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BSTRACT 

ata integration of single-cell RNA-seq (scRNA-seq) 
ata describes the task of embedding datasets gath- 
red from different sources or experiments into a 

ommon representation so that cells with similar 
ypes or states are embedded close to one another 
ndependently from their dataset of origin. Data inte- 
ration is a crucial step in most scRNA-seq data anal- 
sis pipelines involving multiple batches. It improves 

ata visualization, batc h eff ect reduction, clustering, 
abel transfer, and cell type inference. Many data in- 
egration tools have been proposed during the last 
ecade, but a surge in the number of these methods 

as made it difficult to pick one for a given use case. 
urthermore, these tools are pr o vided as rigid pieces 

f software, making it hard to adapt them to various 

pecific scenarios. In order to address both of these 

ssues at once, we introduce the transmorph frame- 
ork. It allows the user to engineer powerful data 

ntegration pipelines and is supported by a rich soft- 
are ecosystem. We demonstrate transmorph use- 

ulness by solving a variety of practical challenges 

n scRNA-seq datasets including joint datasets em- 
edding, gene space integration, and transfer of cy- 
le phase annotations. transmorph is provided as an 

pen source python package. 
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RAPHICAL ABSTRACT 

NTRODUCTION 

a tch ef fects occur in most applica tions involving da tasets 
athered across multiple sources or experiments, and de- 
cribe strong dataset-specific signals which are often irrel- 
vant to the studied biological questions. Data integration 

s a computational paradigm aiming to learn a joint em- 
edding of datasets in which ba tch ef fects ar e r egr essed out
Figure 1A), meaning only dataset-independent factors are 
xpressed. The idea is to combine information contained 

n se v eral datasets, each of those being supposedly biased 

y its own specific batch effects. We focus here on the so- 
alled horizontal data integration ( 1 ) which seeks to integrate 
atasets obtained within the same domain with overlapping 

eature spaces. This is different from vertical and diagonal 
ata integration where cells are measured in different do- 
ains, also known as multi-le v el or multi-omics data inte- 

ration. This scenario involves specific strategies and algo- 
ithms which are beyond the scope of this project (see for 
nstance ( 2 )). 
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Da ta integra tion is an important preprocessing step for
applications involving se v eral datasets. In some cases, ap-
proaches as simple as centering and normalization / scaling
of features may suffice, but more complex batch effects often
r equir e mor e subtle, dedica ted algorithms to be sa tisfacto-
rily removed. Data integration can serve various purposes.
The most common usage is to embed items from all datasets
into a joint low dimensional space like in Harmony ( 3 ),
which can then be used to carry out various techniques such
as clustering, label transfer, or visualization. Another use
case is to directly perform integration in gene space like in
the mutual nearest neighbors (MNN) method ( 4 ) so that al-
gorithms needing interpretable features such as matrix fac-
torization methods can be used. Finally, integration can be
carried out without embedding data points into an explicit
feature space, for instance by outputting a joint graph of
cells across datasets like in BBKNN (batch balanced k near-
est neighbours)( 5 ). 

Da ta integra tion finds particularl y important a pplica-
tions in single-cell biology. Starting with a biological tis-
sue, a single-cell dataset is generated and contains individ-
ual molecular measurements (for instance gene expression,
SNPs, or chromatin accessibility) about single cells of the
tissue. The strength of single-cell analysis is its ability to
both provide an insight into intrinsic cell state, while also
giving access to population-level information that can for
instance be used to estimate cell types distribution within
a tissue, which makes this technology extremely relevant
for analyzing patient samples in medicine. Due to genetic
and environmental differences between individuals, batch
effects are very prone to appear when dealing with single-
cell datasets coming from different patients. The intertwin-
ing of batch-dependent and batch-independent factors is
ther efor e an obstacle to the analysis of large comprehensi v e
datasets built by aggregating data from different individu-
als, notabl y w hen building cell atlases (see for instance ( 6 )).
Da ta integra tion is consequentl y a necessary technolo gy to
de v elop in order to mitigate dataset-specific signals while
pr eserving r elevant biological signals proper to the system
of interest. 

Many approaches have been proposed over the last
decade to tackle da ta integra tion in single-cell, resorting to
a variety of algorithmic strategies. The most widely used
software today is probably Harmony ( 3 ), which iterati v ely
clusters and corrects cell measurements in a low dimen-
sional space to achie v e integration. Other methods such as
mutual nearest neighbors ( 4 ), CONOS ( 7 ), Seurat ( 8 ) and
BBKNN ( 5 ) work under the hypothesis tha t ba tch ef fects
are almost orthogonal to biological effects. Under this as-
sumption, they use nearest neighbors-like algorithms across
datasets as a measure of cell–cell similarity. Other data in-
tegration methods like SCOT ( 9 ) and Pamona ( 10 ) use op-
timal transport-based algorithms to estimate cell-cell simi-
larity, assuming the existence of similar manifolds support-
ing datasets containing cells of the same type. Finally, vari-
ational autoencoders (VAEs) and other neural network-
based tools like scvi ( 11 ) have been proposed, which use
VAEs to directly learn dataset embeddings inside a joint la-
tent space. 

As aforementioned, integration of single-cell RNA-seq
data has been a prolific topic for the last decade, and dozens
of methods still appear each year in the literature ( 1 ). We
belie v e this surge of methods comes with an urgent need
for organiza tion, classifica tion, and large-scale benchmarks
(see for instance ( 12 )) of both (a) end-to-end data integra-
tion pipelines, in order to guide the computational biolo-
gists that need to a ppl y da ta integra tion to their r esear ch
projects, and (b) algorithms, to guide methodologists who
concei v e ne w da ta integra tion methods. For this reason we
introduce transmorph , an intuiti v e computational frame-
work that aims to decompose data integration methods into
basic algorithmic units that can be freely rewired to make
emerge new data integration pipelines. These units can ei-
ther be extracted from the literature, such as a nearest neigh-
bors search or a PCA projection, or can be customized
at will by the user. This flexibility allows scientists to har-
ness integration methods adapted to the specificities of their
data, for instance by choosing an output algorithm that pro-
duces an integration directly in gene space, or by selecting a
ma tching algorithm tha t takes da ta topology into account,
such as optimal transport (Figure 1B). 

In addition, transmorph is endowed with other features
tha t facilita te its integra tion within real-life workflows of
scRN A-seq data anal ysis (Figure 1C). It is fully compat-
ible with the standard scRNA-seq library scanpy ( 13 ) as
they handle the same type of objects, is interfaced with
other first-class data integration tools such as Harmony ( 3 )
and scvi ( 11 ), and contains se v eral annotated scRNA-seq
datasets as well as standard quality assessment metrics and
plotting functions to validate data integration algorithms.
Finally, a comprehensi v e model API is availab le to allow
the user to implement their own algorithmic units, using
an object-oriented specification (Figure 1D). For these rea-
sons, we think transmorph is both an original and a power-
ful asset to design, a ppl y, and benchmark data integration
methods. 

MATERIALS AND METHODS 

transmorph implementation and algorithms 

The transmorph frame wor k is provided as an open-source
Python package and can be downloaded from the PyPi
package repository. The following par agr aphs describe al-
gorithms and r esour ces that are either original or key to
understanding all the results. Additional methods can be
found in the supplementary note. 

