Published online 12 July 2023

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 3 1
https.Ildoi.orgl10.1093nargabllqad069

Transmorph: a unifying computational framework for
modular single-cell RNA-seq data integration

Aziz Fouché “12:3:4" Loic Chadoutaud' 23, Olivier Delattre® and Andrei Zinovyev “1:2:3:6

!Institut Curie, PSL Research University, 75005 Paris, France, 2INSERM, 75005 Paris, France, *MINES ParisTech,
PSL Research University, CBIO-Centre for Computational Biology, 75005 Paris, France, *Ecole Normale Supérieure
Paris-Saclay, 91190 Gif-sur-Yvette, France, >INSERM U830, Equipe Labellisée LNCC, SIREDO Oncology Centre,
Institut Curie, 75005 Paris, France and ®In silico R&D, Evotec, 31400 Toulouse, France

Received January 18, 2023; Revised June 02, 2023; Editorial Decision June 20, 2023; Accepted July 10, 2023

ABSTRACT

Data integration of single-cell RNA-seq (scRNA-seq)
data describes the task of embedding datasets gath-
ered from different sources or experiments into a
common representation so that cells with similar
types or states are embedded close to one another
independently from their dataset of origin. Data inte-
gration is a crucial step in most scRNA-seq data anal-
ysis pipelines involving multiple batches. It improves
data visualization, batch effect reduction, clustering,
label transfer, and cell type inference. Many data in-
tegration tools have been proposed during the last
decade, but a surge in the number of these methods
has made it difficult to pick one for a given use case.
Furthermore, these tools are provided as rigid pieces
of software, making it hard to adapt them to various
specific scenarios. In order to address both of these
issues at once, we introduce the transmorph frame-
work. It allows the user to engineer powerful data
integration pipelines and is supported by a rich soft-
ware ecosystem. We demonstrate transmorph use-
fulness by solving a variety of practical challenges
on scRNA-seq datasets including joint datasets em-
bedding, gene space integration, and transfer of cy-
cle phase annotations. transmorph is provided as an
open source python package.
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INTRODUCTION

Batch effects occur in most applications involving datasets
gathered across multiple sources or experiments, and de-
scribe strong dataset-specific signals which are often irrel-
evant to the studied biological questions. Data integration
is a computational paradigm aiming to learn a joint em-
bedding of datasets in which batch effects are regressed out
(Figure 1A), meaning only dataset-independent factors are
expressed. The idea is to combine information contained
in several datasets, each of those being supposedly biased
by its own specific batch effects. We focus here on the so-
called horizontal data integration (1) which seeks to integrate
datasets obtained within the same domain with overlapping
feature spaces. This is different from vertical and diagonal
data integration where cells are measured in different do-
mains, also known as multi-level or multi-omics data inte-
gration. This scenario involves specific strategies and algo-
rithms which are beyond the scope of this project (see for
instance (2)).
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Data integration is an important preprocessing step for
applications involving several datasets. In some cases, ap-
proaches as simple as centering and normalization/scaling
of features may suffice, but more complex batch effects often
require more subtle, dedicated algorithms to be satisfacto-
rily removed. Data integration can serve various purposes.
The most common usage is to embed items from all datasets
into a joint low dimensional space like in Harmony (3),
which can then be used to carry out various techniques such
as clustering, label transfer, or visualization. Another use
case is to directly perform integration in gene space like in
the mutual nearest neighbors (MNN) method (4) so that al-
gorithms needing interpretable features such as matrix fac-
torization methods can be used. Finally, integration can be
carried out without embedding data points into an explicit
feature space, for instance by outputting a joint graph of
cells across datasets like in BBKNN (batch balanced k near-
est neighbours)(5).

Data integration finds particularly important applica-
tions in single-cell biology. Starting with a biological tis-
sue, a single-cell dataset is generated and contains individ-
ual molecular measurements (for instance gene expression,
SNPs, or chromatin accessibility) about single cells of the
tissue. The strength of single-cell analysis is its ability to
both provide an insight into intrinsic cell state, while also
giving access to population-level information that can for
instance be used to estimate cell types distribution within
a tissue, which makes this technology extremely relevant
for analyzing patient samples in medicine. Due to genetic
and environmental differences between individuals, batch
effects are very prone to appear when dealing with single-
cell datasets coming from different patients. The intertwin-
ing of batch-dependent and batch-independent factors is
therefore an obstacle to the analysis of large comprehensive
datasets built by aggregating data from different individu-
als, notably when building cell atlases (see for instance (6)).
Data integration is consequently a necessary technology to
develop in order to mitigate dataset-specific signals while
preserving relevant biological signals proper to the system
of interest.

Many approaches have been proposed over the last
decade to tackle data integration in single-cell, resorting to
a variety of algorithmic strategies. The most widely used
software today is probably Harmony (3), which iteratively
clusters and corrects cell measurements in a low dimen-
sional space to achieve integration. Other methods such as
mutual nearest neighbors (4), CONOS (7), Seurat (8) and
BBKNN (5) work under the hypothesis that batch effects
are almost orthogonal to biological effects. Under this as-
sumption, they use nearest neighbors-like algorithms across
datasets as a measure of cell-cell similarity. Other data in-
tegration methods like SCOT (9) and Pamona (10) use op-
timal transport-based algorithms to estimate cell-cell simi-
larity, assuming the existence of similar manifolds support-
ing datasets containing cells of the same type. Finally, vari-
ational autoencoders (VAEs) and other neural network-
based tools like scvi (11) have been proposed, which use
VAE:s to directly learn dataset embeddings inside a joint la-
tent space.

As aforementioned, integration of single-cell RNA-seq
data has been a prolific topic for the last decade, and dozens

of methods still appear each year in the literature (1). We
believe this surge of methods comes with an urgent need
for organization, classification, and large-scale benchmarks
(see for instance (12)) of both (a) end-to-end data integra-
tion pipelines, in order to guide the computational biolo-
gists that need to apply data integration to their research
projects, and (b) algorithms, to guide methodologists who
conceive new data integration methods. For this reason we
introduce transmorph, an intuitive computational frame-
work that aims to decompose data integration methods into
basic algorithmic units that can be freely rewired to make
emerge new data integration pipelines. These units can ei-
ther be extracted from the literature, such as a nearest neigh-
bors search or a PCA projection, or can be customized
at will by the user. This flexibility allows scientists to har-
ness integration methods adapted to the specificities of their
data, for instance by choosing an output algorithm that pro-
duces an integration directly in gene space, or by selecting a
matching algorithm that takes data topology into account,
such as optimal transport (Figure 1B).

