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Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine
wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling
B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4,
isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in
a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by
E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological
changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the
death of B. xylophilus might be caused by an increased number of vacuoles in non-
apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test,
the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of
strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was
38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated
with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by
deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase
through Red homologous recombination. The nematocidal and disease-suppressing
activities of the knockout strain were remarkably impaired. Finally, we revealed a robust
colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed
to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4
has significant potential to serve as an agent for the biological control of pine wilt disease
caused by B. xylophilus.

Keywords: sdaB, L-serine dehydratase, Enterobacter ludwigii, nematocidal activity, Bursaphelenchus xylophilus,
pine wilt disease, methuosis
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INTRODUCTION

The pine wood nematode (PWN) Bursaphelenchus xylophilus
causes serious damage to forest ecosystems and massive
economic losses by inducing pine wilt disease (PWD) (Zhao et al.,
2014; Lee et al., 2019; Guo et al., 2020). PWD may result in
destruction of conifer forests and has long been a huge threat
to Asian and European forestry for a long time (Kikuchi et al.,
2011; Faria et al., 2015). As a pathogenic nematode native to
North America (Li et al., 2015; Proenca et al., 2017), B. xylophilus,
feeding on live trees and fungi colonizing dead or dying trees,
is a migratory endoparasite transmitted by the insect vector
Monochamus alternatus (Japanese pine sawyer beetle) (Kim et al.,
2019, 2020). The annual economic cost of the PWN (Soliman
et al., 2012) in the European Union (EU) alone is estimated
at a billion euros for each of the past 22 years. The rapid
death of pine trees infected by the PWN could be attributed to
the dysfunction of the water-conducting system caused by the
death of parenchyma cells. The secreted enzymes and surface
coat proteins of B. xylophilus are involved in its pathogenicity
(Futai, 2013; Nunes da Silva et al., 2015; Wen et al., 2021). The
molecular mechanisms of PWN pathogenesis are still largely
unknown, hindering the prospects for control of this pathogen
and PWD. Chemical insecticides and nematicides used to control
B. xylophilus by jet-sprays or trunk injections for decades (Qiu
et al., 2019; Guo et al., 2020; Faria et al., 2021) have become
a major social concern. More environmental-friendly strategies,
such as beneficial microorganisms that suppress PWN, have
recently gained more attention (Tian et al., 2007; Wu et al., 2013;
Cai et al., 2022).

Biological control of plant parasitic nematodes (PPNs) using
nematocidal bacteria or their metabolites, which are toxic to
nematodes, is a potentially sustainable alternative to chemical
nematicides (Haegeman et al., 2009; Kumar and Dara, 2021).
Nematocidal prokaryotes mainly belonging to bacterial genera,
such as Bacillus (Crickmore, 2005; Ponpandian et al., 2019; Park
et al., 2020), Streptomyces (Kang et al., 2021), Serratia (Paiva
et al., 2013; Nascimento et al., 2016; Abd El-Aal et al., 2021),
Stenotrophomonas (Huang et al., 2009; Ponpandian et al., 2019),
Pseudoduganella (Fang et al., 2019; Abd El-Aal et al., 2021),
Novosphingobium (Topalović et al., 2020), Pasteuria (Tian et al.,
2007), Pseudomonas (Chan et al., 2020), Enterobacter (Munif
et al., 2000; Oh et al., 2018), and Curtobacterium (Kumar and
Dara, 2021), are capable of suppressing PPNs by diverse modes of
action, including parasitism (Wu et al., 2013; Proenca et al., 2017;
Ponpandian et al., 2019), production of toxins (Abd El-Aal et al.,
2021; Kahn et al., 2021), antibiotics plus enzymes (Yang et al.,
2007; Huang et al., 2009), competition for nutrients (Proenca
et al., 2019), and induction of systemic resistance of plants
(Liang et al., 2019; Han et al., 2021). Within these nematocidal
groups, some bacterial strains have exhibited efficient killing
activity against the PWNs. Bacillus thuringiensis zjfc85 caused
90% mortality of B. xylophilus by producing a Cry protein named
Cry5Ba3 (Kahn et al., 2021). Two Streptomyces strains did kill
the hatched PWNs and affected egg hatching via biosynthesis
of the toxic compounds, teleocidin B4, and spectinabilin, which
effectively suppressed the development of PWD under field

conditions (Kang et al., 2021). A 70 kD serine protease produced
by Serratia sp. A88copa13 was majorly responsible for the
toxicity of this PWN-killing strain (Paiva et al., 2013). Thus, the
application of nematocidal bacteria is a promising strategy in
suppressing PWD.