Local inverse Simpson’s index 

Local inverse Simpson’s index (LISI) is an objective inte-
gration metric introduced in Harmony ( 3 ), which assesses
neighborhood heterogeneity of a data point in terms of a
gi v en label. Simpson’s di v ersity inde x is a di v ersity metric
notably used in ecology to measure class di v ersity in a set
of objects by computing the probability for two randomly
selected items to share the same class. For any set of ob-
jects S = { x i } i ≤ n endowed with labels y i ∈ L , we denote by
n l for l ∈ L the number of samples in S with label l . Then,
Simpson’s index of set S is given by 

D L ( S) = 

∑ 

l∈ L 

(
n l 

n 

)2 

. (1)
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or k > 0 a perplexity parameter (we use k = 90) and x
n embedded point, we compute its k -nearest neighbors k - 
n( x ) which is used as set S . LISI L ( x, k) = D L ( k -nn ( x)) −1 

s defined as the inverse of Simpson’s index and estimates, 
or a gi v en embedded point x , label di v ersity in its k -nearest
eighborhood. As suggested in Harmony, we can use LISI 

n two modes: 

Batch-LISI, where points are labeled by their initial 
batch. This metric measures local batch di v ersity in em- 
bedding, higher di v ersity meaning higher batch mixing. 
Class-LISI, where points are labeled by their class. This 
metric measures local class di v ersity in the embedding, 
lower di v ersity meaning low er mixing betw een cell types. 

Monitoring these two values allows objecti v e comparison 

f different integration pipelines, ideally increasing batch- 
ISI while avoiding increasing class-LISI. 

raph embedding algorithm 

oint graph embedding is an algorithm able to build a joint 
eighted graph of cells from all batches, where two cells are 

inked together if they appear to be similar. This graph is 
eighted according to a UMAP-like methodology, mean- 

ng it can be embedded in a low dimensional space using 

MAP ( 14 ) or MDE ( 15 ) optimizers. The joint embedding 

lgorithm consists of four major steps. More details can be 
ound in the Supplementary note. 

1) For each dataset, compute the k -nn graph of its cells 
weighted according to UMAP membership methodol- 
ogy. 

2) For each pair of batches, weight matching edges accord- 
ing to UMAP membership methodology. 

3) Build a joint graph combining edges of steps 1 and 2, 
and filter edges so that only the most heavily weighted 

ones are kept. 
4) Embed the joint graph into an abstract feature space 

using a graph embedding optimizer such as UMAP or 
MDE. 

iscrete optimal transport 

iscrete optimal transport (OT) problem can be naturally 

ictured as follows ( 16 ). Assuming a set of n warehouses 
ontaining goods to deli v er to m factories, the optimal 
ransport problem consists in finding the cheapest way to 

ransport all goods to factories knowing the cost of trans- 
orting goods is proportional to both mass carried and dis- 
ance traveled. In the single-cell case, it provides a natu- 
al way to match cells between two datasets embedded in a 

ommon expression space. Originally brought into the field 

s a way to predict cell fate ( 17 ), it has more recently been
hown to be an interesting asset for matching cells across 
a tasets in integra tion tools like SCOT ( 9 ) and Pamona 

 10 ). Details about optimal transport computation and its 
ariants can be found in the Supplementary note. 

The main practical issue of optimal transport application 

or da ta integra tion is its mass conservation constraint: OT 

ill always match all mass from the source dataset X a to the 
arget dataset X b , regardless of the possible batch-specific 
amples. Consequently, all cells in X a will be mapped to at 
east one cell in X b , e v en though some cells from X a may
elong to a cell type missing in X b . Even worse, if there is a
lass imbalance between datasets (e.g. 50% of cell type A in 

ataset X a , and 25% of cell type A in dataset X b ), there will
ecessarily be wrong assignments using this method. Ex- 
ct computation of optimal transport is furthermore com- 
utationally e xpensi v e, of the or der of O(( n + m ) 3 ) which
akes it inefficient for large-scale problems (typically above 

0 

4 points). The Supplementary note contains an alternate 
pproximate and unbalanced formulation which provides a 

ood approximation of the solution at a more reasonable 
ost, while also dealing with the class imbalance issue. 

ndependent component analysis 

ndependent component analysis (ICA) is a matrix factor- 
zation (MF) a pproach w here the signals ca ptured by each 

ndividual matrix factor are optimized to become as mutu- 
lly independent as possible. ICA was shown to be a useful 
ool for unraveling the complexity of cancer biology from 

he analysis of different types of omics data. Such works 
ighlight the use of ICA in dimensionality reduction, de- 
onvolution, data pre-processing, meta-analysis, and others 
pplied to different data types (transcriptome , methylome , 
roteome, single-cell data) ( 18 ). 
In ICA we search for an approximation of the ob- 

erved probability density function P ( x 1 , x 2 , .., x n ) by
ˆ P ( s 1 , s 2 , ..., s n ) , where new s i variables are some linear com-
inations of the initial variables x i . We search for such lin- 
ar transforma tion tha t ˆ P ( s 1 , s 2 , ..., s n ) deviates as little as
ossible from the product of its marginal distributions P ( s 1 ) 

P ( s 2 ), .., P ( s n ) where the deviation is usually defined in
erms of information geometry (e.g., as Kullback–Leibler 
i v ergence). It is shown that ICA is efficient in detecting and 

orrecting the batch effects in omics datasets ( 18 ). 
ICA is not a data dimensionality reduction technique per 

e : ther efor e, it is usually applied on top of reduced (e.g. by
tandard PCA) and whitened r epr esentation of the initial 
ataset. Ther efor e, the choice of the number of independent 
omponents is an important hyperparameter ( 19 ). In the 
implest approach, the ICA solution r epr esents a rotation 

f the whitened data point cloud such that each normalized 

oor dinate de viates as much as possible from the standard 

aussian distribution ( 20 ). 
In our experiments, we used the stabilized version of ICA 

 21 ) which is shown to be the optimal MF approach for 
eproducible analysis of transcriptomic data ( 22 ). We ap- 
lied it to cells labeled as T-cells from all datasets to pre v ent
ataset-specific cell type imbalance to bias the components. 

arycentric embedding and label transfer 

arycentric merging is the simplest merging to set up. It 
orks under three assumptions, (i) one batch X r is defined 

s r efer ence and all ba tches will be corrected towards it; (ii)
 efer ence batch X r must be expressed in a feature space; (iii) 
or e v ery matching M sr ∈ R 

n s ×n r , e v ery row must have at
east one nonzero element ( 

∥∥M sr 1 n r 

∥∥
0 = n s ). Assumption 

i) is fulfilled by user choice and necessitates choosing a 
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good quality batch with r epr esentati v e items within e v ery
sample type. Reference choice always introduces a bias in
the integration, which should not be o verlook ed in the in-
terpretation of the results. Assumption (ii) is easy to verify
in practice, as datasets are often vectorized and represented
as n × d real-valued matrices. Assumption (iii) necessitates
the choice of a semicomplete matching, which maps e v ery
sample from batch X i to at least one sample from batch
X r . Transporta tion-based ma tchings usually verify this as-
sumption, while nearest neighbors-based matchings usually
do not. Failing to verify assumption (iii) will cause non-
matched points to be projected to the 0 of X r feature space.