In addition, transmorph is endowed with other features
that facilitate its integration within real-life workflows of
scRNA-seq data analysis (Figure 1C). It is fully compat-
ible with the standard scRNA-seq library scanpy (13) as
they handle the same type of objects, is interfaced with
other first-class data integration tools such as Harmony (3)
and scvi (11), and contains several annotated scRNA-seq
datasets as well as standard quality assessment metrics and
plotting functions to validate data integration algorithms.
Finally, a comprehensive model API is available to allow
the user to implement their own algorithmic units, using
an object-oriented specification (Figure 1D). For these rea-
sons, we think transmorph is both an original and a power-
ful asset to design, apply, and benchmark data integration
methods.

MATERIALS AND METHODS
transmorph implementation and algorithms

The transmorph framework is provided as an open-source
Python package and can be downloaded from the PyPi
package repository. The following paragraphs describe al-
gorithms and resources that are either original or key to
understanding all the results. Additional methods can be
found in the supplementary note.

Local inverse Simpson’s index

Local inverse Simpson’s index (LISI) is an objective inte-
gration metric introduced in Harmony (3), which assesses
neighborhood heterogeneity of a data point in terms of a
given label. Simpson’s diversity index is a diversity metric
notably used in ecology to measure class diversity in a set
of objects by computing the probability for two randomly
selected items to share the same class. For any set of ob-
jects S = {x;}; <, endowed with labels y; € £, we denote by
ny for [ € £ the number of samples in S with label /. Then,
Simpson’s index of set S is given by
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For k > 0 a perplexity parameter (we use k = 90) and x
an embedded point, we compute its k-nearest neighbors k-
nn(x) which is used as set S. LISI;(x, k) = D, (k-nn(x))~!
is defined as the inverse of Simpson’s index and estimates,
for a given embedded point x, label diversity in its k-nearest
neighborhood. As suggested in Harmony, we can use LISI
in two modes:

e Batch-LISI, where points are labeled by their initial
batch. This metric measures local batch diversity in em-
bedding, higher diversity meaning higher batch mixing.

e Class-LISI, where points are labeled by their class. This
metric measures local class diversity in the embedding,
lower diversity meaning lower mixing between cell types.

Monitoring these two values allows objective comparison
of different integration pipelines, ideally increasing batch-
LISI while avoiding increasing class-LISI.

Graph embedding algorithm

Joint graph embedding is an algorithm able to build a joint
weighted graph of cells from all batches, where two cells are
linked together if they appear to be similar. This graph is
weighted according to a UMAP-like methodology, mean-
ing it can be embedded in a low dimensional space using
UMAP (14) or MDE (15) optimizers. The joint embedding
algorithm consists of four major steps. More details can be
found in the Supplementary note.

(1) For each dataset, compute the k-nn graph of its cells
weighted according to UMAP membership methodol-
ogy.

(2) For each pair of batches, weight matching edges accord-
ing to UMAP membership methodology.

(3) Build a joint graph combining edges of steps 1 and 2,
and filter edges so that only the most heavily weighted
ones are kept.

(4) Embed the joint graph into an abstract feature space
using a graph embedding optimizer such as UMAP or
MDE.

Discrete optimal transport

Discrete optimal transport (OT) problem can be naturally
pictured as follows (16). Assuming a set of n warehouses
containing goods to deliver to m factories, the optimal
transport problem consists in finding the cheapest way to
transport all goods to factories knowing the cost of trans-
porting goods is proportional to both mass carried and dis-
tance traveled. In the single-cell case, it provides a natu-
ral way to match cells between two datasets embedded in a
common expression space. Originally brought into the field
as a way to predict cell fate (17), it has more recently been
shown to be an interesting asset for matching cells across
datasets in integration tools like SCOT (9) and Pamona
(10). Details about optimal transport computation and its
variants can be found in the Supplementary note.

The main practical issue of optimal transport application
for data integration is its mass conservation constraint: OT
will always match a// mass from the source dataset X, to the
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target dataset X, regardless of the possible batch-specific
samples. Consequently, all cells in X, will be mapped to at
least one cell in X,, even though some cells from X, may
belong to a cell type missing in X,. Even worse, if there is a
class imbalance between datasets (e.g. 50% of cell type A in
dataset X,, and 25% of cell type A in dataset Xp), there will
necessarily be wrong assignments using this method. Ex-
act computation of optimal transport is furthermore com-
putationally expensive, of the order of O((n 4+ m)?®) which
makes it inefficient for large-scale problems (typically above
10* points). The Supplementary note contains an alternate
approximate and unbalanced formulation which provides a
good approximation of the solution at a more reasonable
cost, while also dealing with the class imbalance issue.

Independent component analysis

Independent component analysis (ICA) is a matrix factor-
ization (MF) approach where the signals captured by each
individual matrix factor are optimized to become as mutu-
ally independent as possible. ICA was shown to be a useful
tool for unraveling the complexity of cancer biology from
the analysis of different types of omics data. Such works
highlight the use of ICA in dimensionality reduction, de-
convolution, data pre-processing, meta-analysis, and others
applied to different data types (transcriptome, methylome,
proteome, single-cell data) (18).

In ICA we search for an approximation of the ob-
served probability density function P(x;, xz, .., X;) by
13(s1 , 82, ..., S,), where new s; variables are some linear com-
binations of the initial variables x;. We search for such lin-
ear transformation that P(sy, sz, ..., s,) deviates as little as
possible from the product of its marginal distributions P(s;)
x P(s2), .., P(s,) where the deviation is usually defined in
terms of information geometry (e.g., as Kullback—Leibler
divergence). It is shown that ICA is efficient in detecting and
correcting the batch effects in omics datasets (18).

ICA is not a data dimensionality reduction technique per
se: therefore, it is usually applied on top of reduced (e.g. by
standard PCA) and whitened representation of the initial
dataset. Therefore, the choice of the number of independent
components is an important hyperparameter (19). In the
simplest approach, the ICA solution represents a rotation
of the whitened data point cloud such that each normalized
coordinate deviates as much as possible from the standard
Gaussian distribution (20).