Enterobacter is an exceptionally diverse genus of bacteria
found in various habitats in association with soil (El-Sayed et al.,
2014; Habibi et al., 2019; Danish et al., 2020), plants (Park et al.,
2015; Andres-Barrao et al., 2017; Sarkar et al., 2018), and animals,
including humans (Mokracka et al., 2004; Peng et al., 2009). Many
Enterobacter strains are characterized as plant beneficial bacteria.
Such procaryotic microbes promote the growth of their plant
hosts under favored or adverse abiotic conditions by producing
indole-acetic acid (IAA) (Park et al., 2015; Srisuk et al., 2018;
Habibi et al., 2019; Li et al., 2022), siderophores (Mokracka et al.,
2004; Nurjadi et al., 2021; Li et al., 2022), hydrocyanic acid
(Mpongwana et al., 2016; Mahdi et al., 2020; Javaheri Safa et al.,
2021), salicylic acid (Kang et al., 2015) plus exopolysaccharides
(Sayyed et al., 2015; Niu et al., 2018; Dhanya et al., 2021),
solubilizing phosphate (Adhikari et al., 2020; Roslan et al., 2020;
Aeron et al., 2021), by fixing nitrogen (Kämpfer et al., 2005;
Peng et al., 2009; El-Sayed et al., 2014), reducing Na+ uptake
(Um et al., 2017; Sarkar et al., 2018), and inducing the activity
of enzymes with action as antioxidants (Andres-Barrao et al.,
2017; Danish et al., 2020). At present, it has been demonstrated
that some Enterobacter species exhibit inhibitory effects against
the oomycete pathogen Pythium ultimum (Lohrke et al., 2002;
Kageyama and Nelson, 2003; Windstam and Nelson, 2008), the
fungal pathogens Fusarium moniliforme (Hinton and Bacon,
1995; Demirci et al., 2000; Rodrigues et al., 2018), F. oxysporum
(El-Sayed et al., 2014; Del Barrio-Duque et al., 2019; Abdelshafy
Mohamad et al., 2020), Aspergillus niger (Yadav et al., 2016;
Kaushik et al., 2017; Batyrova et al., 2020), and Aspergillus flavus
(Etcheverry et al., 2009; Mahmood et al., 2020), and the bacterial
pathogen Ralstonia solanacearum (Sarkar and Chaudhuri, 2015;
Yin et al., 2020; Zaki et al., 2021), indicating their protective
efficacy on plants. A few Enterobacter strains exhibited significant
nematocidal activity against the root-knot nematodes (Munif
et al., 2000; El-Sayed et al., 2014; Oh et al., 2018). Enterobacter
asburiae HK169 was able to reduce root gall formation rate by
66% and killed all juveniles of Meloidogyne incognita within 48 h
(Oh et al., 2018). Similarly, an endophytic E. intermedius strain
isolated from tomato roots remarkably decreased the number of
root galls (Munif et al., 2000). Our knowledge of the molecular
mechanisms underlying the inhibitory effects of Enterobacter
strains against PPNs is still very limited.

In the present study, we identified a powerful PWN-killing
bacterial strain, Enterobacter ludwigii AA4, which was previously
isolated from maize roots (Niu et al., 2017) by screening the
nematocidal activities of 374 bacterial strains against B. xylophilus
using a new fluorescent staining-based PWN-killing activity
test. E. ludwigii AA4 had a remarkable inhibitory effect against
PWD under greenhouse conditions. After deleting the sdaB gene,
presumed to encode the beta subunit of L-serine dehydratase, the
nematocidal and disease-suppressing effects of the mutant strain
were significantly reduced. The robust colonization of P. sylvestris
seedling needles by E. ludwigii AA4, presumed to contribute to
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the disease-controlling efficacy of strain AA4, was quantified and
compared to the strain carrying a sdaB gene deletion.

MATERIALS AND METHODS

Microbial Strains and Growth Conditions
Bacterial strains kept frozen with 15% (v/v) glycerol at −80◦C
were streaked on Luria-Bertani (LB) agar plates and incubated at
30◦C for 16 h. Then, a single colony of each strain was inoculated
into 5 ml LB liquid medium and shaken at 30◦C, 200 rpm for
another 16 h. Antibiotics were supplemented where necessary at
the following concentrations: kanamycin 50 µg/ml, tetracycline
50 µg/ml, gentamicin 25 µg/ml, streptomycin 50 µg/ml, and
gentamicin 25 µg/ml (Table 1).

The spores of Botrytis cinerea were deposited at−80◦C in 15%
(v/v) glycerol. Ten microliters of fungal spores were dropped on
a potato dextrose agar (PDA) plate and incubated at 25◦C in the
dark. When B. cinerea mycelia covered PDA plates, the fungal
culture was used for inoculating B. xylophilus.

The Source and Culture of Pine Wood
Nematodes
Cultures of the PWN, Bursaphelenchus xylophilus, were obtained
from Dr. Hongtao Li at the Hebei Academy of Agriculture
and Forestry Sciences and Dr. Kai Guo at Zhejiang A&F
University. The fungus B. cinerea was purchased from the
Shanghai Bioresource Collection Center (SHBCC).