Let X s be a batch to correct with respect to the reference
batch X r gi v en a semicomplete, row-normalized matching
matrix M sr . For e v ery sample x k ∈ X s , the k th row �k =
M sr , k provides a weighting vector which assesses the likeli-
hood of x k corresponding to any sample of X r . Barycentric
merging F 

Bary will then project x k into X r feature space X r 
so that 

F 

Bary 
X r ,α

( x k ) = arg min 

x ∈ X r 

∑ 

i≤n r 

αi 
∥∥X r,i − x 

∥∥2 
2 . (2)

It is easy to show x k = 

∑ 

i≤n r αi X r,i is the solution to this
problem. Ther efor e, F 

Bary can be easily rewritten to project
the whole X s dataset onto X r gi v en M sr via 

F 

Bary 
X r , M sr 

( X s ) = M sr X r . (3)

Barycentric merging has been used in several data inte-
gration pipelines such as Seurat ( 8 ), SCOT ( 9 ) and Pa-
mona ( 10 ), and generally yields good results, though there
are a few downsides to consider. First, choosing a ref-
erence introduces a high bias in the integration, and in
some applications, there may be no good option for refer-
ence; for instance, e v ery ba tch could miss a t least one sam-
ple class. The bary center prob lem also intrinsically relies
on a metric. This is an issue for high dimensional prob-
lems, for instance in scRNA-seq datasets where the curse
of dimensionality is a real concern; in this case, barycen-
ter has little to no interpretable sense. A common solution
is to first reduce the dimensionality of X r using principal
component analysis or non-linear methods such as UMAP
( 14 ) or MDE ( 15 ). One of the other uses of this method
is to use a matching computed in a different space than
the final embedding. Typically, one computes a matching
in a lower dimensional r epr esentation (e.g. PC space) but
uses total feature space for the embedding. This notably
allows obtaining corrected feature counts for all batches
with respect to a reference. Combined with a high-quality
matching and r efer ence batch, barycenter merging can
nonetheless provide an efficient, high-quality integration
without necessita ting ba tches to be originally in the same
space. 

Label transfer was carried out in the integrated space
using a simple nearest-neighbors approach. We used the
scikit-learn implementation of a k -nearest neighbors clas-
sifier using k = 10 and Euclidean distance, and the majority

rule.  
Single-cell RNA-seq datasets 

We used public datasets to benchmark our frame wor k and
compare its capabilities with other state-of-the-art integra-
tion pipelines. They were chosen to mimic various real-life
scenarios, with total dataset sizes in the tens of thousands.
All datasets contain RNA-seq data, acquired using 10 ×
technology. 

• The Zhou databank was collected from ( 23 ) through the
Curated Cancer Cell Atlas (3CA) w e bsite and contains
osteosarcoma data from 11 different patients, ranging
from 866 to 14 322 cells for a total of 64 557 cells. Each
cell was annotated by the authors with a cell type among
chondrocyte, endothelial, fibroblast, mesenchymal stem
cell (MSC), m yeloid, m yob last, osteob last, osteoclast,
pericyte, T cell. 

• The Chen databank was collected from ( 24 ) using the
3CA w e bsite and contains 61 870 nasopharyngeal cancer
single-cell RNA-seq data from 14 different patients, rang-
ing from 1087 to 11 210 cells. Each cell was annotated by
the authors with a cell type among B cell, endothelial, ep-
ithelial, macrophage, malignant, NK cell, plasma and T
cell. 

Raw counts have been preprocessed following standard
guidelines using the scanpy python package ( 13 ). First, cells
with low gene counts or high mitochondrial gene expression
wer e filter ed. Raw counts wer e then normalized to 10 000
per cell, followed by neighborhood pooling using 5 nearest
neighbors. Counts were then log (1 + x ) transformed, and
for each dataset, the top 10 000 most variable genes were
kept. All these preprocessed annotated databanks can be
automatically downloaded through our frame wor k, in or-
der to serve for benchmarking integration methods. 

Retrieving cell cycle signal from scRNA-seq datasets 

Raw counts for Ewing sarcoma cell lines datasets CHLA9,
CHLA10 and TC71 were obtained from ( 25 ). Raw counts
and annotations for the osteosarcoma U2OS dataset were
obtained from ( 26 ). They wer e pr eprocessed according to
state-of-the-art guidelines. Raw counts per cell were nor-
malized to 10 000 to account for differences in global ex-
pr ession and wer e then log (1 + x ) transformed; the top 10
000 variable genes were kept in each da taset. Da ta points
were e v entually pooled to reduce noise, by setting e v ery
cell counts vector to the average of its 5 nearest neighbors
(neighbors were determined using Euclidean distance in a
30-PC space). We used cell cycle genes identified in ( 27 )
to characterize G1 / S and G2 / M signals. For fast cell cy-
cle datasets TC71 and U2OS, we used only a subset of in-
formati v e G1 / S genes which helped to retrie v e a proper
circular signal (CDK1, UBE2C, TOP2A, TMPO, HJURP,
RRM1, RAD51AP1, RRM2, CDC45, BLM, BRIP1, E2F8
and HIST2H2AC). Integration was carried out using full
gene space. 

Benchmarking methods and parameters 

All benchmar ks hav e been run on a laptop equipped
with 32GB of RAM, an Intel CPU i7-10750H (12 cores)
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rocessor at 5 GHz and an NVIDIA GPU GeForce GTX 

650 Ti Mobile. 

EmbedMNN was used on preprocessed counts with 

transmorph v0.2.0, using default parameters: ‘bknn’ 
ma tching, 10 ma tching neighbors, 10 embedding neigh- 
bors, UMAP optimizer and 2 dimensions. 
BKNNCorrection was used on preprocessed counts 
with transmorph v0.2.0, using default parameters: ‘bknn’ 
ma tching, 30 ma tching neighbors, 10 linear correction 

neighbors. 
TransportCorrection was used on preprocessed counts 
with transmorph v0.2.0, using solver = ‘unbalanced’, en- 
tropy epsilon = 0.02, unbalanced reg = 5. 
Harmony was used with default parameters directly on 

preprocessed counts using the rpy2 python interface. We 
also tried the harmonypy python implementation, inter- 
faced viascanpy . It successfully converged in under 10 it- 
erations in both cases and produced comparable results. 
scvi was used on raw counts following the authors’ guide- 
lines with n layers = 2 and n latent = 30, and was opti-
mized during 124 epochs (automatically chosen by the 
software). 
We used the scanpy implementation of BBKNN on pre- 
processed counts. We carried out BBKNN with default 
parameters on a 50-PC r epr esenta tion of da tasets using 

default parameters, using neighbors within batch = 3 and 

10 annoy trees. 
Seurat was used in RStudio after converting AnnData 

datasets to h5seurat using the SeuratDisk package. We 
carried out the integration using SelectIntegrationFea- 
tures, FindIntegr ationAnchors and Integr ateData with 

default parameters. We were not able to complete the last 
integration step despite our efforts due to memory usage 
issues. 

ESULTS 

ransmorph allows conceiving end-to-end data integration 

odels 

espite potentially achieving very good integration results 
n specific use cases, we belie v e that e xisting data integra- 
ion algorithms are flawed by their intrinsic rigidity. By con- 
training the user to a fixed algorithm, they tend to excel 
n some use cases while struggling in others, as we show in 

he next sections. Also, the lack of access to their internal 
lgorithms can make results difficult to interpret. Further- 
ore, these internal algorithms cannot be easily modified 

 hen needed, notabl y w hen the user needs a particular out-
ut type that the algorithm is not able to provide. For in- 
tance, despite the fact is usually yields high-quality embed- 
ings, the Harmony algorithm cannot perform data inte- 
ration in gene expression space, which can be a downside 
or the subsequent application of deconvolution methods 
uch as independent component analysis. Another issue we 
an mention is the fact some matching paradigms are not 
uited for certain datasets topologies, as we show in the last 
ubsection wher e near est neighbors-based algorithms have 
rouble matching cycling cells. Finally, some algorithms do 

ot scale as well as others to large datasets, which can dis- 
ualify certain tools from being applied in these situations, 
uch as optimal transport-based methods. 

