779 (MasR blocker) [153]. The former observed
data suggested that Ang (1–7) might also interact with an additional
specific receptor other than MasR to elicit vasodilatation [154]. Indeed,
Ang (1–7) have been shown to stimulate also the bradykinin (BKs)
pathway via preventing the BK hydrolysis [155].

BKs are one of the formed kinins that can play significant roles in
regulating tissue injury, inflammatory responses and vascular perme-
ability [156]. They have a little direct impact on the activation and
recruitment of inflammatory cells, but they could work indirectly
through stimulating the airway epithelial cells and lung fibroblasts
through producing a wide array of cytokines, including IL-6, IL-1, IL-8,
granulocyte colony stimulating factor (G-CSF), GM-CSF and macro-
phage chemoattractant protein-1 (MCP-1) [157158–160]. BK action
was mediated by G-coupled receptors, namely BK receptor (BR) [156]
that amazingly found to be interacted with the Mas receptors in order to
regulate the vasodilator effect of the Ang (1–7) [161].

At the same time, it was found that the reduction in ACE-2 mRNA
expression within the lungs of STZ diabetic rats was linked with an
increase in circulating Ang II, but without any significant change in the
production of Ang (1–7) [162,163], ensuring that pulmonary ACE-2
was not the only enzyme responsible for Ang (1–7) production, but
there might be another enzyme contributing to its synthesis.

By the time, the classical view of RAS has been further expanded
and become well established than previously conceived. As a con-
sequence, it was discovered that there was another alternative pathway
by which Ang (1–7) is produced, instead of that based on ACE-2. That
way was disclosed to degrade Ang I directly into Ang (1–7) by another
RAS member, called NEP.

3.5. NEP and COVID-19

NEP (neutral endopeptidase or neprilysin, previously known as
CD10) is a member of transmembrane zink-metalloendopeptidase that
particularly highly expressed in both kidney and lung [164–166]. NEP
was also found in a number of other tissues, as epithelia of breast,
prostate, stomach and in the central nervous system [167–169]. NEP
had been also shown to be present in a soluble circulating form (cNEP)
within several body fluids including urine, cerebrospinal fluid and
plasma [170].

Although NEP can discriminately hydrolyze a broad spectrum ofTa
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physiologically relevant substrates, it was found to possess an obvious
substrate specificity. Classically, NEP exhibits a size-related specificity
that enables it to hydrolyze only peptides with a small molecular weight
generally at or below 3,000 Dalton [171]. As well, NEP has been also
described to show a distinction between substrates being cleaved 'in
vitro' and that being cleaved 'in vivo'. Initially, NEP was reported to
specifically cleave more than 7 peptides 'in vivo' including natriuretic
peptides (NPs) (Atrial natriuretic peptide (ANP), C-type natriuretic
peptide (CNP), and B-type natriuretic peptide (BNP)), BKs, neuropep-
tides (substance P, enkephalins), Gastrin, Chemotactic peptide formyl-
Met-Leu-Phe (fMLP), versus 26 peptides 'in vitro' such as IL-lβ, Oxy-
tocin, Gastrin-releasing peptide (GRP), ET-1, Ang I and II……etc
[172–174]. By time, more substrates had been proposed with varying
levels of 'in vitro' and/or 'in vivo' proof of cleavage. Among that, GRP,
ET-1, Ang I which have been proved to be additionally metabolized 'in
vivo' by NEP [162,175,176], emerging the evidence that NEP could
play an important role in many physiological and pathological condi-
tions [177], Table 1.

For CVS patients, NPs were known to be of therapeutic importance
in lowering blood volume by inducing natriuresis, in which excess so-
dium can be excreted in urine with accompanying water by the renal
tubules [35]. Previous clinitcal trials proved that administering syn-
thetic NPs might be associated with some limitations especially on the
long run [178,179], that pushed them to depend on using Neprilysin
inhibitors (NEPi) such as (thiorphan or candoxatrilat) to prolong and
potentiate the beneficial effects of vasoactive/NPs via inhibiting en-
dogenous NPs degradation [180].