Bursaphelenchus xylophilus was inoculated on a PDA culture
of B. cinerea and incubated at 25◦C in the dark until the fungal
mycelia were completely consumed by B. xylophilus. Nematodes
were collected using the modified Baermann funnel technique
(Kitazume et al., 2018; Cesarz et al., 2019; Maehara et al.,
2020) and washed with a mixture of 0.1% streptomycin sulfate
and 0.002% actinone three times to remove surface microbial
contaminants (Liu et al., 2016). Then, these nematodes were used
for PWN-killing activity test and in planta biocontrol assays.

For microscopic image analysis of PWN morphology, about
10,000 nematodes were decanted into a burette containing 25 ml
of 0.3% carboxymethyl cellulose (CMC) solution. After 12 h,
the second-stage juveniles were collected from the top of the
burette (Qiu et al., 2016, 2019). These worms were fed with
B. cinerea. After 48 h, the L4 juveniles were collected in sterile
water and washed with a mixture of 0.1% streptomycin sulfate
and 0.002% actinone three times. These L4 juveniles were used
for the image analysis.

Preparation of Cell Extracts of E. ludwigii
AA4
Wild-type AA4, AA41sdaB (derivative of wild-type AA4 that
lacks sdaB), and CMsdaB (AA41sdaB complemented with wild-
type sdaB gene) kept frozen with 15% (v/v) glycerol at −80◦C
were streaked on LB agar plates with corresponding antibiotics
(Table 1) and incubated at 30◦C for 16 h. Then, a single colony
of each strain was inoculated into 5 ml LB liquid medium
and shaken at 30◦C, 200 rpm for another 16 h. One milliliter

of the culture of each strain was transferred into 50 ml LB
liquid medium and shaken at 30◦C, 200 rpm for 2–3 h until
Optical Density at 600 nm (OD600) value reached 0.6–0.8
(early stationary phase). Cells were harvested by centrifuging at
9,100 rpm (8,000 × g) at 4◦C for 20 min (Thermo, Multifuge
X1R, Germany) and washed by phosphate-buffered saline (PBS).
The cell precipitations were resuspended in 5 ml PBS before
sonication. An ultrasound processor (Sonics, VCX130PB, United
States) was used to sonicate the resuspended cell suspensions. The
probe was immersed into the suspensions and sonicated the cells
on ice for 60 min at a power of 130 W (pulse duration: 2 s on,
1 s off). The resulting cell lysates were centrifuged at 15,300 rpm
(14,000 × g) for 30 min. The supernatant was collected and
used as cell extracts. The concentration of total protein in cell
extract was measured by using a biuret protein assay reagents kit
(Solarbio, PC0010, China).

Fluorescent Staining-Based Pine Wood
Nematode-Killing Activity Test
The nematocidal activity of the 43 efficient PWN-killing
bacterial strains of AA41sdaB and C1sdaB was evaluated
by the fluorescent staining-based PWN-killing activity test,
while Bacillus pumilus YLT40 and Paenibacillus polymyxa
M-1 were utilized for confirming the reliability of the
assay. The cell density of bacterial culture suspension was
adjusted to OD600 = 1.0 for each strain used in the
test. Each well of the 96-well microplates was added with
40 µl of bacterial culture suspension and 20 µl of worm
suspension containing 40–50 nematodes, while 40 µl of LB
liquid medium or PBS and 20 µl of worm suspension
was employed as negative control. Five wells were used for
each treatment designated with the code of the strain listed
in Supplementary Tables 1, 2. The inoculated microplates
were incubated at 25◦C in the dark for 24 h. Then, a
plate washer (Biobase, BK-9622, China) was employed to
change the liquid cultures with sterile water. 4’6-diamidino-
2-phenylindole (DAPI, Solarbio, C0065, China) was used
to stain the PWNs, and the final concentration of DAPI
in each well was 5 µg/ml. After being stained for 1 h,
the nematodes were observed by a confocal laser scanning
microscope (Zeiss, LSM 800, Germany) using a excitation
laser of 353 nm and collecting emission of 465 nm, where
the dead worms displayed bright fluorescence while the
live ones were dim.

To test the nematocidal activity of the cell extract of wild-
type AA4, AA41sdaB, and C1sdaB, the extract containing total
proteins of 5 mg/ml was mixed with 20 µl of worm suspension
containing 40–50 nematodes in one well of a 96-well microplate.
The remaining steps are the same as those for the assays with
bacterial cell suspensions.

The mortality and corrected mortality of B. xylophilus were
calculated as follows (Faria et al., 2013; Guo et al., 2016; Liu et al.,
2019):

The mortality (%) =
number of dead nematodes

number of all nematodes
× 100
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TABLE 1 | Strains and plasmids used for genetic manipulation of Enterobacter ludwigii AA4.