In our experiments, we used the stabilized version of ICA
(21) which is shown to be the optimal MF approach for
reproducible analysis of transcriptomic data (22). We ap-
plied it to cells labeled as T-cells from all datasets to prevent
dataset-specific cell type imbalance to bias the components.

Barycentric embedding and label transfer

Barycentric merging is the simplest merging to set up. It
works under three assumptions, (i) one batch X, is defined
as reference and all batches will be corrected towards it; (ii)
reference batch X, must be expressed in a feature space; (iii)
for every matching M, € R™*" every row must have at
least one nonzero element (HMS,I,L, ||0 = ny). Assumption
(1) is fulfilled by user choice and necessitates choosing a
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good quality batch with representative items within every
sample type. Reference choice always introduces a bias in
the integration, which should not be overlooked in the in-
terpretation of the results. Assumption (ii) is easy to verify
in practice, as datasets are often vectorized and represented
as n x d real-valued matrices. Assumption (iii) necessitates
the choice of a semicomplete matching, which maps every
sample from batch X; to at least one sample from batch
X,. Transportation-based matchings usually verify this as-
sumption, while nearest neighbors-based matchings usually
do not. Failing to verify assumption (iii) will cause non-
matched points to be projected to the 0 of X, feature space.

Let X; be a batch to correct with respect to the reference
batch X, given a semicomplete, row-normalized matching
matrix My,. For every sample x; € X;, the kth row a; =
M, ;. provides a weighting vector which assesses the likeli-
hood of x; corresponding to any sample of X,. Barycentric
merging F?2 will then project x; into X, feature space X,
so that

F)?,iy(xk) = arg fgl;? Z a; | X — XH? : @

i<n,

It is easy to show x; = Zisn,_ a; X, ; is the solution to this

problem. Therefore, F22"Y can be easily rewritten to project
the whole X; dataset onto X, given M, via

3 )Eﬁ\ya”(&) =M, X,. 3)

Barycentric merging has been used in several data inte-
gration pipelines such as Seurat (8), SCOT (9) and Pa-
mona (10), and generally yields good results, though there
are a few downsides to consider. First, choosing a ref-
erence introduces a high bias in the integration, and in
some applications, there may be no good option for refer-
ence; for instance, every batch could miss at least one sam-
ple class. The barycenter problem also intrinsically relies
on a metric. This is an issue for high dimensional prob-
lems, for instance in scRNA-seq datasets where the curse
of dimensionality is a real concern; in this case, barycen-
ter has little to no interpretable sense. A common solution
is to first reduce the dimensionality of X, using principal
component analysis or non-linear methods such as UMAP
(14) or MDE (15). One of the other uses of this method
is to use a matching computed in a different space than
the final embedding. Typically, one computes a matching
in a lower dimensional representation (e.g. PC space) but
uses total feature space for the embedding. This notably
allows obtaining corrected feature counts for all batches
with respect to a reference. Combined with a high-quality
matching and reference batch, barycenter merging can
nonetheless provide an efficient, high-quality integration
without necessitating batches to be originally in the same
space.

Label transfer was carried out in the integrated space
using a simple nearest-neighbors approach. We used the
scikit-learn implementation of a k-nearest neighbors clas-
sifier using k = 10 and Euclidean distance, and the majority
rule.

Single-cell RNA-seq datasets

We used public datasets to benchmark our framework and
compare its capabilities with other state-of-the-art integra-
tion pipelines. They were chosen to mimic various real-life
scenarios, with total dataset sizes in the tens of thousands.
All datasets contain RNA-seq data, acquired using 10x
technology.

e The Zhou databank was collected from (23) through the
Curated Cancer Cell Atlas (3CA) website and contains
osteosarcoma data from 11 different patients, ranging
from 866 to 14 322 cells for a total of 64 557 cells. Each
cell was annotated by the authors with a cell type among
chondrocyte, endothelial, fibroblast, mesenchymal stem
cell (MSC), myeloid, myoblast, osteoblast, osteoclast,
pericyte, T cell.

e The Chen databank was collected from (24) using the
3CA website and contains 61 870 nasopharyngeal cancer
single-cell RNA-seq data from 14 different patients, rang-
ing from 1087 to 11 210 cells. Each cell was annotated by
the authors with a cell type among B cell, endothelial, ep-
ithelial, macrophage, malignant, NK cell, plasma and T
cell.

Raw counts have been preprocessed following standard
guidelines using the scanpy python package (13). First, cells
with low gene counts or high mitochondrial gene expression
were filtered. Raw counts were then normalized to 10 000
per cell, followed by neighborhood pooling using 5 nearest
neighbors. Counts were then log (1 + x) transformed, and
for each dataset, the top 10 000 most variable genes were
kept. All these preprocessed annotated databanks can be
automatically downloaded through our framework, in or-
der to serve for benchmarking integration methods.

Retrieving cell cycle signal from scRNA-seq datasets

Raw counts for Ewing sarcoma cell lines datasets CHLAY,
CHLA10 and TC71 were obtained from (25). Raw counts
and annotations for the osteosarcoma U20S dataset were
obtained from (26). They were preprocessed according to
state-of-the-art guidelines. Raw counts per cell were nor-
malized to 10 000 to account for differences in global ex-
pression and were then log (1 + x) transformed; the top 10
000 variable genes were kept in each dataset. Data points
were eventually pooled to reduce noise, by setting every
cell counts vector to the average of its 5 nearest neighbors
(neighbors were determined using Euclidean distance in a
30-PC space). We used cell cycle genes identified in (27)
to characterize G1/S and G2/M signals. For fast cell cy-
cle datasets TC71 and U20S, we used only a subset of in-
formative G1/S genes which helped to retrieve a proper
circular signal (CDK1, UBE2C, TOP2A, TMPO, HJURP,
RRMI1,RAD51API, RRM2, CDC45, BLM, BRIP1, E2F8
and HIST2H2AC). Integration was carried out using full
gene space.