NEPi have been used for decades to treat acute diarrhea [181].
However, they are now developed and emerged as a pharmaceutical
target for different CVS diseases. NEPi have been used mainly in people
with congestive heart failure and a reduced left ventricular ejection
fraction (LVEF) [182]. However, using NEPi (e.g. candoxatril) solely for
hypertension treatment was ineffective, because NEPi could inhibit Ang
II degradation, increasing its associated simultaneous detrimental ef-
fects. Therefore, combining NEPi either with ACEi (e.g. omapatrilat) or
ARBs (e.g. LCZ696) become a necessity to overcome this limitation
[183,184].

Another critical aspect for the pharmacological role of NEPi was
achieved in treating diabetes via inhibiting the breakdown of some
substrates known to modulate glucose metabolism, such as incretin
glucagon-like peptide-1 (GLP-1), NPs and BKs [185].

Within the brain, NEP had also proved to hold a great beneficial role
in the neurological disorders such as Alzheimer's disease (AD) on both
in vitro and in vivo studies [186–188]. Multiple lines of evidence
highlighted the presence of many amyloid plaques in the form of β-
amyloid (Aβ) peptide in the brains of AD patients with dementia [189].
It was worthy mentioned that NEP was one of the major Aβ peptide-
degrading enzymes in the brain, whose expression was documented to
be lower in the brain of AD patients [190] supporting the role that NEP
can play in the prevention and treatment of AD.

In addition to the above mentioned, NEP seems to play a protective
role in the pathogenesis of lung injury since significant decrease in the
NEP enzymatic activity in the lung of mice with ALI was associated with
inactivation of the tachykinins degradation pathway and consequently,
reducing uncontrolled inflammation in ALI/ARDS and in other neuro-
genic respiratory diseases [37,191,192].

Lung inflammation could induce hyperplasia in the pulmonary
neuroendocrine cells (PNECs) of both respiratory bronchioles and al-
veoli [193,194], resulting in excessive production of GRP [195].

GRP was known to be one of the Bombesin-like peptides that can be
expressed and released by PNECs into the surrounding airway par-
enchyma in response to various stimuli like hypoxia or irritation
[196,197] to regulate the neutrophil chemotaxis and macrophage in-
filtration within the lung tissue [198,199]. GRP could act via stimu-
lating Gastrin-releasing peptide receptor (GRPR) at the surface of
macrophages, which in turn, would enhance the release of early

inflammatory mediators contributing to the recruitment of neutrophils
[200,201].

More neutrophil infiltration within the lung is usually associated
with high tendency for lung tissue damage [202,203], since they would
be involved in breakdown of basement membrane integrity within the
bronchiolar/alveolar architecture and thereby, diminution of pul-
monary function. Moreover, during the deleterious inflammatory re-
actions, as in pneumonia, neutrophil lifespan is prolonged to generate
more superoxide radicals resulting in damage of the surrounding
normal tissue [204].

Interestingly, NEP can play a vital role during lung inflammation
through its catabolic effect on (GRP) [205] in addition to its presence
on the plasma membrane of neutrophils modulating their chemotactic
responsiveness via cleaving the chemotactic peptide formyl-Met-Leu-
Phe (fMLP) which resembles an effective chemotactic agonist in re-
sponse to GRP [206,207]. Thus, breaking both GRB and fMLP peptide
by NEP will cut the way for recruiting more neutrophils into site of
injury and consequently, grab the reins.

On the other hand, once neutrophils being activated at in-
flammatory sites, they could secrete high concentration of several
serine proteases into the extracellular environment to degrade host
pathogens, recruit more cytokines and stimulate further tissue damage
[208,209]. Cathepsin G was reported to be one of the neutrophil-de-
rived serine proteases that is abundantly found in the azurophil gran-
ules and known to degrade both Angiotensinogen and Ang I into Ang II
[209,210].

So far, NEP can additionally take a part in decreasing the pro-in-
flammatory, oxidative and pro-fibrotic effects of Ang II by minimizing
the release of cathepsin G and consequently, its action on Ang I
[211–213].