To address these limitations we present transmorph , a 

ovel and ambitious data integration frame wor k. It features 
 modular way to crea te da ta integra tion algorithms using 

asic algorithmic and structural blocks, as well as analysis 
ools including embedding quality assessment and plotting 

unctions. The frame wor k also provides annotated, high 

uality and ready-to-use datasets to benchmark algorithms 
Figure 1C). Finally, it is meant to be easily e xpansib le by 

llowing the user to define new algorithmic modules if nec- 
ssary. In this frame wor k, da ta integra tion models can be 
ssembled by combining four classes of algorithms: trans- 
orma tions, ma tchings, embeddings, and evalua tors (Fig- 
re 1 D, E, Table 1 ). 

T r ansf ormation algorithms take as input a set of datasets 
and return a new representation for each of them, em- 
bedded in some feature space (there can be one separate 
feature space per dataset or one common feature space). 
Tr ansformations are gener ally used during preprocess- 
ing: classic examples are PCA, neighborhood-based data 

pooling, or common highly variable genes selection. 
Matching algorithms estimate a similarity measure be- 
tween cells across datasets. They are the core compo- 
nent of our integration frame wor k, as their quality di- 
rectly influences cell-cell proximity in the final embed- 
ding. transmorph uses three main categories of matching: 
(a) label-based matchings which r equir e datasets to be 
labeled beforehand and match items of a similar label; 
(b) neighbor-based matchings which match items close 
items with respect to some metric; (c) transport-based 

matchings which le v erage a distance metric between items 
within or across datasets to compute a similarity between 

items relying on topological correspondence. 
Embedding algorithms are a particular class of transfor- 
ma tions tha t take as additional input similarity rela tion- 
ships between samples that were estimated via a match- 
ing. They return an integrated view of all datasets jointly 

embedded in a common feature space so that matched 

items tend to be close to one another in the final r epr e-
sentation. The embedding step is in general the last step 

in an integration model and is chosen depending on the 
r equir ed output type. For instance, a joint embedding of 
datasets in an abstract space suits applications like visual- 
ization or clustering. At the same time, matrix factoriza- 
tion algorithms often r equir e the embedding to be per- 
formed in an e xpressi v e feature space. 
Evaluation algorithms are quality control points that can 

be added to a pipeline to test a condition. They are used 

to either set a branching point that leads to different out- 
comes or create an iterati v e structure within a model (‘ re-
peat until the integrated representation satisfies this prop- 
er ty ’). This stra tegy is notably used within the Harmony 

algorithm, where an iterati v e clustering and correction 

procedure is applied until an integration metric (Local 
Inverse Simpson’s Index in this case) is considered sat- 
isfactory. 

This e xpressi v e frame wor k allows the building of com- 
lex da ta integra tion models suited for many applications 
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Figure 1. Transmorph is a frame wor k for scRNA-seq data integra tion. ( A ) Schema tic r epr esenta tion of the da ta integra tion problem. ( B ) Transmorph 
integration models conduct data integration of scRNA-seq datasets. Once the integration has been performed, cells cluster by type or state instead of 
origin. ( C ) Transmorph global package ar chitectur e, featuring internal and external models, benchmarking scRNA-seq databanks, and analysis tools. ( D ) 
Ar chitectur e of the model API, which allows engineering new data integration models using basic building blocks. ( E ) Directed compatibility chart of the 
model API modules, with arrows indicating how algorithms can be articulated within transmorph pipelines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with high computational efficiency and integration quality
because each algorithmic module can be optimized inde-
pendently. It also provides an objecti v e comparison between
algorithmic modules for a gi v en a pplication. Finall y, it is
supported by a sound software ecosystem with benchmark-
ing databanks, pre-built models, and post-analysis tools,
which allows one to carry out data integration within a
scRN A-seq anal ysis workflow efficientl y. Our frame wor k is
provided as an open-source Python package, and the fol-
lowing results showcase its capabilities to solve various chal-
lenging real-life problems of single-cell RNA-seq data in-
tegration while being on par with existing tools in terms
of performance. It has been de v eloped to be easily used in
notebook environments, with a strong focus on computa-
tional efficiency so that models can be run on small ma-
chines in a few minutes, even in applications involving tens
of thousands of cells and more than ten different datasets
and cell types. 

T r ansmorph models perf orm on par with other state-of-the-
art tools 

We will first present how the transmorph frame wor k can
be used to create data integration models able to com-
pute a low dimensional joint embedding of two or more
da tasets so tha t similar cells end up close to one another
independently from their source. This type of task is typ-
ically used for visual da ta explora tion or as a preprocess-
ing step before carrying out a clustering algorithm, allow-
ing clusters to only depend on cell type rather than on
the original batch (Figure 2A). A good joint dataset em-
bedding algorithm should be able to function in a fully
unsupervised fashion while being improved by additional
labeling information, and should not r equir e choosing a
r efer ence dataset as this induces an important bias. Ide-
ally, it should also be able to tackle the joint embed-
ding of more than two datasets sim ultaneousl y, with rea-
sonable computational efficiency. We built a transmorph
model for this application, called EmbedMNN , described
in (Figure 2B). EmbedMNN is conceptually inspired by
CONOS ( 7 ), and starts with a few preprocessing steps (nor-
malizations and dimensionality reduction). It then com-
bines a nearest neighbors-based joint graph construction
step with a low dimensional graph construction, followed
by an embedding step using either UMAP ( 14 ) or mini-
mum distortion embedding (MDE) ( 15 ). This allows Em-
bedMNN to work without requiring a reference and with
datasets of various topologies, and to output an embed-
ding in a latent space that will be e xploitab le for cluster-
ing and visualization. Furthermore, EmbedMNN can work
either in a fully unsupervised fashion or can take into ac-
count label information to prune matching edges between
samples of different labels; we test both variants in this
application. 
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Table 1. Presentation of the main algorithmic modules available in the transmorph frame wor k that can be used to build data integration pipelines. A 

brief explanation is given for each of them, additional information as well as algorithm parameters are available in the Materials and Methods section and 
in the transmorph documentation 

Transformations Matchings Embeddings Models 

Common Features: Selects 
and orders common genes 
between either all datasets or 
pairs of datasets. 

KNN: Matches nearest 
neighbors of each cell across 
batches. 

Barycenter: Projects each cell in 
a query dataset to the average 
value of its matches in a 
r efer ence batch that must be 
specified by the user. This 
embedding can produce a result 
in gene space, that can then be 
treated as scRNA-seq data. It 
necessita tes tha t all cells in the 
query dataset have a match. 

T r ansportCorr ection Takes as 
input two or more scRNA-seq 
datasets, with one chosen as an 
alignment r efer ence. It computes 
optimal transport between each 
dataset and the r efer ence. It then 
uses the barycentric embedding 
to align each dataset to the 
r efer ence and can output the 
result either in PC space or in 
gene expression space. 

Standardization: Normalize 
expression values per gene or 
per cell in order to improve 
the quality of geometric 
methods. 

MNN: Matches cells that 
m utuall y belong to the nearest 
neighbors of the other across 
batches. 

Graph Embedding: Links cells 
from all datasets into a single 
common weighted graph. This 
weighted graph is then 
embedded in a space whose 
dimensionality is chosen by the 
user, a space that is used as this 
module’s output. Due to the 
nonlinearity of this approach, 
the final r epr esentation can be 
used for clustering or other 
topolo gical anal yses. 

EmbedMNN: Takes as input two 
or more scRNA-seq datasets, 
without requiring a reference to 
be specified. Cells are matched 
using a nearest neighbor scheme 
chosen by the user (KNN or 
MNN), and are organized 
within a joint weighted graph 
whose specification is described 
in Material and Methods . This 
graph is finally embedded using 
UMAP or MDE. 

Pooling: Pools each cell 
v ector towar ds an av erage of 
its neighbors to reduce the 
effect of outliers. 