Strain or plasmid Description

Strains

T1 Tn10 transposon inserting into genome of wild-type AA4; KanR.

AA41sdaB Derivative of wild-type AA4 that lacks sdaB; KanR.

C1sdaB AA41sdaB complemented with wild-type sdaB gene; KanR, TetR.

AA4-GFP Green fluorescent protein (GFP)-labeled wild-type AA4; TetR, GenR.

AA41sdaB-GFP GFP-labeled AA41sdaB; KanR, TetR, GenR.

C1sdaB-GFP GFP-labeled C1sdaB; KanR, TetR, GenR.

DH5a Competent cells for cloning.

Plasmids

pKD4 Kanamycin cassette; KanR.

pKD46 Template plasmid containing Red recombinase system under arabinose-inducible promoter; KanR.

pUC19 Vector for construction of recombinant plasmid; KanR.

pBBR1 Vector for construction of complement plasmid; TetR.

pGPF78 Vector with green fluorescent protein (GFP); TetR, GenR.

KanR, kanamycin resistance; TetR, tetracycline resistance; GenR, gentamicin resistance.

TABLE 2 | Primers used in this study.

Primer 5′–3′ sequence

For 16S rRNA gene sequencing analysis

27F AGAGTTTGATCATGGCTCAG

1492R TACGGTTACCTTGTTACGACTT

For gene deletions

sdaB -H1up TCTGATTCCGCTGATCATCATGGCTATCATTGCCTTC

sdaB -H1down GTAATGCTGCAATCTGATGCGTCCATTGCTTTCAGTCAGAGGGGGAGGAG

sdaB -H2up GAAGAAGCCTCGCATAACGAGGCTTCCTGAAAGGCATATCCTCCTTAGTTCCTATTCC

sdaB -H2down GTGCGATATGGTTGAGAAGCCAGCAAAAGTGGCC

Kup GGCTTCCTGAAAGGCATATCCTCCTTAGTTCCTATTC

Kdown AGCAATGGACGCATCAGATTGCAGCATTACACGTCTT

pUC19up CATGATGATCAGCGGAATCAGATCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGAC

pUC19down CACTTCTTCGCGGTCGTGATACGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGG

For complementing the mutation

sdaB-DF ATGGAAACCACTCAAACCAGCACCGTTGCTTCGATTG

sdaB-UR CGAGCTGCGTGTTGAAGTCGCGGATACCAACGAAAGC

sdaB-PBBR1-DF AAGACAGAATCAGAATtCAATTCGCCCTATAGTGAGTCGTATTA

sdaB-PBBR1-UR TTGTGACCTGCGATTAACAGCTTTTGTTCCCTTTAG

Corrected mortality (%) =

mortality in treatment (%)−mortality in control (%)

100−mortality in control (%)
× 100

Two-tailed t-test (GrapPad Prism 8) was used for the statistical
analysis. All these experiments above were repeated five times.

Z′factor, a combination of signal interval and variation, is a
parameter used to evaluate the reliability of results obtained from
an experiment for guiding a larger-scale experimentation. It is
calculated as:

z′factor = 1−
3
(
σp+σn

)∣∣µp−µn
∣∣

where σp and σn represent the standard deviations of positive
control and negative control, respectively, and µp and µn
represent the means of positive control and negative control,
respectively. Z′factor was calculated by using the software Excel
(Microsoft). The theoretical value of Z′factor is 1, and a Z′factor
value between 0.5 and 1 indicates the outcomes of a given
experiment is highly reliable, while a test of low reliability usually
possesses a Z′factor value of less than 0.5 (Zhang X. D. et al.,
2020).

Identification of the Efficient Bacterial
Pine Wood Nematode-Killing Strains
Identification of the efficient bacterial PWN-killing strains were
carried out by using 16S rRNA gene sequencing analysis.
Genomic DNA was extracted from an overnight LB culture of
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each strain by utilizing a bacterial genomic DNA extraction
kit (Tiangen, DP302-02, China) following the manufacturer’s
protocol. The 16S rRNA gene was amplified in 25-µl PCR
reactions using the universal primers 27F and 1492R (Table 2)
(Monciardini et al., 2002; Niu et al., 2013; López and Alippi,
2019). The reaction mixture contained 1 µl of template DNA,
12.5 µl of master mix (Takara, RR350Q, Japan), 1 µl of each
of the forward and reverse primers, and 9.5 µl of sterile
deionized water. Amplifications were performed using a T100
Thermal Cycler (Bio-Rad, 621BR47532, United States) with
the following cycle conditions: initial denaturation at 95◦C
for 5 min; 30 cycles at 94◦C for 30 s, 58◦C for 30 s,
and 72◦C for 1.5 min; and a final extension at 72◦C for
10 min. Amplicons were purified using a PCR purification kit
(Omega, D6492-02, China) and sequenced using 27F primer at
Tsingke Biotechnology Co., Ltd. DNA sequences were inspected
for base-caller errors and were trimmed by removing any
ambiguous trailing or leading bases using the software GAP4
in the STADEN Package1. The sequences were compared with
those of the reference organisms by Basic Local Alignment
Search Tool (BLAST) at the National Center for Biotechnology
Information (NCBI) website2 and by Sequence Match at the
Ribosomal Database Project (RDP) website3. The 16S rRNA
gene sequences of efficient nematocidal strains were deposited
in the GenBank database. The accession numbers were listed in
Supplementary Table 1.