As NEP was reported to have more catalytic activity than ACE-2 in
cleaving Ang I into Ang (1–7), it could also effectively enhance the
protective activities associated with Ang (1–7) in the lung [214]. As
well, NEP could not affect lung Ang (1–7) metabolism because it was
involved in the metabolism of Ang (1–7) within tissues other than
pulmonary tissues, as renal cortex. On the other hand, ACE was re-
corded to be the major enzyme responsible for Ang (1–7) metabolism in
the pulmonary membranes by hydrolyzing it to Ang (1–5), and then,
into Ang (3–5) by the action of aminopeptidases [215]. Besides, NEP
shows higher activity than ACE towards BKs degradation, resulting in
inhibition of the bradykinin-induced inflammatory cells influx
[125,216].

Despite multiple data confirming the expected role of NEP in re-
lieving the pulmonary inflammatory response, its effect on reducing
exacerbation of acute severe pneumonia in COVID 19 patients has not
been highlighted yet.

Hence, the question now, may the reviewed actions of NEP path-
ways be sufficient to impose a new effective strategy for COVID-19
management as compared to the suggested repurposed drugs?

4. Main repurposed drugs for COVID-19

World Health Organization (WHO) and Centers for Disease Control
and Prevention (CDC) guidelines only provide supportive care.
However, many drugs repurposed based on host response in order to
defeat COVID-19, Table 2 [217].

4.1. Anti-inflammatory agents

Recently, there is an empirical use of anti-inflammation therapy in
critical patients of COVID-19 presented with severe complications in
order to prevent further injury and suppress Cytokine storm manifes-
tations as ARDS and other organs damage till even death. Main anti-
inflammatory medications include, non steroidal anti-inflammatory
drugs (NSAIDs), corticosteroids, chloroquine and statins [22].

Numerous observational data support a strong association between
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use of NSAIDs in management of lower respiratory tract infections and
higher incidence of complications including fulminating pneumonia,
pleural effusions and dissemination of infection [218]. NSAIDs may also
induce nephrotoxicity among susceptible covid-19 patient groups and is
exacerbated by fever and dehydration [219]. Consequently, some stu-
dies recommend avoiding use of NSAIDs e.g. ibuprofen and diclofenac
as the first choice for fever control and pain symptoms in COVID-19
infection and using paracetamol instead [220,221].

Previous study demonstrated that corticosteroids-treated asth-
matic patients showed enhanced NEP expression in their airway epi-
thelium as compared to nonsteroid-treated ones. This fits the hypothesis
that the anti-inflammatory effect of corticosteroids within the airways
may be partially mediated by upregulating NEP [222].

Despite of possible benefits gained from the anti-inflammatory ef-
fect of corticosteroids, they will be associated with serious impairment
in the immune system of severe COVID-19 cases [22]. Corticosteroids
may delay the viral elimination and increase susceptibility for the
secondary infection resulting in deterioration of the disease especially
with immune system impairment [223]. Other side effects associated
with corticosteroid treatment include hyperglycemia, central obesity
and hypertension which represent an obstacle against their use in
people at higher risk for COVID-19 especially diabetic, cardiac and
hypertensive patients [217].

Auyeung et al., 2005 reported that there is no survival benefit for
treatment of SARS patients with corticosteroids [224]. Another study
on corticosteroid therapy of MERS patients has revealed no mortality
difference with delayed clearance of MERS-CoV from lower respiratory
tract [225]. Moreover, there is no evidence from any clinical trials
supporting its administration for COVID-19 [22].

In order to overcome the immune suppression induced by corti-
costeroids, a variety of other therapies have been developed to act di-
rectly as specific anti-cytokines (e.g. anakinra or tocilizumab) [10] or
anti-inflammatory cytokines (e.g. IL-37 or IL-38) [17] without targeting
the immune system and have proven to be effective in treating several
syndromes that triggered by cytokine storm [123].

According to previous studies, Chloroquine (CQ) and its less toxic
metabolite, hydroxychloroquine (HCQ) possess anti-inflammatory and
immunomodulatory benefits by affecting cell signaling in viral infec-
tions. CQ/HCQ also exhibit a wide variety of antiviral reactions against
several viruses including members of the flaviviruses, retroviruses, and
coronaviruses [25].