Optimal T r ansport: Matches 
cells across datasets using an 
optimal transport approach, 
with each dataset viewed as a 
mixture of Dirac distributions. 
This algorithm performs best 
when datasets topologies are 
similar, and penalizes 
translations, scaling and 
rotations. 

LinearCorrection: Computes 
correction vectors from cells in 
the query dataset and their 
match in the reference dataset . 
Unmatched cells are then 
attributed to a mixture of 
vectors of the nearest matched 
cells. All cells are e v entually 
translated according to the 
correction vector that has been 
computed. 

MNNCorrection: Takes as input 
two or more scRNA-seq 
datasets, with one chosen as an 
alignment r efer ence. Cells ar e 
matched using the nearest 
neighbor scheme chosen by the 
user (KNN or MNN). It then 
uses a linear correction module 
to align cells from each query 
dataset onto the r efer ence one. 

PCA: Linearly projects cell 
vectors into a 
variance-preserving, low 

dimensional basis to reduce 
the curse of dimensionality 
effect. 

Gr omov-Wasserstein: Ma tches 
cells across datasets using a 
Gromov-Wasserstein 
algorithm which only accounts 
for data topology, without 
penalizing isometric 
transformations. 

ICA: Linarly projects cell 
vectors into a low 

dimensional basis of 
statistically independent 
vectors to reduce the curse of 
dimensionality effect. 

Fused Gromov-Wasserstein: 
Matches cells across datasets 
using a linear mixture of 
optimal transport and 
Gromov–Wasserstein in order 
to balance the penalty between 
geometry and topology. 
Combined: Combines se v eral 
matchings into a single one. 
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Even though transmorph is not a data integration al- 
orithm per se , but rather a frame wor k to concei v e data
ntegration methods, we decided to benchmark the Em- 
edMNN model against other state-of-the-art horizontal 

ntegration algorithms. For this benchmark, we selected 

hree algorithms designed to solve the joint embedding 

roblem: Harmony ( 3 ), which uses a clustering-driven, it- 
rati v e strategy to optimize the embedded r epr esentation. 
cvi ( 11 ), a deep learning frame wor k that uses variational 
utoencoders to compute a latent integrated r epr esenta- 
ion of datasets. BBKNN ( 5 ), which builds a weighted joint 
raph of datasets together using a batch-balanced variant 
f k-nearest neighbors. We embedded Harmony, scvi latent 
 epr esentation, and BBKNN r esults into a 2D space using 

MAP ( 14 ) so that all methods’ output space is compara- 
le. 
The benchmarking databank consists of 11 single-cell 

steosarcoma da tasets ga thered from ( 23 ), containing ap- 
roximately 65 000 cells in total, annotated by the authors 
ith ten different cell types (Figure 2 A, Supplementary 

igure S1A). We will use this author’s annotation as the 
ground truth’ for this application and measure how the dif- 
erent methods deviate from it. This use case is quite chal- 
enging due to dataset size, number of batches, and num- 
er of classes, but it illustrates a r easonable r eal-life use 
ase of data integr ation. Integr ation performance can be 
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Figure 2. Integration of 11 osteosarcoma scRNA-seq datasets ( n = 64 557) from different patients. ( A ) Initial UMAP r epr esentation of the osteosarcoma 
datasets in their common genes space. ( B ) Ar chitectur e of the pre-built EmbedMNN integration model, computational modules are executed from left to 
right and from top to bottom. ( C ) Integration results with the supervised version of EmbedMNN. ( D ) Integration results with the unsupervised version 
of EmbedMNN. ( E ) LISI-batch score of various integration algorithms (higher is better), mean is marked. ( F ) LISI-class score of various integration 
algorithms (lower is better), mean is marked. ( G ) Execution time of various integration algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

objecti v ely measured through four integration metrics: set
and class mixing using a lightened version of local inverse
Simpson’s index (LISI) introduced in Harmony, clustering
specificity using Louvain or Leiden community detection
algorithm ( 28 , 29 ), and computation time. It is to note that
Harmony directly uses batch-LISI as a stopping criterion
during its optimization procedure, so we have to expect it
to have superior batch-LISI scores. 

All methods could compute the integrated embedding
in a reasonable amount of time given the number of data
points (Figure 2G, Supplementary Figure S1), with the best
performer being BBKNN + UMAP with 1min10s, taking
advantage of the highly optimized C++ nearest neighbors
approximation library annoy . Both supervised and unsuper-
vised versions of EmbedMNN algorithms could finish in
under 5 minutes. At the same time, Harmony took 5min30s
plus an extra 30s of UMAP computation to obtain a 2D
embedding. scvi was the longest to complete, with around
10 minutes in total, but in all fairness, the minimum loss
seemed to be reached between the 2 and 3 min mark. 

Computed joint r epr esentations wer e r easonab le ov erall
for all methods, with effecti v e batch mixing and cell type
clustering (Figure 2 C, D, Supplementary Figure S2A, B).
Nonetheless, no method achie v ed both e xcellent batch mix-
ing and cell type separation, which is to be expected on
such complex datasets (a large number of cells , patients , and
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ell types). Unsurprisingly, the supervised version of Em- 
edMNN outperformed all other methods by a large mar- 
in both in terms of local cell types homogeneity and clus- 
ering purity (Figure 2 F, Supplementary Figure S2C, D), 
ith a very low LISI-class score for all cell types and a near- 
00% cluster purity, as it le v eraged complete label informa- 
ion. This allowed it to prune edges between cells of differ- 
nt types during the matching step, which resulted in a very 

lean cells graph to embed. On the other hand, supervised 

mbedMNN is associated with inferior batch mixing (Fig- 
re 2E), and more explicit cluster delimitation after integra- 
ion which can be an obstacle for some trajectory inference 
lgorithms. The unsupervised version of EmbedMNN ap- 
ears to be on par with the other methods, with good LISI- 
lass and LISI-batch scor es (Figur e 2 E, F) and good clus- 
ering purity (Supplementary Figure S2C, D). 

Overall, this shows tha t tr ansmorph provides a frame- 
or k capab le of crea ting da ta integra tion models of suf-
cient quality to tackle joint dataset integration of chal- 

enging scRNA-seq datasets in terms of computational ef- 
ciency and integration quality. In the next section, we will 
how that its modularity allows the user to modify a trans- 
orph model to change its output space (from an abstract 

pace to a gene expression space), which is not possible to 

ur knowledge with the other tools presented in this first 
cenario. 

erf orming integr ation in gene space by using an appropriate 
mbedding 

n some applications, providing a joint embedding of 
atasets into an abstract space is not suited, as original fea- 
ures (i.e. genes) do carry important inf ormation f or out- 
ut interpretability. This is for instance the case when per- 

orming matrix factorization algorithms such as indepen- 
ent component analysis (ICA) or non-negati v e matrix fac- 
orization (NMF), or when annotating cells with appropri- 
te cell types. In this case, it is necessary to perform the inte-
ration directly within gene space, which brings some tech- 
ical difficulties. Notably, gene spaces are often very large 
hich is detrimental to the scalability of distance-based al- 
orithms due to the curse of dimensionality. In this scenario, 
mbedMNN, Harmony or BBKNN are not adapted, as 

hey are unable to return their output in full gene space. 
his would normall y impl y we need to find another integra- 

ion tool to carry out the integration in gene space, which 

ould come with important time costs (package installa- 
ion, data processing, workflow adaptation...). In this exam- 
le, we demonstrate how the modular nature of the trans- 
orph library can instead provide a way to adapt an ex- 

sting model to suit a new application easily. We first iden- 
ify that the embedding step of EmbedMNN is by design 