Benchmarking methods and parameters

All benchmarks have been run on a laptop equipped
with 32GB of RAM, an Intel CPU i7-10750H (12 cores)



processor at 5 GHz and an NVIDIA GPU GeForce GTX
1650 Ti Mobile.

e EmbedMNN was used on preprocessed counts with
transmorph v0.2.0, using default parameters: ‘bknn’
matching, 10 matching neighbors, 10 embedding neigh-
bors, UMAP optimizer and 2 dimensions.

e BKNNCorrection was used on preprocessed counts
with transmorph v0.2.0, using default parameters: ‘bknn’
matching, 30 matching neighbors, 10 linear correction
neighbors.

e TransportCorrection was used on preprocessed counts
with transmorph v0.2.0, using solver= “‘unbalanced’, en-
tropy_epsilon=0.02, unbalanced_reg=>5.

e Harmony was used with default parameters directly on
preprocessed counts using the rpy2 python interface. We
also tried the harmonypy python implementation, inter-
faced viascanpy. It successfully converged in under 10 it-
erations in both cases and produced comparable results.

e scvi was used on raw counts following the authors’ guide-
lines with n_layers=2 and n_latent=30, and was opti-
mized during 124 epochs (automatically chosen by the
software).

e We used the scanpy implementation of BBKNN on pre-
processed counts. We carried out BBKNN with default
parameters on a 50-PC representation of datasets using
default parameters, using neighbors_within_batch=3 and
10 annoy trees.

e Seurat was used in RStudio after converting AnnData
datasets to hS5seurat using the SeuratDisk package. We
carried out the integration using SelectIntegrationFea-
tures, FindIntegrationAnchors and IntegrateData with
default parameters. We were not able to complete the last
integration step despite our efforts due to memory usage
issues.

RESULTS

transmorph allows conceiving end-to-end data integration
models

Despite potentially achieving very good integration results
in specific use cases, we believe that existing data integra-
tion algorithms are flawed by their intrinsic rigidity. By con-
straining the user to a fixed algorithm, they tend to excel
in some use cases while struggling in others, as we show in
the next sections. Also, the lack of access to their internal
algorithms can make results difficult to interpret. Further-
more, these internal algorithms cannot be easily modified
when needed, notably when the user needs a particular out-
put type that the algorithm is not able to provide. For in-
stance, despite the fact is usually yields high-quality embed-
dings, the Harmony algorithm cannot perform data inte-
gration in gene expression space, which can be a downside
for the subsequent application of deconvolution methods
such as independent component analysis. Another issue we
can mention is the fact some matching paradigms are not
suited for certain datasets topologies, as we show in the last
subsection where nearest neighbors-based algorithms have
trouble matching cycling cells. Finally, some algorithms do
not scale as well as others to large datasets, which can dis-
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qualify certain tools from being applied in these situations,
such as optimal transport-based methods.

To address these limitations we present transmorph, a
novel and ambitious data integration framework. It features
a modular way to create data integration algorithms using
basic algorithmic and structural blocks, as well as analysis
tools including embedding quality assessment and plotting
functions. The framework also provides annotated, high
quality and ready-to-use datasets to benchmark algorithms
(Figure 1C). Finally, it is meant to be easily expansible by
allowing the user to define new algorithmic modules if nec-
essary. In this framework, data integration models can be
assembled by combining four classes of algorithms: trans-
formations, matchings, embeddings, and evaluators (Fig-
ure 1D, E, Table 1).

e Transformation algorithms take as input a set of datasets
and return a new representation for each of them, em-
bedded in some feature space (there can be one separate
feature space per dataset or one common feature space).
Transformations are generally used during preprocess-
ing: classic examples are PCA, neighborhood-based data
pooling, or common highly variable genes selection.

e Matching algorithms estimate a similarity measure be-
tween cells across datasets. They are the core compo-
nent of our integration framework, as their quality di-
rectly influences cell-cell proximity in the final embed-
ding. transmorph uses three main categories of matching:
(a) label-based matchings which require datasets to be
labeled beforehand and match items of a similar label;
(b) neighbor-based matchings which match items close
items with respect to some metric; (¢) transport-based
matchings which leverage a distance metric between items
within or across datasets to compute a similarity between
items relying on topological correspondence.

e Embedding algorithms are a particular class of transfor-
mations that take as additional input similarity relation-
ships between samples that were estimated via a match-
ing. They return an integrated view of all datasets jointly
embedded in a common feature space so that matched
items tend to be close to one another in the final repre-
sentation. The embedding step is in general the last step
in an integration model and is chosen depending on the
required output type. For instance, a joint embedding of
datasets in an abstract space suits applications like visual-
ization or clustering. At the same time, matrix factoriza-
tion algorithms often require the embedding to be per-
formed in an expressive feature space.

o Evaluation algorithms are quality control points that can
be added to a pipeline to test a condition. They are used
to either set a branching point that leads to different out-
comes or create an iterative structure within a model (‘re-
peat until the integrated representation satisfies this prop-
erty’). This strategy is notably used within the Harmony
algorithm, where an iterative clustering and correction
procedure is applied until an integration metric (Local
Inverse Simpson’s Index in this case) is considered sat-
isfactory.

This expressive framework allows the building of com-
plex data integration models suited for many applications
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Figure 1. Transmorph is a framework for scRNA-seq data integration. (A) Schematic representation of the data integration problem. (B) Transmorph
integration models conduct data integration of scRNA-seq datasets. Once the integration has been performed, cells cluster by type or state instead of
origin. (C) Transmorph global package architecture, featuring internal and external models, benchmarking scRNA-seq databanks, and analysis tools. (D)
Architecture of the model API, which allows engineering new data integration models using basic building blocks. (E) Directed compatibility chart of the
model API modules, with arrows indicating how algorithms can be articulated within transmorph pipelines.

with high computational efficiency and integration quality
because each algorithmic module can be optimized inde-
pendently. It also provides an objective comparison between
algorithmic modules for a given application. Finally, it is
supported by a sound software ecosystem with benchmark-
ing databanks, pre-built models, and post-analysis tools,
which allows one to carry out data integration within a
scRNA-seq analysis workflow efficiently. Our framework is
provided as an open-source Python package, and the fol-
lowing results showcase its capabilities to solve various chal-
lenging real-life problems of single-cell RNA-seq data in-
tegration while being on par with existing tools in terms
of performance. It has been developed to be easily used in
notebook environments, with a strong focus on computa-
tional efficiency so that models can be run on small ma-
chines in a few minutes, even in applications involving tens
of thousands of cells and more than ten different datasets
and cell types.