CQ and HCQ can prevent the attachment of viral particles to their
cell surface receptor, modulate pH in order to inhibit pH-dependent
steps of viral replication or interfere with post-translational modifica-
tions (PTMs) of viral proteins [217,226].

An enough pre-clinical evidence considering CQ effectiveness for
treatment of COVID-19 showed reduction in the pneumonia exacerba-
tion, improving lung imaging findings and high rate of virus nucleic
acid test negativity. Accordingly, CQ phosphate in Guidelines (version
6) for treatment of COVID-19 has been recommended with oral ad-
ministration twice daily at a dose of 500 mg (300 mg for chloroquine)
for adults and no more than 10 days [22].

However, there is a narrow margin between CQ/HCQ therapeutic
and toxic dose. Its poisoning has been favored and life-threatening in
patients with cardiac disorders [227]. It is also contraindicated for
people with retinopathy, elevated liver enzymes, heart rhythm dis-
orders (as QT prolongation) or allergy to CQ/HCQ [228]. Further, ef-
ficiency and safety of CQ/HCQ for COVID-19 is still unclear and needs a
confirmation depending on more preclinical and clinical trials [229].

Statins are the widely used cholesterol lowering drugs, that were
also reported to improve endothelial functions via lipid-independent
mechanisms; mediated by their anti-inflammatory and anti-oxidant
properties as well as their ability to restore vascular NO bioavailability
[230]. Because of their immunomodulatory effect, they have also
proven to be beneficial as adjuvant therapy in patients with different
auto-immune inflammatory conditions (e.g. systemic lupus

erythematosus, rheumatoid arthritis and multiple sclerosis) [231]. As a
consequence, some hospitals included statins in the treatment protocol
of COVID-19. Although statin therapy is usually well tolerated, their use
in COVID-19 patients may increase the incidence and severity of
myopathies and acute kidney injury [232]. Moreover, statin drugs may
increase IL-18 levels which can promote severe pneumonia, deterior-
ating SARS-CoV-2–induced ARDS and mortality, especially in elderly
patients who are more likely to use these drugs [233].

4.2. Estrogens and selective estrogen receptor modulators (SERMs)

Sex differences in health outcomes following COVID-19 may be
attributed to sex-dependent production of steroid hormones. Estrogen
has been reported to attenuate inflammation which might protect
women compared to men [234]. Estrogen signaling are also known to
downregulate MCP-1 expression and promote adaptive T cell response
by stimulating neutrophil recruitment [235].

It has been also reported that SERMs, like Toremifene, exhibits
potential effects in blocking various viral infections as SARSCoV and
MERSCoV virus [236] through interacting with and destabilizing the
virus membrane glycoprotein resulting in inhibition of its replication
[237].

Wang et al., 2020 suggests that treatment with estrogens and es-
trogen-related compounds as estradiol (E2) could suppress the expres-
sion of TMPRSS2 in the lung resulting in decreased mortality to SARS-
CoV infection [235].

An estrogen receptors/RAS interaction has been demonstrated in
several studies. E2 was detected to drive RAS to increase Ang-(1–7)
production through estrogen receptor (ER α) mediated stimulation of
ACE1 and ACE2 mRNA expression and activity. A sex difference has
been revealed in the expression of RAS components [238].

4.3. Renin-angiotensin system (RAS) blockers

There is a controversy about the role of RAS blockers including, ACE
inhibitors and/or angiotensin II type 1 receptor blockers (ARBs) in
treating COVID-19 and their exact roles still remain unclear
[28,32,239].

Their use has been suggested to be of a value through increasing
ACE-2 that may have a protective effect against virus-induced lung
injury by preserving ACE-2 in competition with SARS-CoV-2 entry into
the cells [28]. Another mechanism by which ACE-2 can prevent lung
damage and attenuate the pulmonary fibrosis, will be via enhancing the
ACE-2/Ang-(1–7)/Mas axis to increase the production of ang (1–7),
which in turn can counteract the activity of the ACE/AngII/AT1R axis
[137].

On the other hand, it was known that ACE inhibitors could block the
breakdown of bradykinin increasing its level and then, promoting its
associated inflammatory reactions resulting in more deterioration in the
health state [240]. Additionally, it has been expected that patients re-
ceiving ARBs may show upregulation in the membrane bound ACE-2
facilitating the coronavirus entry and worsen then its course [241].