ot adapted to a full gene space application. To tackle this 
imitation, we can swap this module for something more 
dapted like a linear correction step in gene space (Fig- 
re 3A), which instead le v erages correction vectors in a sim- 

lar fashion to what is used within the MNN ( 4 ) and Seurat
 8 ) tools, and can handle the property of neighbor-based 

a tchings tha t do not provide a ma tch to e v ery cell from
he query dataset. Gi v en a r efer ence dataset, the linear cor-
ection approach consists in first, finding some matchings 
etween query and r efer ence items, then computing cor- 
ection vectors from these queries to their r efer ences, to fi- 
ally propagating these correction vectors along the query 

ataset to end up with corrected profiles. This last step al- 
ows for the alignment of query cells that have no match in 

he r efer ence dataset. Furthermor e, contr arily to gr aph em- 
edding, linear correction step can be carried out in gene 
pace to obtain a gene expression matrix as output. This 
akes it a natural choice for this application. 
We use 14 nasopharyngeal carcinoma datasets gathered 

rom ( 30 ) to benchmark the strategy (Figure 3 B, Supple- 
entary Figure S1B). The goal is to embed these datasets in 

he space defined as the intersection of their common most 
ariable genes so that cells sharing the same annotation end 

p in close proximity after integration. This is once again 

 challenging task as the datasets are quite large ( > 60 000 

ells to embed), there are eight different cell annotations, 
ome datasets do not contain cells from all types, and the 
mbedding space is large for a geometrical approach ( > 900 

enes). To measure integration quality from another angle, 
e carry out ICA on T-cells from all datasets, which al- 

ows us to observe dataset-specific gene expression signals 
ithout the bias of cell type imbalance between datasets. 
s we can see, before integration the dataset-specific signal 

ppears to be strongly correlated with se v eral independent 
omponents (ICs) computed by ICA (Figure 3 F, top). 

BKNNCorrection completes in a very reasonable time of 
 minute and 33 seconds and provides a convincing correc- 
ion (Figure 3B) by being associated with great improve- 
ents in LISI-batch (Figure 3 C, top) while maintaining low 

e v els of LISI-class [Figure 3 C, bottom]. We were not able to
uccessfully carry out Seurat integration on these datasets in 

 reasonable time and memory usage on this dataset using 

ur machine. Overall, this showcases how transmorph pro- 
ides a new way to easily tweak models, allowing them to 

ackle different scenarios with good efficiency and integra- 
ion quality. We also e v entually ensure most of the dataset- 
pecific signal has disappeared after integration (Figure 3 F, 
ottom), resulting in a weak correlation with any of the ICs 
ecomputed by ICA on the integrated dataset. This is a de- 
ired property for subsequent accurate interpretation of the 
ndependent components through, for example, functional 
nrichment analysis. 

ene space integration can be leveraged to annotate cell types 
eliably 

ene space integration can be le v eraged in a very natural 
a y to perf orm cell type annotation. As integration out- 
uts new gene counts for each cell, these new molecular 
rofiles can be used within the integration space to perform 

lustering and cell type annotation via differential gene ex- 
ression analysis. These newly found annotations can be 
xpected to be mor e pr ecise than annotations performed 

n each dataset individually and can allow rarer cell types 
o be identified with high statistical confidence. In partic- 
lar, most cell type annotation strategies rely on prior cell 
lustering to label each cluster with a cell type according 

o marker genes. Fr equently, rar e cell types do not form a 

eparate cluster in the original datasets due to their lim- 
ted population size, while they should constitute a larger 
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Figure 3. Gene space integration of 14 nasopharyngeal carcinomas scRNA-seq datasets from different patients ( n = 61 870). ( A ) Ar chitectur e of the 
BKNNCorr ection pr e-built integration model performing integration in gene space. Computational modules are executed from left to right and from top 
to bottom.. ( B ) UMAP visualization of the integration r esult, color ed by dataset (left) and by original cell type annotations (right). ( C ) LISI-batch (top, 
higher is better) and LISI-class (bottom, lower is better) before and after integration, mean is marked. ( D ) UMAP r epr esenta tion of the integra tion result, 
endowed with new cell type annotations determined within the integrated gene space. ( E ) UMAP r epr esentation of the dataset P03, with old (left) and 
improved (right) cell type annota tions. Compara tive plots for other datasets can be found as supplementary figure. ( F ) Absolute value of the correlation 
between each independent component and each batch among T-cells, before (top) and after (bottom) integration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cluster once datasets have been integrated to gether. Newl y
found annotations can e v entuall y be ma pped back to the in-
dividual datasets. We will use this methodology to improve
annotations found in the previously used nasopharyngeal
carcinoma scRNA-seq datasets. 

We performed a clustering of datasets integrated into the
space of their common genes and performed a differen-
tial gene expression on these clusters (Supplementary Fig-
ure S3A, B). We then determined cell types by combin-
ing initial annotations, well-known marker genes as well
as PanglaoDB ( 31 ). Doing so allowed us to confidently
annota te 13 dif fer ent cell types, gr eatly r efining initial an-
nota tions (Figure 3 B , D). Comparing old and new anno-
tations for each cell shows most annotations have been
made more precise rather than corrected (Supplementary
Figure 3C), notably splitting the ‘T cell’ label into the
various lymphoid lineage-associated labels ‘T-nai v e’, ‘T-
CD4+’, ‘T -CD8+’, ‘T -memory’ and ‘T-proliferating’, and
the ‘macrophage’ label into the myeloid lineage-associated
labels ‘macrophages’ and ‘dendritic cells’. The only differ-
ent annotations were among ‘epithelial’, ‘endothelial’ and
‘malignant’, which is to be expected as nasopharyngeal
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ar cinomas ar e endothelial tumors, making these types 
ard to strictly separate. All the annotations were e v entually 

e mapped back into the original datasets (Figure 3 E, Sup- 
lementary Figure S5A, B), and convincingly annotated 

lusters that can be seen in exploratory data analysis. This 
otably allowed the identification of a very small subpopu- 

ation of dendritic cells notably characterized by the expres- 
ion of CCR7 and CCLE9A genes as well as proliferating T 

ymphocytes, expressing high levels of proliferation mark- 
rs like MKI67 and PCNA. These subpopulations were too 

are in each dataset to form a distinct cluster, which explains 
hy they could not be annotated initially. It is to note that 

he CD4 gene was not highly variable within all datasets 
nd ther efor e it was missing in the integrated gene space. We
alidated the LT-CD4+ cluster by checking the CD4 expres- 
ion in datasets in which the gene is present (Supplementary 

igure S4). This application shows how the output of trans- 
orph gene space models can be used to improve cell type 

nnotations by integrating se v eral datasets directly in gene 
pace. 

 r ansferring cell cycle phase annotations across osteosar- 
oma and Ewing sarcoma datasets 

ell cycle is one of the most fundamental biological pro- 
esses through which biological cells grow and divide, but 
s yet to be fully understood. Single-cell transcriptomics of- 
ers great insight into its properties and dynamics, as gene 
xpr ession r egulation is a key factor for cell cycle progr es- 
ion. Gene expression modulation during the cell cycle can 

e visualized and interpreted by looking at the so-called cell 
ycle plots. In these plots, each cell is reduced to a small 
et of coordinates (typically between 2 and 4 ( 32 )), each of 
hose corresponding to the average transcription activity of 
enes associated with a specific cell cycle signal (e.g. G1 / S 

hase , G2 / M phase , histones) (Figure 4A). In this config- 
ration, cells re volv e along a one-dimensional cy clic trajec- 
ory throughout their progression in the cell cycle. Studying 

he geometry of these trajectories and cell distribution along 

hem can provide exquisite insight into cell cycle speed, cell 
rowth, or e v en e v entual cell cy cle arrest. 