In planta Assays for Biocontrol Effect
Against Pine Wilt Disease
The biological control effects of wild-type AA4, AA41sdaB, and
C1sdaB were examined by using both 3-year-old and 1-month-
old Scots pine (Pinus sylvestris) tree seedlings grown under
greenhouse conditions. The 3-year-old seedlings were purchased
from Longsheng nursery at Harbin. Ten milliliters of bacterial
suspension (OD600 = 1.0) were inoculated on the 3-year-old
seedlings by spraying. Then, a 2–4 cm silt was made on the surface
of bark located at approximately 10–15 cm above the soil. One
hundred microliters of PWN suspension containing about 5,000
worms were injected into the trunk. A small piece of sterilized
cotton was fixed on the trunk to cover the silt (Xue et al., 2019).
The plants were placed in a greenhouse under the following
conditions: 16 h of light (day) and 8 h of dark (night), 25◦C, and
a relative humidity of 70%. Plants were watered periodically and
maintained in the greenhouse. Thirty days after inoculation, the
symptoms present on the seedlings were recorded with a camera
(Canon, 80D, Japan). The severities of PWD were evaluated based
on the disease ranks described in earlier studies (Qiu et al., 2016,
2019) as follows: In rank 0, all needles are green. In rank 1,
less than a quarter of needles turn yellow. In rank 2, 25–75% of
needles turn yellow. In rank 3, more than 75% of needles turn
yellow and less than 50% of needles get wilted. In rank 4, more
than 50% of the needles get wilted. Five plants were used for
each of the two treatments designated as PWN (inoculation of

1http://staden.sourceforge.net/
2https://blast.ncbi.nlm.nih.gov/
3http://rdp.cme.msu.edu

seedlings with PWN alone) and PWN + AA4 (inoculation of
seedlings with PWN jointly with wild-type AA4), respectively.

For the experimentations with 1-month-old Pinus sylvestris
seedlings, the seeds were surface-sterilized by immersing in
5% KMnO4 for 60 min and placing in a growth chamber at
30◦C in the light for 48 h. After germination, the seeds with
roots were sown in the plant growth substrates prepared by
mixing soil and vermiculite in a ratio of 3:1. Thirty days after
emergence, 5 ml of bacterial suspensions (OD600 = 1.0) or
cell extracts (containing total proteins of 5 mg/ml) of wild-
type AA4, AA41sdaB, and C1sdaB were sprayed on the
needles of Scots pine seedlings, respectively. In the meantime,
100 µl of PWN suspension containing approximately 3,000
worms were injected into the needles by using a syringe.
A small piece of sterile cotton was fixed on the needles to
cover the pinhole. The plants were incubated in greenhouse
under the same condition on which the 3-year-old seedlings
grew. The number of dead seedlings and symptoms were
recorded on the ninth day after inoculation. Ten plants
were used for each of the 11 treatments designated as PWN
(inoculation of seedlings with PWN alone), PWN + 1sdaB
(inoculation of seedlings with PWN jointly with AA41sdaB
cell suspension), PWN + C1sdaB (inoculation of seedlings with
PWN jointly with AA4C1sdaB cell suspension), PWN + WT
(inoculation of seedlings with PWN jointly with wild-type
AA4 cell suspension), PWN + 1sdaBCE (inoculation of
seedlings with PWN jointly with AA41sdaB cell extract),
PWN + C1sdaBCE (inoculation of seedlings with PWN
jointly with AA4C1sdaB cell extract), PWN + WTCE
(inoculation of seedlings with PWN jointly with wild-type
AA4 cell extract), PWN + 1sdaBS (inoculation of seedlings
with PWN jointly with AA41sdaB culture supernatant),
PWN + C1sdaBS (inoculation of seedlings with PWN
jointly with AA4C1sdaB culture supernatant), PWN + WTS
(inoculation of seedlings with PWN jointly with wild-type
AA4 culture supernatant), and DW (treatment with distilled
water), respectively.