Transmorph models perform on par with other state-of-the-
art tools

We will first present how the transmorph framework can
be used to create data integration models able to com-
pute a low dimensional joint embedding of two or more
datasets so that similar cells end up close to one another
independently from their source. This type of task is typ-

ically used for visual data exploration or as a preprocess-
ing step before carrying out a clustering algorithm, allow-
ing clusters to only depend on cell type rather than on
the original batch (Figure 2A). A good joint dataset em-
bedding algorithm should be able to function in a fully
unsupervised fashion while being improved by additional
labeling information, and should not require choosing a
reference dataset as this induces an important bias. Ide-
ally, it should also be able to tackle the joint embed-
ding of more than two datasets simultaneously, with rea-
sonable computational efficiency. We built a transmorph
model for this application, called Embed MNN, described
in (Figure 2B). EmbedMNN is conceptually inspired by
CONOS (7), and starts with a few preprocessing steps (nor-
malizations and dimensionality reduction). It then com-
bines a nearest neighbors-based joint graph construction
step with a low dimensional graph construction, followed
by an embedding step using either UMAP (14) or mini-
mum distortion embedding (MDE) (15). This allows Em-
bedMNN to work without requiring a reference and with
datasets of various topologies, and to output an embed-
ding in a latent space that will be exploitable for cluster-
ing and visualization. Furthermore, EmbedMNN can work
either in a fully unsupervised fashion or can take into ac-
count label information to prune matching edges between
samples of different labels; we test both variants in this
application.
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Table 1.  Presentation of the main algorithmic modules available in the transmorph framework that can be used to build data integration pipelines. A
brief explanation is given for each of them, additional information as well as algorithm parameters are available in the Materials and Methods section and

in the transmorph documentation

Transformations

Matchings

Embeddings

Models

Common Features: Selects
and orders common genes
between either all datasets or
pairs of datasets.

Standardization: Normalize
expression values per gene or
per cell in order to improve
the quality of geometric
methods.

Pooling: Pools each cell
vector towards an average of
its neighbors to reduce the
effect of outliers.

PCA: Linearly projects cell
vectors into a
variance-preserving, low
dimensional basis to reduce
the curse of dimensionality
effect.

ICA: Linarly projects cell
vectors into a low
dimensional basis of
statistically independent
vectors to reduce the curse of
dimensionality effect.

KNN: Matches nearest
neighbors of each cell across
batches.

MNN: Matches cells that
mutually belong to the nearest
neighbors of the other across
batches.

Optimal Transport: Matches
cells across datasets using an
optimal transport approach,
with each dataset viewed as a
mixture of Dirac distributions.
This algorithm performs best
when datasets topologies are
similar, and penalizes
translations, scaling and
rotations.

Gromov-Wasserstein: Matches
cells across datasets using a
Gromov-Wasserstein

algorithm which only accounts

for data topology, without
penalizing isometric
transformations.

Fused Gromov-Wasserstein:
Matches cells across datasets
using a linear mixture of
optimal transport and
Gromov—Wasserstein in order

to balance the penalty between

geometry and topology.
Combined: Combines several
matchings into a single one.

Barycenter: Projects each cell in
a query dataset to the average
value of its matches in a
reference batch that must be
specified by the user. This
embedding can produce a result
in gene space, that can then be
treated as scRNA-seq data. It
necessitates that all cells in the
query dataset have a match.

Graph Embedding: Links cells
from all datasets into a single
common weighted graph. This
weighted graph is then
embedded in a space whose
dimensionality is chosen by the
user, a space that is used as this
module’s output. Due to the
nonlinearity of this approach,
the final representation can be
used for clustering or other
topological analyses.
LinearCorrection: Computes
correction vectors from cells in
the query dataset and their
match in the reference dataset.
Unmatched cells are then
attributed to a mixture of
vectors of the nearest matched
cells. All cells are eventually
translated according to the
correction vector that has been
computed.

TransportCorrection Takes as
input two or more scRNA-seq
datasets, with one chosen as an
alignment reference. It computes
optimal transport between each
dataset and the reference. It then
uses the barycentric embedding
to align each dataset to the
reference and can output the
result either in PC space or in
gene expression space.
EmbedMNN: Takes as input two
or more scCRNA-seq datasets,
without requiring a reference to
be specified. Cells are matched
using a nearest neighbor scheme
chosen by the user (KNN or
MNN), and are organized
within a joint weighted graph
whose specification is described
in Material and Methods. This
graph is finally embedded using
UMAP or MDE.
MNNCorrection: Takes as input
two or more scRNA-seq
datasets, with one chosen as an
alignment reference. Cells are
matched using the nearest
neighbor scheme chosen by the
user (KNN or MNN). It then
uses a linear correction module
to align cells from each query
dataset onto the reference one.

Even though transmorph is not a data integration al-
gorithm per se, but rather a framework to conceive data
integration methods, we decided to benchmark the Em-
bedMNN model against other state-of-the-art horizontal
integration algorithms. For this benchmark, we selected
three algorithms designed to solve the joint embedding
problem: Harmony (3), which uses a clustering-driven, it-
erative strategy to optimize the embedded representation.
scvi (11), a deep learning framework that uses variational
autoencoders to compute a latent integrated representa-
tion of datasets. BBKNN (5), which builds a weighted joint
graph of datasets together using a batch-balanced variant
of k-nearest neighbors. We embedded Harmony, scvi latent

representation, and BBKNN results into a 2D space using
UMAP (14) so that all methods’ output space is compara-
ble.

The benchmarking databank consists of 11 single-cell
osteosarcoma datasets gathered from (23), containing ap-
proximately 65 000 cells in total, annotated by the authors
with ten different cell types (Figure 2A, Supplementary
Figure S1A). We will use this author’s annotation as the
‘ground truth’ for this application and measure how the dif-
ferent methods deviate from it. This use case is quite chal-
lenging due to dataset size, number of batches, and num-
ber of classes, but it illustrates a reasonable real-life use
case of data integration. Integration performance can be
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Figure 2. Integration of 11 osteosarcoma scRNA-seq datasets (n = 64 557) from different patients. (A) Initial UMAP representation of the osteosarcoma
datasets in their common genes space. (B) Architecture of the pre-built EmbedMNN integration model, computational modules are executed from left to
right and from top to bottom. (C) Integration results with the supervised version of EmbedMNN. (D) Integration results with the unsupervised version
of EmbedMNN. (E) LISI-batch score of various integration algorithms (higher is better), mean is marked. (F) LISI-class score of various integration
algorithms (lower is better), mean is marked. (G) Execution time of various integration algorithms.

objectively measured through four integration metrics: set
and class mixing using a lightened version of local inverse
Simpson’s index (LISI) introduced in Harmony, clustering
specificity using Louvain or Leiden community detection
algorithm (28,29), and computation time. It is to note that
Harmony directly uses batch-LISI as a stopping criterion
during its optimization procedure, so we have to expect it
to have superior batch-LISI scores.