A challenging question when studying the cell cycle at 
he single-cell le v el is the automatic annotation of cells with 

ell cycle phases. Some phases like mitosis can be accu- 
ately identified by looking at markers such as the total 
umber of raw counts which drops by a factor of two af- 
er cell division, but other phases are fuzzier, especially for 
ower-quality datasets, or fast-cycling cell types. Annotation 

f scRNA-seq data with cell cycle phases was studied ex- 
erimentally in ( 26 ), where the authors used genetic con- 
tructs to follow the abundance of key cell cycle proteins 
hich they can then relate to cell cycle phases, but doing so 

omes with important costs and experimenter time; a natu- 
al idea would be to transfer labels from datasets annotated 

sing this methodology to other unlabeled ones. Unfortu- 
ately, this is not as easy as it seems: differences in prepro- 
essing, cell types, and cell cycle properties can quite drasti- 
ally affect a dataset topology and geometry, making many 

roximity-based methods irrelevant. A natural label trans- 
er strategy can be pictured as follows (Figure 4B). First, 
e carry out da ta integra tion of all datasets into a common 
mbedding space. Then, we predict cell cycle labels of un- 
abeled datasets in this common space using a supervised 

earning a pproach. Finall y, the learned labels can be trans- 
erred back to the original r epr esentations to be interpr eted. 

In this experiment, we seek to automatically anno- 
ate three single-cell RNA-seq Ewing sarcoma datasets 
CHLA9, CHLA10, and T C71) gather ed from ( 25 ) (Fig- 
re 4 A, Supplementary Figure S1C). To do so, we trans- 
er the cell cycle phase using the author-provided annota- 
ions contained in an osteosarcoma dataset (U2OS) gath- 
red from ( 26 ), onto the three Ewing sarcoma datasets. Pre- 
rocessing differences, geometrical specificities and appar- 
nt S / G2M label mixing within the U2OS r efer ence dataset 
re tough difficulties to overcome both for integration and 

abel transfer methods. We first perform the integration us- 
ng BKNNCorrection, setting CHLA10 as the reference 
ataset considering its good quality and r epr esentativity 

cells ar e scatter ed uniformly around the trajectory, and the 
entral ‘hole’ is well r esolved). Unfortunately, pr edicted cell 
ycle labels are not satisfying (Supplementary Figure S6): 
ost-mitotic cells are associated with the G2 / M label, S- 
hase is labeled too late on the trajectory, and some early 

1 cells are labeled as S. This disappointing performance 
ay be caused by a lack of orthogonality between cell cycle 

actors and batch effects. This is a crucial hypothesis for all 
eighbors-based da taset integra tion, not sa tisfying it results 

n a poor matching quality making integration unreliable. 
This motivates the need to seek a more appropriate 
atching algorithm for this situation. We choose here a 

ransporta tion-based ma tching, which is robust for appli- 
a tions where informa tion is contained in da ta topology. It 
 elies on discr ete optimal transport that has been brought 
nto the scRNA-seq field a few years ago in ( 17 ), which 

an be pictured as looking for the most economical way 

o move mass in a metric space from a point cloud onto 

nother. This class of problems yields a natural and har- 
onious way to match cells across ba tches, by opera ting a t 

he dataset le v el instead of operating at the cell le v el like in
NN. We can use the transmorph pre-built model Trans- 

ortCorr ection inspir ed from SCOT ( 9 ) and P amona ( 10 ),
hich consists of a few preprocessing steps followed by a 

ransport-based matching, used to project e v ery query item 

nto the barycenter of its matches (Figure 4C). In this case, 
e had to use the unbalanced formulation of optimal trans- 
ort ( 16 , 33 ) to account for cell cycle phase imbalance be-
ween ‘standard’ and ‘fast’ cell cycle datasets; this variant 
s also implemented in our frame wor k. Label transfer us- 
ng this model instead of BKNNCorrection yields much 

etter labeling, entirely interpretable and in line with the 
atterns we expect for the ‘standard’ and ‘fast’ cell cycle 
Figure 4 D, Supplementary Figure S7A, B). We see mito- 
is point is now well identified by the automatic annotation, 
nd S-phase labels are better loca ted. Dif ferential gene ex- 
ression between the different identified labels yields well- 
nown cell cycle genes specific to each phase, showing ac- 
ura te annota tion (Figur e 4 E, Supplementary Figur e S7C). 
mong these genes we notably see a few well-known ones 

ppear in all profiles such as the TOP2A gene which is as- 
ociated with the G2 / M phases, PCNA with the S phase, 
nd CDC20 with the G1 phase. Ther efor e in this scenario, 
he transporta tion-based ma tching was clearly better suited 
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Figure 4. Transferring cell cycle phase annotations between osteosarcoma (U2OS, TC71) and Ewing sarcoma (CHLA9, CHLA10) scRNA-seq datasets. 
( A ) Visualizing the cell cycle loop of each da taset, approxima te positions of cell cycle phases are annota ted. U2OS annota tions are provided by the authors, 
other datasets are colored according to the number of read counts. ( B ) Schema tic stra tegy for the da ta integra tion-based label transfer. ( C ) Ar chitectur e 
of the TransportCorr ection pr e-built integration model performing integration in gene space. Computational modules are executed from left to right and 
from top to bottom. ( D ) Automatically transferred annotations using the TransportCorrection model. ( E ) Differential gene expression was performed 
using a Wilco x on rank-sum test, showing the most specific genes associated with cells of each label. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

than the nearest neighbors-based one and allowed an ac-
curate cell cycle label transfer. This sho ws ho w important
choosing the right matching can be, and how transmorph
addresses it. 

DISCUSSION 

Horizontal data integration and batch effect correction are
key computational challenges, especially in computational
biology to be able to properly analyze single-cell data from
dif ferent ba tches or pa tients ( 1 ). We identified the need for
modular methods to tackle this problem, and demonstrated
the necessity to carefully combine trustworthy cell-cell sim-
ilarity algorithms with relevant embedding algorithms. We
also clearly showed how deceiving data integration can be
when carried out improperly, which can be extremely detri-
mental to subsequent analyses. This alone motivates the
need for more modular tools, where e v ery algorithmic step
can be controlled if necessary. To address this need and
instead of introducing yet another da ta integra tion tech-
nique we present transmorph , a novel modular computa-
tional frame wor k for da ta integra tion, implemented as an
open-source python library. We provided a robust imple-
mentation for it and demonstrated its value through various
real-life applications both in terms of efficiency, quality and
versatility. We would like to highlight that EmbedMNN and
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3573–3587. 
ransportCorrection models represent original and previ- 
usly not proposed combinations of base algorithms that 
ere connected into complete data integration methods, us- 

ng transmorph as a toolbox for fast building and testing 

f da ta integra tion models. Furthermor e, these pr e-built 
odels can easily be transformed into to a combinatorial 

umber of alternati v e models by changing their construc- 
or parameters (preprocessing steps, matching type, optimal 
ransport flavor, supervised or unsupervised behavior, gene 
pace output, or linear subspace output). 