The severities of PWD were evaluated based on the disease
ranks shown in Supplementary Figure 3. The disease severity
indices were calculated as follows:

Disease Index (DI) =
∑

(Xi × Ai)
(X × Amax)

where Xi is the number of pine trees in each disease rank, Ai is
the disease rank, X is the total number of pine trees, and Amax is
the maximum rank (Qiu et al., 2019; Xue et al., 2019). Two-tailed
t-test (GrapPad Prism 8) was used for the statistical analysis.
These experiments were repeated three times.

Image Analysis of Pine Wood Nematode
Morphology
The cell extract of E. ludwigii AA4 was prepared as above. Forty
microliters of cell extract containing total proteins of 5 mg/ml
and 20 µl of worm suspension containing 40–50 L4 juveniles of
PWNs were added in a single well of the 96-well microplates. At
the meantime, the combination of 40 µl of PBS and 20 µl of worm
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suspension was employed as negative control. The microplates
were stored at 25◦C in the dark for 24 h. Then, the worms
were picked and put into 10 µl of PBS by injector pinhead.
After being washed three times, the worms were transferred to a
slide. Ten microliters of PBS were then dropped on the samples.
The morphological changes of B. xylophilus were observed and
recorded by a light microscope (Olympus, BX43, Japan).

Construction of Mutants of E. ludwigii
AA4
The sdaB gene knock-out mutant of E. ludwigii AA4 was
created by using the Red recombinase system (Datsenko and
Wanner, 2000; Dahyot et al., 2020; Guérin et al., 2020). Primers
were designed according to the information obtained from
the whole genome sequence of strain AA4 (Niu et al., 2017).
The upstream border sequence of the AA4 sdaB gene was
amplified from AA4 chromosomal DNA using primers sdaB-
H1up and sdaB-H1down (Table 2), while the downstream
border sequence of sdaB was amplified with primers sdaB-H2up
and sdaB-H2down (Table 2). A kanamycin resistance cassette,
flanked by 23-bp-long sequences homologous with sdaB gene,
was amplified from plasmid pKD4 DNA with primers Kup
and Kdown (Table 2). Another fragment flanked by 22-bp-
long sequences homologous with sdaB gene was amplified from
plasmid pUC19 by using primers pUC19up and pUC19down
(Table 2). The purified PCR products were assembled by Gibson
DNA assembly technology, using a SoSoo Cloning Kit (Tsingke,
T-TSV-S1, China) following the manufacturer’s instructions and
then cloned into Escherichia coli DH5α. Clones containing the
resulting recombinant pU191sdaB vector were selected on LB
agar supplemented with kanamycin. The recombinant plasmid
pUC191sdaB was isolated with a plasmid extraction kit (Omega,
D6943-02, China) following the manufacturer’s instructions and
used as template DNA for PCR amplification with the primers
sdaB-H1up and sdaB-H2down (Table 2). After purification, the
PCR products were introduced into the competent cells of
AA4 carrying a Red helper plasmid pKD46 by electroporation
(Bio-Rad, 411BR11661, United States) at 2.5 KV. The resulting
transformants were selected on LB agar supplemented with
kanamycin after incubation for 24 h at 30◦C. Homologous
recombination was confirmed by PCR and sequencing. Then, the
elimination of pKD46 was performed by culturing the correct
transformant by shaking at 37–42◦C, 200 rpm overnight. The
knock-out mutant can only grow at 30◦C on the LB agar
supplemented with kanamycin but not streptomycin.

To construct a complement strain of AA41sdaB, the complete
open reading frame of sdaB gene was amplified by PCR with
primers sdaB-DF and sdaB-UR (Table 2) from the genomic DNA
of strain AA4 and linked with the fragment flanked by 22-
bp-long sequences homologous with sdaB gene and amplified
from plasmid pBBR1 using primers sdaB-PBBR1-DF and sdaB-
PBBR1-UR (Table 2) by the Gibson DNA assembly technology.
The complement plasmid pBBR1-sdaB was introduced into the
competent cells of AA41sdaB by electroporation at 2.5 KV,
and the resulting transformants were selected on LB agar
supplemented with kanamycin and tetracycline after incubation

at 30◦C for 24 h. The complementation was then confirmed by
PCR and sequencing.

To create a random transposon library, E. ludwigii AA4
was transformed with pDL1093 via conjugation at 30◦C and
outgrown at 42◦C in the presence of kanamycin to induce
transposition of miniTn10 (Duncan et al., 2018).

For the sake of constructing fluorescence protein-labeled
AA4, plasmid pGFP78, obtained from Dr. Qi Wang at
China Agricultural University, harboring the gene encoding
for green fluorescent protein (GFP), was introduced into the
competent cells of wild-type AA4, AA41sdaB, or C1sdaB
by electroporation at 2.5 KV. The resulting transformants
were selected on LB agar supplemented with tetracycline, or
kanamycin and tetracycline, or a combination of kanamycin,
tetracycline, and gentamicin where necessary after incubation at
30◦C for 24 h. The correctness of the transformants were then
confirmed by PCR, sequencing, and fluorescence microscopy.