The suggested explanation may be attributed to the increase in
angiotensin II level that probably pushes it to act as an increased sub-
strate loaded on the ACE enzyme, resulting in shifting a part of Ang II to
be converted by the action of ACE2 into Ang (1–7), that may be asso-
ciated with ACE-2 upregulation [32].

Other agents acting on the RAS, such as beta-blockers and direct
renin inhibitors (DRI) to lower AngI formation and thereby, AngII and
Ang (1–7). However, till now, no one discussed their impact on the
severity and prognosis of COVID-19 [28].

On the contrary, lacking Ang (1–7) will be of negative effect on lung
health. So, there is an urgent need to suppose a pathway that can ensure
the increase of Ang (1–7) level without upregulating ACE-2. That effect
may be attained by keeping ACE activity to enhance the pulmonary
metabolism of Ang (1–7) and at the same time, shifting the RAS system
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away from ACE/Ang II/AT-1 axis to avoid its associated inflammatory
and oxidative activities. We suggest that NEP may achieve this com-
plicated equation.

5. NEP-dependent strategy for COVID-19 therapy

Based on previous literature that addressed several beneficial and
protective effects displayed by NEP during lung injury, we postulate
that increasing NEP activity may mitigate COVID-19 pathogenesis.
Lung of COVID-19 patients showed pneumocyte hyperplasia with in-
flammatory cellular infiltration [242], confirming the release of ex-
cessive GRP into the surrounding airway parenchyma as a result of
PNECs hyperplasia [193,194,196,197].

Considering the documented links between high GRP level and both
neutrophil chemotaxis and infiltration as well as reduction in food and
water intake [243], it is not surprising to detect high neutrophil count
[244] and anorexia in severe COVID-19 patients [245].

Thus, we expect that GRP is the first spark in initiating neutrophils
recruitment as well as cytokine storm, which are the main pillars in

COVID-19 pathophysiology. Our suggested hypothesis herein depends
on two main aspects, Fig. 3:

NEP may abrogate GRP-induced neutrophil chemotaxis via cleaving
GRP and degrading fMLP peptide that can modulate the chemotactic
responsiveness of neutrophils. On the other aspect, NEP may withstand
the potent cytokine storm, which was prescribed to be one of causes for
lung damage progression and death in COVID-19 patients.

We suggest that NEP can diminish the release of inflammatory cy-
tokines that may increase sensitivity of target cells for further stimu-
lation by SARA-CO-2 virus [246,247]. Thus, NEP can improve lung
histopathology and enhance tissue survival through two mechanisms:

Firstly, interfering with Ang II formation via preventing the pro-
teolytic cleavage of angiotensinogen and Ang I into Ang II by neu-
trophil-derived Cathepsin G [209–211] that is expected to be released
continuously in response to uncontrolled neutrophil activation asso-
ciated with COVID-19 patients and via regenerating the synthesis of
endogenous Ang (1–7), expected to be minimized because of ACE-2
exhaustion by SARA-CO-2 virus [109]. Ang (1–7) by itself may protect
against pulmonary fibrosis through reducing TGF-β1 expression [139].