All methods could compute the integrated embedding
in a reasonable amount of time given the number of data
points (Figure 2G, Supplementary Figure S1), with the best
performer being BBKNN + UMAP with 1minl0s, taking
advantage of the highly optimized C++ nearest neighbors

approximation library annoy. Both supervised and unsuper-
vised versions of EmbedMNN algorithms could finish in
under 5 minutes. At the same time, Harmony took Smin30s
plus an extra 30s of UMAP computation to obtain a 2D
embedding. scvi was the longest to complete, with around
10 minutes in total, but in all fairness, the minimum loss
seemed to be reached between the 2 and 3 min mark.
Computed joint representations were reasonable overall
for all methods, with effective batch mixing and cell type
clustering (Figure 2C, D, Supplementary Figure S2A, B).
Nonetheless, no method achieved both excellent batch mix-
ing and cell type separation, which is to be expected on
such complex datasets (a large number of cells, patients, and



cell types). Unsurprisingly, the supervised version of Em-
bedMNN outperformed all other methods by a large mar-
gin both in terms of local cell types homogeneity and clus-
tering purity (Figure 2F, Supplementary Figure S2C, D),
with a very low LISI-class score for all cell types and a near-
100% cluster purity, as it leveraged complete label informa-
tion. This allowed it to prune edges between cells of differ-
ent types during the matching step, which resulted in a very
clean cells graph to embed. On the other hand, supervised
EmbedMNN is associated with inferior batch mixing (Fig-
ure 2E), and more explicit cluster delimitation after integra-
tion which can be an obstacle for some trajectory inference
algorithms. The unsupervised version of EmbedMNN ap-
pears to be on par with the other methods, with good LISI-
class and LISI-batch scores (Figure 2E, F) and good clus-
tering purity (Supplementary Figure S2C, D).

Overall, this shows that transmorph provides a frame-
work capable of creating data integration models of suf-
ficient quality to tackle joint dataset integration of chal-
lenging scRNA-seq datasets in terms of computational ef-
ficiency and integration quality. In the next section, we will
show that its modularity allows the user to modify a trans-
morph model to change its output space (from an abstract
space to a gene expression space), which is not possible to
our knowledge with the other tools presented in this first
scenario.

Performing integration in gene space by using an appropriate
embedding

In some applications, providing a joint embedding of
datasets into an abstract space is not suited, as original fea-
tures (i.e. genes) do carry important information for out-
put interpretability. This is for instance the case when per-
forming matrix factorization algorithms such as indepen-
dent component analysis (ICA) or non-negative matrix fac-
torization (NMF), or when annotating cells with appropri-
ate cell types. In this case, it is necessary to perform the inte-
gration directly within gene space, which brings some tech-
nical difficulties. Notably, gene spaces are often very large
which is detrimental to the scalability of distance-based al-
gorithms due to the curse of dimensionality. In this scenario,
EmbedMNN, Harmony or BBKNN are not adapted, as
they are unable to return their output in full gene space.
This would normally imply we need to find another integra-
tion tool to carry out the integration in gene space, which
would come with important time costs (package installa-
tion, data processing, workflow adaptation...). In this exam-
ple, we demonstrate how the modular nature of the trans-
morph library can instead provide a way to adapt an ex-
isting model to suit a new application easily. We first iden-
tify that the embedding step of EmbedMNN is by design
not adapted to a full gene space application. To tackle this
limitation, we can swap this module for something more
adapted like a linear correction step in gene space (Fig-
ure 3A), which instead leverages correction vectors in a sim-
ilar fashion to what is used within the MNN (4) and Seurat
(8) tools, and can handle the property of neighbor-based
matchings that do not provide a match to every cell from
the query dataset. Given a reference dataset, the linear cor-
rection approach consists in first, finding some matchings
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between query and reference items, then computing cor-
rection vectors from these queries to their references, to fi-
nally propagating these correction vectors along the query
dataset to end up with corrected profiles. This last step al-
lows for the alignment of query cells that have no match in
the reference dataset. Furthermore, contrarily to graph em-
bedding, linear correction step can be carried out in gene
space to obtain a gene expression matrix as output. This
makes it a natural choice for this application.

We use 14 nasopharyngeal carcinoma datasets gathered
from (30) to benchmark the strategy (Figure 3B, Supple-
mentary Figure S1B). The goal is to embed these datasets in
the space defined as the intersection of their common most
variable genes so that cells sharing the same annotation end
up in close proximity after integration. This is once again
a challenging task as the datasets are quite large (>60 000
cells to embed), there are eight different cell annotations,
some datasets do not contain cells from all types, and the
embedding space is large for a geometrical approach (=900
genes). To measure integration quality from another angle,
we carry out ICA on T-cells from all datasets, which al-
lows us to observe dataset-specific gene expression signals
without the bias of cell type imbalance between datasets.
As we can see, before integration the dataset-specific signal
appears to be strongly correlated with several independent
components (ICs) computed by ICA (Figure 3F, top).

BKNNCorrection completes in a very reasonable time of
1 minute and 33 seconds and provides a convincing correc-
tion (Figure 3B) by being associated with great improve-
ments in LISI-batch (Figure 3C, top) while maintaining low
levels of LISI-class [Figure 3C, bottom]. We were not able to
successfully carry out Seurat integration on these datasets in
a reasonable time and memory usage on this dataset using
our machine. Overall, this showcases how transmorph pro-
vides a new way to easily tweak models, allowing them to
tackle different scenarios with good efficiency and integra-
tion quality. We also eventually ensure most of the dataset-
specific signal has disappeared after integration (Figure 3F,
bottom), resulting in a weak correlation with any of the ICs
recomputed by ICA on the integrated dataset. This is a de-
sired property for subsequent accurate interpretation of the
independent components through, for example, functional
enrichment analysis.

Gene space integration can be leveraged to annotate cell types
reliably

Gene space integration can be leveraged in a very natural
way to perform cell type annotation. As integration out-
puts new gene counts for each cell, these new molecular
profiles can be used within the integration space to perform
clustering and cell type annotation via differential gene ex-
pression analysis. These newly found annotations can be
expected to be more precise than annotations performed
on each dataset individually and can allow rarer cell types
to be identified with high statistical confidence. In partic-
ular, most cell type annotation strategies rely on prior cell
clustering to label each cluster with a cell type according
to marker genes. Frequently, rare cell types do not form a
separate cluster in the original datasets due to their lim-
ited population size, while they should constitute a larger
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cluster once datasets have been integrated together. Newly
found annotations can eventually be mapped back to the in-
dividual datasets. We will use this methodology to improve
annotations found in the previously used nasopharyngeal
carcinoma scRNA-seq datasets.