Assay for L-Serine Dehydratase Activity
The cell extract of E. ludwigii AA4 was prepared as above,
except washing and resuspending in the extraction buffer (50 mM
K2HPO4, 2.5 mM serine protease inhibitors) (Velayudhan et al.,
2004). Three aliquots of 1 ml of cell extract containing total
proteins of 10 mg/ml was incubated with 500 µl of 300 mM L-
serine at 37◦C for 6 min. Then, the concentration of pyruvate
was determined by using a pyruvate assay kit (Solarbio, BC2205,
China). The L-serine hydrolase activity was calculated as:

l−serine hydrolase activity nmol/min·mg of protein =
c × v

M
T × m

× 103 (1)

where c is the concentration of pyruvate in µg/ml, v is the
total reaction volume in ml, M is the relative molecular mass of
pyruvate, T is the reaction time in minutes, and m is the weight
of cell extract in mg.

Two-tailed t-test (GrapPad Prism 8) was used for the statistical
analysis. This experiment was repeated five times.

Assays for Colonization of Scots Pine
Needles
In order to investigate the ability of E. ludwigii AA4 to colonize
Scots pine needles, 50 ml of LB cultures (OD600 = 1.0) of GFP-
labeled wild-type AA4, AA41sdaB, and C1sdaB were sprayed on
21 1-month-old seedlings, respectively. The plants were placed
in a greenhouse under the following conditions: 16 h of light
(day) and 8 h of dark (night), 25◦C, and a relative humidity
of 70%. Three aliquots of 50 mg of needles were sampled at
the 4th, 48th, 72th, 96th, 120th, and 144th, and 168th hour
post inoculation, respectively, for bacterial quantification. The
needles were crushed with 1 ml of PBS by using a sterile mortar.
The resulting suspensions were diluted and spread on LB agar
plates supplemented with tetracycline and incubated at 30◦C for
16 h. The colony-forming unit (CFU) numbers were recorded.
Two-tailed t-test (GraphPad Prism 8) was used for the statistical
analysis. This experiment was repeated five times.
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B
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FIGURE 1 | Screening and taxonomy of the nematocidal bacterial strains
against pine wood nematodes (PWNs). (A) Screening of strong PWN-killing
bacterial strains against Bursaphelenchus xylophilus. The green dots
represent the 43 strong nematocidal strains causing the death of more than
85% of B. xylophilus treated with them, while the blue and red dots are
bacterial cultures of Bacillus pumilus YLT40 and Paenibacillus polymyxa M-1

(Continued)

FIGURE 1 | used as controls to confirm the reliability of the screening. The
position of each dot was determined by the two values (showing on the x-
and y-axis, respectively) of corrected mortality rate of PWNs calculated in two
independent tests. The dot standing for Enterobacter ludwigii AA4 is framed
and pointed out by an arrow. (B) The number of nematocidal strains within
each bacterial species. The colors of the columns on the circle indicate the
genus names of the 43 nematocidal strains, while histogram heights are
consistent with the numbers (showing in the brackets) of the strains belonging
to each bacterial species. (C) Nematocidal effect of E. ludwigii AA4 against
PWNs. Asterisks indicate that differences among the means represented by
the columns are statistically significant (*p < 0.0001). Two-tailed t-test
(GrapPad Prism 8) was used for the analysis.

For image analysis, 48 h after inoculation, the needle slices
were washed with PBS and transferred to a slide. Ten microliters
of PBS were dropped on the samples. The colonization of
needles by bacteria was visualized by a Confocal Laser Scanninc
Microscopy (CLSM; Zeiss, LSM 800, Germany) using an
excitation laser of 480 nm.

RESULTS

Screening of Bacterial Strains for
Nematocidal Activity Against
Bursaphelenchus xylophilus
To find microorganisms possessing strong nematocidal activity
against B. xylophilus for potential biological control of the PWD,
we performed a PWN-killing test with 374 bacterial strains from
our lab collection. First, we used an efficient PWN-killer Bacillus
pumilus YLT40 and a moderate PWN-killing strain Paenibacillus
polymyxa M-1 (Niu et al., 2013), identified previously (data not
shown), as controls (Figure 1A) to verify if the PWN-Bacterium
interaction system employed in this study was reliable for a large-
scale screening. The corrected mortality rates of the nematode
B. xylophilus treated by B. pumilus YLT40 and P. polymyxa M-1
were more than 85% and less than 25% (Figure 1A), respectively.
We calculated a Z′factor score of 0.682 (Figure 1A) which
indicated that the screening procedure utilized is sufficiently
reliable for selecting powerful PWN-killing strains.