Fig. 3. A schematic diagram showing the NEP-dependent therapeutic strategy for COVID-19. Following binding of SARS-coV-2 virus to ACE-2 receptor on the
cell membrane surface, lung may show pulmonary neuroendocrine cells hyperplasia with infiltration of several inflammatory cells. The hyperplasia may produce
excessive Gastrin-releasing peptide into the surrounding airway parenchyma to stimulate Gastrin-releasing peptide receptor on the surface of macrophages, which in
turn, will enhance release of inflammatory mediators such as (IL-1β, IL-6, TNF-α, GM-CSF and MCP-1) contributing to neutrophils recruitment. Neprilysin may
degrade the produced gastrin-releasing peptide inhibiting subsequent release of inflammatory cytokines. At the same time, neprilysin may also cleave the chemo-
tactic peptide Formyl Methionyl-Leucyl-Proline; by which neutrophils are efficiently migrated; altering their chemotactic responsiveness and recruitment. NEP may
withstand the potent cytokine storm, through :(i) minimizing Angiotensin II via preventing the proteolytic cleavage of angiotensinogen and Angiotensin Ⅰ into
Angiotensin Ⅱ by neutrophil-derived Cathepsin G and via regenerating the synthesis of endogenous Angiotensin (1–7) that by itself may protect against pulmonary
fibrosis through reducing TGF-β1 expression, (ii) breaking bradykinins, blocking its action on its receptors on mast cell, inhibiting release of inflammatory cells and
thereby, fibroblasts activation that may participate in the development of lung fibrosis, (iii) degrading endothelin-1 and consequently, inhibiting TGF-β1 release and
(iv) stabilizing Ang II-induced endothelial dysfunction as well as suppressing platelet activation and aggregation that initiate blood clot formation. ACE-
2 = Angiotensin-converting enzyme 2; Ang I = Angiotensin I; Ang II = Angiotensin II; Ang (1–7) = Angiotensin (1–7); AT-1 = Angiotensin II type 1 receptor;
BKs = Bradykinins; ET-1= Endothelin-1; fMLP= Formyl Methionyl-Leucyl-Proline; GRP=Gastrin-releasing peptide; GRPR=Gastrin-releasing peptide receptor;
MasR = Mas receptor; NEP = Neprilysin; PNECs = Pulmonary neuroendocrine cells; SARS-CoV-2 = Severe acute respiratory syndrome coronavirus-2.
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Secondly, breaking BKs and thereby, inhibiting its role in activation
and recruitment of the inflammatory cells.

However, recorded findings suggest that lung damage caused by
COVID-19 is induced by an alternative mechanism rather than hyper-
infammatory injury. It likely seems that endothelial activation and as-
sociated pulmonary intravascular coagulopathy are the contributing
factors in COVID-19 pathogenesis [18].

Within this context, NEP may exert a critical role in suppressing ET-
1 that mediates angiotensin II-induced endothelial and platelets dys-
function. Yet, NEP may minimize the chance for Ang II formation,
which was reported to be a potent stimulator of ET-1 in endothelial
cells [248]. Even, NEP can additionally degrades ET-1, preventing its
associated inflammatory injury and eventual fibrotic cascade in the
lung [81,175].

Furthermore, we speculate that NEP may be helpful in dealing with
individuals at high risk groups for COVID-19 that exhibit many ob-
stacles in their management. NEP may regulate blood pressure in car-
diovascular and hypertensive patients indirectly via decreasing both
blood and tissue levels of Ang II by: (i) increasing Ang I substrate
availability a result of inhibiting cathepsin G-mediated neutrophil re-
lease, and (ii) augmenting the rate of Ang I conversion into Ang (1–7),
that previously reported to exert a stimulatory effect on ANP secretion
via MasR [249].

For diabetic patients, we demonstrate that NEP may regulate pan-
creatic RAS flux to improve glycemic conditions. In response to NEP-
mediated degradation 'in vitro', NEP may evoke the insulin secretory
ability of Ang (1–7) via hydrolyzing it into the biologically active Ang
(1–2) dipeptide in pancreatic islets [33,250].

Numerous 'in vivo' and 'in vitro' experiments have been made to
increase NEP expression. One study speculated that dexamethasone
could enhance NEP expression in airway epithelial cells via promoting
its transcription and synthesis [251]. Another prior finding demon-
strated that Valproic acid could reduce plaque formation and improve
learning deficits via up-regulating NEP in APP/PS1 transgenic mice
[252]. Recently, serotonin and its derivatives were explored to ame-
liorate symptoms of AD induced in mouse via enhancing NEP up-reg-
ulation [253].

Several lines of evidence identified that hormones such as andro-
gens [254] and estrogen [255] could also positively regulate NEP ex-
pression, suggesting that decline in levels of androgen or estrogen as-
sociated with aging would accompany by decrease in NEP synthesis,
which may be an important factor for increasing the risk of COVID-19
infection among elderly.