We performed a clustering of datasets integrated into the
space of their common genes and performed a differen-
tial gene expression on these clusters (Supplementary Fig-
ure S3A, B). We then determined cell types by combin-
ing initial annotations, well-known marker genes as well
as PanglaoDB (31). Doing so allowed us to confidently

annotate 13 different cell types, greatly refining initial an-
notations (Figure 3B, D). Comparing old and new anno-
tations for each cell shows most annotations have been
made more precise rather than corrected (Supplementary
Figure 3C), notably splitting the ‘T cell’ label into the
various lymphoid lineage-associated labels ‘T-naive’, ‘T-
CD4+’, ‘T-CD8+’, ‘T-memory’ and “T-proliferating’, and
the ‘macrophage’ label into the myeloid lineage-associated
labels ‘macrophages’ and ‘dendritic cells’. The only differ-
ent annotations were among ‘epithelial’, ‘endothelial’ and
‘malignant’, which is to be expected as nasopharyngeal



carcinomas are endothelial tumors, making these types
hard to strictly separate. All the annotations were eventually
be mapped back into the original datasets (Figure 3E, Sup-
plementary Figure S5A, B), and convincingly annotated
clusters that can be seen in exploratory data analysis. This
notably allowed the identification of a very small subpopu-
lation of dendritic cells notably characterized by the expres-
sion of CCR7 and CCLEYA genes as well as proliferating T
lymphocytes, expressing high levels of proliferation mark-
ers like MKI67 and PCNA. These subpopulations were too
rare in each dataset to form a distinct cluster, which explains
why they could not be annotated initially. It is to note that
the CD4 gene was not highly variable within all datasets
and therefore it was missing in the integrated gene space. We
validated the LT-CD4+ cluster by checking the CD4 expres-
sion in datasets in which the gene is present (Supplementary
Figure S4). This application shows how the output of trans-
morph gene space models can be used to improve cell type
annotations by integrating several datasets directly in gene
space.

Transferring cell cycle phase annotations across osteosar-
coma and Ewing sarcoma datasets

Cell cycle is one of the most fundamental biological pro-
cesses through which biological cells grow and divide, but
is yet to be fully understood. Single-cell transcriptomics of-
fers great insight into its properties and dynamics, as gene
expression regulation is a key factor for cell cycle progres-
sion. Gene expression modulation during the cell cycle can
be visualized and interpreted by looking at the so-called cell
cycle plots. In these plots, each cell is reduced to a small
set of coordinates (typically between 2 and 4 (32)), each of
those corresponding to the average transcription activity of
genes associated with a specific cell cycle signal (e.g. G1/S
phase, G2/M phase, histones) (Figure 4A). In this config-
uration, cells revolve along a one-dimensional cyclic trajec-
tory throughout their progression in the cell cycle. Studying
the geometry of these trajectories and cell distribution along
them can provide exquisite insight into cell cycle speed, cell
growth, or even eventual cell cycle arrest.

A challenging question when studying the cell cycle at
the single-cell level is the automatic annotation of cells with
cell cycle phases. Some phases like mitosis can be accu-
rately identified by looking at markers such as the total
number of raw counts which drops by a factor of two af-
ter cell division, but other phases are fuzzier, especially for
lower-quality datasets, or fast-cycling cell types. Annotation
of scRNA-seq data with cell cycle phases was studied ex-
perimentally in (26), where the authors used genetic con-
structs to follow the abundance of key cell cycle proteins
which they can then relate to cell cycle phases, but doing so
comes with important costs and experimenter time; a natu-
ral idea would be to transfer labels from datasets annotated
using this methodology to other unlabeled ones. Unfortu-
nately, this is not as easy as it seems: differences in prepro-
cessing, cell types, and cell cycle properties can quite drasti-
cally affect a dataset topology and geometry, making many
proximity-based methods irrelevant. A natural label trans-
fer strategy can be pictured as follows (Figure 4B). First,
we carry out data integration of all datasets into a common
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embedding space. Then, we predict cell cycle labels of un-
labeled datasets in this common space using a supervised
learning approach. Finally, the learned labels can be trans-
ferred back to the original representations to be interpreted.
In this experiment, we seek to automatically anno-
tate three single-cell RNA-seq Ewing sarcoma datasets
(CHLA9, CHLA10, and TC71) gathered from (25) (Fig-
ure 4A, Supplementary Figure S1C). To do so, we trans-
fer the cell cycle phase using the author-provided annota-
tions contained in an osteosarcoma dataset (U20S) gath-
ered from (26), onto the three Ewing sarcoma datasets. Pre-
processing differences, geometrical specificities and appar-
ent S/G2M label mixing within the U20S reference dataset
are tough difficulties to overcome both for integration and
label transfer methods. We first perform the integration us-
ing BKNNCorrection, setting CHLA10 as the reference
dataset considering its good quality and representativity
(cells are scattered uniformly around the trajectory, and the
central ‘hole’ is well resolved). Unfortunately, predicted cell
cycle labels are not satisfying (Supplementary Figure S6):
post-mitotic cells are associated with the G2/M label, S-
phase is labeled too late on the trajectory, and some carly
G1 cells are labeled as S. This disappointing performance
may be caused by a lack of orthogonality between cell cycle
factors and batch effects. This is a crucial hypothesis for all
neighbors-based dataset integration, not satisfying it results
in a poor matching quality making integration unreliable.
This motivates the need to seek a more appropriate
matching algorithm for this situation. We choose here a
transportation-based matching, which is robust for appli-
cations where information is contained in data topology. It
relies on discrete optimal transport that has been brought
into the scRNA-seq field a few years ago in (17), which
can be pictured as looking for the most economical way
to move mass in a metric space from a point cloud onto
another. This class of problems yields a natural and har-
monious way to match cells across batches, by operating at
the dataset level instead of operating at the cell level like in
MNN. We can use the transmorph pre-built model Trans-
portCorrection inspired from SCOT (9) and Pamona (10),
which consists of a few preprocessing steps followed by a
transport-based matching, used to project every query item
onto the barycenter of its matches (Figure 4C). In this case,
we had to use the unbalanced formulation of optimal trans-
port (16,33) to account for cell cycle phase imbalance be-
tween ‘standard’ and ‘fast’ cell cycle datasets; this variant
is also implemented in our framework. Label transfer us-
ing this model instead of BKNNCorrection yields much
better labeling, entirely interpretable and in line with the
patterns we expect for the ‘standard’ and ‘fast’ cell cycle
(Figure 4D, Supplementary Figure S7A, B). We see mito-
sis point is now well identified by the automatic annotation,
and S-phase labels are better located. Differential gene ex-
pression between the different identified labels yields well-
known cell cycle genes specific to each phase, showing ac-
curate annotation (Figure 4E, Supplementary Figure S7C).
Among these genes we notably see a few well-known ones
appear in all profiles such as the TOP2A gene which is as-
sociated with the G2/M phases, PCNA with the S phase,
and CDC20 with the G1 phase. Therefore in this scenario,
the transportation-based matching was clearly better suited
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Figure 4. Transferring cell cycle phase annotations between osteosarcoma (U20S, TC71) and Ewing sarcoma (CHLA9, CHLA10) scRNA-seq datasets.
(A) Visualizing the cell cycle loop of each dataset, approximate positions of cell cycle phases are annotated. U20S annotations are provided by the authors,
other datasets are colored according to the number of read counts. (B) Schematic strategy for the data integration-based label transfer. (C) Architecture
of the TransportCorrection pre-built integration model performing integration in gene space. Computational modules are executed from left to right and
from top to bottom. (D) Automatically transferred annotations using the TransportCorrection model. (E) Differential gene expression was performed
using a Wilcoxon rank-sum test, showing the most specific genes associated with cells of each label.