If transmorph is an e xpressi v e da ta integra tion frame- 
 ork that pro vides a way to articulate multiple algorith- 
ic modules together in order to shape data integration 

ipelines, there still exists some e xpressi v eness limitations 
o overcome. In particular, if trained deep learning mod- 
ls such as deep autoencoders (DAE) can be used as cus- 
om transformation modules, transmorph does not provide 
 way to either train or fine-tune them without relying 

n external libraries. For this reason, we think it is use- 
ul to mention the de v elopment of some recent DAE-based 

a ta integra tion algorithms, tha t use dif ferent approaches 
o couple se v er al algorithmic par adigms such as Uniport 
 34 ) and MATHCL O T ( 35 ) that combine DAE and op-
imal transport, or SMILE ( 36 ) that replaces the decoder 
art by an information-based e valuator. Ev en if these dif- 
erent tools do not provide as much modularity as trans- 
orph to deal with very different biological applications 
f horizontal da ta integra tion, they are certainly better 
uited for cases necessitating higher le v els of abstraction 

uch as cross-modality (vertical, diagonal, and mosaic) data 

ntegration. 
We provide via transmorph se v eral pre-built integration 

odels ready to be used in daily workflows, with high effi- 
iency and integration quality. For more advanced and spe- 
ific applications, our frame wor k also allows building inte- 
ration models from scratch by combining a variety of al- 
orithmic modules, all of which are implemented and op- 
imized inside our library. We e v entually provide complete 
nterfaces which allow users to implement their own com- 
utational modules if they need to. All this is endowed with 

 rich software ecosystem including benchmarking datasets, 
ntegration metrics, monitoring, and plotting tools as well 
s interfaces with other sta te-of-the-art da ta integra tion 

ools like Harmony ( 3 ) and scvi ( 37 ). 
We plan to continue maintaining transmorph in the fu- 

ure, in order to keep it up to speed with the e v er-growing
eld of data integration methods. We will continue expand- 

ng it with new algorithms, either already existing or to 

ome. We also would also like to add more support for ver- 
ical and diagonal integration, as for now the only diago- 
al matching is based on Gromov-Wasserstein which has 
n impractical computational time scaling to the size of 
urrent data integration problems. For instance, we plan to 

se gene space transformation to deal with specific verti- 
al integration cases such as integration between RNA-seq 

nd ATAC-seq data. We would e v entually like to add do- 
ain adaptation methods to our frame wor k (for instance 

y including supervised PCA ( 38 ) or domain adaptation 

CA ( 39 ) to our preprocessing steps), in order to tighten the
ridge towards this growing r esear ch field which presents 
any similarities with data integration. 
Ther e ar e still crucial questions to be answered in order 
o provide trustable data integration methods, especially in 

ingle-cell biology. Among these questions are the definition 

f relevant metrics to measure dissimilarity between cells 
e v en more importantly across different domains), the re- 
earch of sound and unbiased ways to measure integration 

uality, and the necessity to continue to carry out exhaus- 
i v e benchmar ks to identify the most appropriate data inte- 
ration methods and algorithms for a gi v en use case. 

A T A A V AILABILITY 

ransmorph frame wor k is availab le at https: 
/github.com/Risitop/transmorph (permanent 
oi:10.5281 / zenodo.8081763), and can also be down- 

oaded from the PyPi repository (version 0.2.6 at the time 
f writing). Datasets can be directly downloaded from the 
ackage, and scripts to generate figures can be found on 

he package’s GitHub, in the ‘reproducibility’ folder. 

UPPLEMENT ARY DA T A 

upplementary Data are available at NARGAB Online. 

CKNOWLEDGEMENTS 

e thank Alexander Chervov (Institut Curie, U900) for 
is suggestions on how to process TC71 and U2OS fast 
ell cycle datasets, Marianyela Petrizzelli (former Institut 
urie, U900) for her help in testing transmorph on non- 
inux systems, Jane Merle v ede (Institut Curie, U900) for 

esting transmorph at an early stage, Vicent No ̈el (Institut 
urie, U900) for his suggestions on how to properly pack- 
ge and test transmorph and in alphabetical order Jonathan 

ac (Institut Curie, U900), Nicolas Captier (Institut Curie, 
900), Marco Ruscone (Institut Curie, U900) and Julien 

ibert (former Institut Curie, U830) for the many insight- 
ul discussions and suggestions around this project. 
uthor contributions: A.F., L.C. and A.Z. conceptualized 

he package design and the computational study. A.F. and 

.C. de v eloped the package, A.F. carried out the applica- 
ions, A.F, L.C., O .D . and A.Z wrote the manuscript, A.Z. 
nd O .D . directed the project. 

UNDING 

rench government under the management of Agence 
ationale de la Recherche as part of the ‘Investisse- 
ents d’avenir’ program [ANR-19-P3IA-0001] (PRAIRIE 

IA Institute); European Union’s Horizon 2020 program 

826121, iPC project]. 
onflict of interest statement. A.Z. is currently an employee 
f Evotec (SA) France. 

EFERENCES 

1. Argelaguet,R., Cuomo,A.S.E., Stegle,O. and Marioni,J.C. (2021) In: 
Computational Principles and Challenges in Single-cell Data 
Integr ation . Na ture Publishing Group. 

2. Hao,Y., Hao,S., Andersen-Nissen,E., Mauck,W.M. III, Zheng,S., 
Butler,A., Lee,M.J., Wilk,A.J., Darby,C., Zager,M. et al. (2021) 
Integrated analysis of multimodal single-cell data. Cell , 184 , 

https://github.com/Risitop/transmorph
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad069#supplementary-data


14 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 3 

 

 

 

 

 

3. Korsunsky,I., Millard,N., Fan,J., Slo wiko wski,K., Zhang,F., Wei,K., 
Baglaenko,Y., Brenner,M., Loh,P.-R. and Raychaudhuri,S. (2019) 
Fast, sensiti v e and accur ate integr a tion of single-cell da ta with 
Harmony. Nat. Methods , 16 , 1289–1296. 

4. Haghv er di,L., Lun,A.T., Morgan,M.D. and Marioni,J.C. (2018) 
Ba tch ef fects in single-cell RNA-sequencing da ta ar e corr ected by 
matching mutual nearest neighbors. Nat. Biotech. , 36 , 421–427. 

5. Pola ́nski,K., Young,M.D., Miao,Z., Meyer,K.B., Teichmann,S.A. 
and Park,J.-E. (2020) BBKNN: fast batch alignment of single cell 
transcriptomes. Bioinformatics , 36 , 964–965. 

6. Angelidis,I., Simon,L.M., Fernandez,I.E., Strunz,M., Mayr,C.H., 
Greiffo,F.R., Tsitsiridis,G., Ansari,M., Graf,E., Strom,T.-M. et al. 
(2019) An atlas of the aging lung mapped by single cell 
transcriptomics and deep tissue proteomics. Nat. Commun. , 10 , 963. 

7. Barkas,N., Petukhov,V., Nikolaeva,D., Lozinsky,Y., Demharter,S., 
Khodosevich,K. and Kharchenko,P.V. (2019) Joint analysis of 
heterogeneous single-cell RNA-seq dataset collections. Nat. Methods ,
16 , 695–698. 

8. Butler,A., Hoffman,P., Smibert,P., Papalexi,E. and Satija,R. (2018) 
Integrating single-cell transcriptomic data across different conditions, 
technologies and species. Nat. Biotech. , 36 , 411–420. 

9. Demetci,P., Santorella,R., Sandstede,B., Noble,W.S. and Singh,R. 
(2022) Scot: single-cell multi-omics alignment with optimal transport.
J. Comput. Biol. , 29 , 3–18. 

10. Cao,K., Hong,Y. and Wan,L. (2022) Manifold alignment for 
heterogeneous single-cell multi-omics data integration using Pamona. 
Bioinformatics , 38 , 211–219. 

11. Lopez,R., Regier,J., Cole,M.B., Jordan,M.I. and Yosef,N. (2018) 
Deep generati v e modeling for single-cell transcriptomics. Nat. 
Methods , 15 , 1053–1058. 
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