On the other hand, several findings investigated the up-regulating
effect of some natural products on NEP expression such as Apigenin,
Luteolin, and Curcumin, (-)-Epigallocatechin-3-gallate as well as
Resveratrol [256–258]. In China, Naoerkang (NEK), a traditional Chi-
nese herbal medicine, improved the ability of learning and memory in
rats model of AD by increasing NEP expression in their hippocampal
tissues [259].

However, some scientists aimed to produce recombinant NEP (r
NEP) instead, as Park et al., 2013 who prepared recombinant soluble
NEP from insect cells to be intracerebrally injected into AD mice [238].

Therefore, we finally suggest that therapeutic strategies aimed to
increase NEP expression and/or activity may be of great benefit for
prevention and treatment of COVID-19.

6. Conclusions and areas for future work

Despite the high widespread of COVID-19 contagion worldwide,
there is no specific efficient treatment that has been proved till now.
Several pharmacological interventions for COVID-19 have been sug-
gested targeting the host's immune response. Following SARS-coV-2
exposure, there may be an overproduction of GRP within lung tissue
resulting in increased release of inflammatory cytokines such as IL-1β,
IL-6, TNF-α, VEGF, GM-CSF and MCP-1. Such cytokines are widely

known to enhance neutrophil infiltration which, in turn, induce lung
inflammation and respiratory distress as reported in COVID-19 infected
patients. As well, cytokines release is also presumed to develop SARS-
coV-2 - associated pulmonary fibrosis. Novel findings define COVID-19
as one of the pulmonary diseases associated with endothelial and pla-
telets dysfunction. Now, it is definitely known that viral invasion can be
mediated by one of the RAS signaling system components, namely ACE-
2. Hence, COVID-19 occurrence and progression can be attributed to
imbalance in the pulmonary RAS signaling resulting from SARS-coV-2-
induced ACE-2 drain. Interestingly, the decrease in ACE-2 activity will
be accompanied with a decrease in the generation of Ang1-7 which was
known to be the light side of RAS. Regarding the data emphasized on
the protective role of Ang (1–7) in lung injury, it may be recommended
as a COVID-19 therapy, but because of its short half-life, Ang (1–7)
exhibits a limitation for its use. Since NEP is a more potent alternative
way than ACE-2 for producing Ang1-7, it is suggested to assess the
possible beneficial role of NEP against COVID-induced lung injury. Few
studies have discussed NEP-mediated protective pathways in experi-
mental models of lung injury and fibrosis, however its actual role as a
lung protective therapy has not been yet recognized. NEP has been
involved in degradation of many peptides that may be incorporated in
COVID-19 pathophysiology. So, we expect that NEP can effectively
interfere with the chemotactic responsiveness and recruitment of neu-
trophils by degrading both fMLP peptide and GPR, respectively.
Furthermore, we suggest that NEP can minimize cytokine storm asso-
ciated with SARS-coV-2 invasion through inhibiting Ang II formation by
neutrophil-derived Cathepsin G and directing Ang I for generating Ang
(1–7) which can in turn suppress TGF-β1 expression and its fibrogenic
action, protecting against fibrosis. Degrading both BKs and ET-1 by NEP
may be associated with low IL-6 levels, which will be beneficial for
stabilizing endothelium and restoring its function. In addition to its
catabolic properties, we postulate that NEP may possess an advantage
for COVID-19 high risk patients through modulating blood pressure and
glucose homeostasis. Practically, numerous in-vivo and in-vitro ex-
perimental manipulations were made to upregulate NEP expression
either by using drugs (Dexamethasone and Valproic acid), hormones
(Androgens and Estrogen) or natural substances (Apigenin, Luteolin,
Curcumin and (-)-Epigallocatechin-3-gallate). However, others directed
their efforts towards preparing the recombinant NEP (r NEP). Because
most pre-clinical and clinical studies within the medical field are in-
terested in studying NEP inhibitors, there is a little data concerning use
of NEP as a therapeutic agent. Consequently, its associated adverse
effects have not yet been studied well. Finally, we hope our hypothesis
will be somewhat enough to direct a future work towards the ther-
apeutic role of NEP in modulating COVID-19 pandemic and to target
the subsequent therapies for enhancing NEP activity in COVID-19 pa-
tients.
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