than the nearest neighbors-based one and allowed an ac-
curate cell cycle label transfer. This shows how important
choosing the right matching can be, and how transmorph
addresses it.

DISCUSSION

Horizontal data integration and batch effect correction are
key computational challenges, especially in computational
biology to be able to properly analyze single-cell data from
different batches or patients (1). We identified the need for
modular methods to tackle this problem, and demonstrated
the necessity to carefully combine trustworthy cell-cell sim-

ilarity algorithms with relevant embedding algorithms. We
also clearly showed how deceiving data integration can be
when carried out improperly, which can be extremely detri-
mental to subsequent analyses. This alone motivates the
need for more modular tools, where every algorithmic step
can be controlled if necessary. To address this need and
instead of introducing yet another data integration tech-
nique we present transmorph, a novel modular computa-
tional framework for data integration, implemented as an
open-source python library. We provided a robust imple-
mentation for it and demonstrated its value through various
real-life applications both in terms of efficiency, quality and
versatility. We would like to highlight that EmbedMNN and



TransportCorrection models represent original and previ-
ously not proposed combinations of base algorithms that
were connected into complete data integration methods, us-
ing transmorph as a toolbox for fast building and testing
of data integration models. Furthermore, these pre-built
models can easily be transformed into to a combinatorial
number of alternative models by changing their construc-
tor parameters (preprocessing steps, matching type, optimal
transport flavor, supervised or unsupervised behavior, gene
space output, or linear subspace output).

If transmorph is an expressive data integration frame-
work that provides a way to articulate multiple algorith-
mic modules together in order to shape data integration
pipelines, there still exists some expressiveness limitations
to overcome. In particular, if trained deep learning mod-
els such as deep autoencoders (DAE) can be used as cus-
tom transformation modules, transmorph does not provide
a way to either train or fine-tune them without relying
on external libraries. For this reason, we think it is use-
ful to mention the development of some recent DAE-based
data integration algorithms, that use different approaches
to couple several algorithmic paradigms such as Uniport
(34) and MATHCLOT (35) that combine DAE and op-
timal transport, or SMILE (36) that replaces the decoder
part by an information-based evaluator. Even if these dif-
ferent tools do not provide as much modularity as trans-
morph to deal with very different biological applications
of horizontal data integration, they are certainly better
suited for cases necessitating higher levels of abstraction
such as cross-modality (vertical, diagonal, and mosaic) data
integration.

We provide via transmorph several pre-built integration
models ready to be used in daily workflows, with high effi-
ciency and integration quality. For more advanced and spe-
cific applications, our framework also allows building inte-
gration models from scratch by combining a variety of al-
gorithmic modules, all of which are implemented and op-
timized inside our library. We eventually provide complete
interfaces which allow users to implement their own com-
putational modules if they need to. All this is endowed with
arich software ecosystem including benchmarking datasets,
integration metrics, monitoring, and plotting tools as well
as interfaces with other state-of-the-art data integration
tools like Harmony (3) and scvi (37).

We plan to continue maintaining transmorph in the fu-
ture, in order to keep it up to speed with the ever-growing
field of data integration methods. We will continue expand-
ing it with new algorithms, either already existing or to
come. We also would also like to add more support for ver-
tical and diagonal integration, as for now the only diago-
nal matching is based on Gromov-Wasserstein which has
an impractical computational time scaling to the size of
current data integration problems. For instance, we plan to
use gene space transformation to deal with specific verti-
cal integration cases such as integration between RNA-seq
and ATAC-seq data. We would eventually like to add do-
main adaptation methods to our framework (for instance
by including supervised PCA (38) or domain adaptation
PCA (39) to our preprocessing steps), in order to tighten the
bridge towards this growing research field which presents
many similarities with data integration.
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There are still crucial questions to be answered in order
to provide trustable data integration methods, especially in
single-cell biology. Among these questions are the definition
of relevant metrics to measure dissimilarity between cells
(even more importantly across different domains), the re-
search of sound and unbiased ways to measure integration
quality, and the necessity to continue to carry out exhaus-
tive benchmarks to identify the most appropriate data inte-
gration methods and algorithms for a given use case.

DATA AVAILABILITY

transmorph ~ framework is  available at  https:
/[github.com/Risitop/transmorph (permanent
doi:10.5281/zenodo.8081763), and can also be down-
loaded from the PyPi repository (version 0.2.6 at the time
of writing). Datasets can be directly downloaded from the
package, and scripts to generate figures can be found on
the package’s GitHub, in the ‘reproducibility’ folder.

SUPPLEMENTARY DATA
Supplementary Data are available at NARGAB Online.
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