We detected 43 efficient nematocidal bacterial strains
exhibiting B. xylophilus mortality rates above 85% (Figure 1A,
Supplementary Figure 1, and Supplementary Table 1). Based
on 16S rRNA gene sequencing, we found that these bacterial
strains belong to 21 species from seven genera, including
Bacillus, Pseudomonas, Enterobacter, Chryseobacterium,
Stenotrophomonas, Pantoea, and Paenibacillus (Figure 1B),
all genera with known nematocidal activity. Among the seven
genera, Bacillus harbored 19 nematocidal strains, while Pantoea
and Paenibacillus possessed only one PWN-killing strain
(Figure 1B). Interestingly, seven Enterobacter strains, including
the plant beneficial bacterium E. ludwigii AA4 isolated from
maize roots (Niu et al., 2017), exhibited high nematocidal activity
against the PWN (Figure 1B). In addition, AA4 did kill almost
all of the B. xylophilus clones (96%) in our assay (Figure 1C). In
our collection, we found 43 strong PWN-killing strains involving
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E. ludwigii AA4. Next, we validated the PWN-killing function of
strain AA4 in both in vitro and in planta experiments.

Biocontrol Effect of E. ludwigii AA4
Against B. xylophilus
To confirm the nematocidal effect of E. ludwigii AA4 against
B. xylophilus, we developed a fluorescent dye-exclusion viability
test to visualize PWN-killing activity. We used DAPI which
differentially stains live and dead PWNs. Dead worms take up
DAPI rapidly and show bright fluorescence, while the live ones
are relatively non-fluorescent and look dim (Figure 2A).

In our assay, the majority (68%) of PWNs co-cultured
with wild-type E. ludwigii AA4 cells in very low density
(OD600 = 0.063) for 24 h were killed (Figure 2B). The corrected
mortality rate of the nematodes treated with wild-type AA4 cells
tends to increase with enhanced cell density. The percentage of
dead worms dramatically increased from less than 70% to more
than 92% when the OD600 value of the bacterial culture was raised
from 0.063 to 0.5. The corrected mortality rate rose slowly to a
maximum of 98.3% when the OD600 value of the cell suspension
reached 2 (Figure 2B). Our visual test documented that nearly
all the nematodes incubated with wild-type AA4 emitted intense
fluorescent signals, while almost no fluorescence was detected
without bacteria (Figure 2A). These results well corroborated the
high mortality rate of B. xylophilus when exposed to wild-type
AA4. E. ludwigii AA4 exhibited a remarkable in vitro PWN-
killing effect.

We then investigated the disease-suppressing efficacy of
E. ludwigii AA4 against PWD on 3-year-old Pinus sylvestris
greenhouse-grown seedlings. Thirty days after inoculation, we
found that the needles of the seedlings treated with PWNs
together with wild-type AA4 were much greener and less wilted
than those inoculated with B. xylophilus only (Figure 3A). The
disease index of PWD on the P. sylvestris plants treated with
PWNs together with wild-type AA4 (19.5) was significantly lower
than that treated with B. xylophilus alone (86.9) (Figure 3B),
indicating that the PWD severity was substantially reduced by
treatment with wild-type AA4. E. ludwigii AA4 was capable of
efficiently suppressing PWNs not only under in vitro conditions
but also in in planta and was a strong bacterial biocontrol strain
against PWD caused by B. xylophilus.

E. ludwigii AA4 Causes Morphological
Defects in B. xylophilus
To further understand the PWN-killing effect of E. ludwigii
AA4, culture supernatants and cell extracts were prepared for
the DAPI-staining based nematocidal activity test. Treatment
of B. xylophilus with the culture supernatant of wild-type
AA4 did not affect the mortality rate of the nematode
(Figure 2A). Wild-type AA4 cells did dramatically enhance
fluorescence of the B. xylophilus nematodes (Figure 2A). This
result was corroborated by the mortality rate of the PWNs,
suggesting that the death rate of worms exposed to wild-
type AA4 culture supernatant (less than 20%) was significantly
less than that of B. xylophilus incubated with cells of wild-
type AA4 (more than 60%) (Figure 2B). By contrast, we

detected intense fluorescent signals from the worms treated
with wild-type AA4 cell extract (Figure 4A) and found that
more than 80% of PWNs were dead after being exposed
to the extract (Figure 4A), indicating its strong nematocidal
effect. Thus, our data indicates that the cell extract of wild-
type AA4 rather than the culture supernatant contains the
nematocidal activity.

To elucidate the mode of action of the nematocidal
effect of E. ludwigii AA4 against PWN, we choose its cell
extract for investigating morphological variations of AA4-
treated B. xylophilus. The L4 stage nematodes were incubated
with wild-type AA4 cell extract. Afterward, the morphological
changes of the worms were observed and recorded using an
optical light microscope. Exposure of PWN to cell extract-
induced formation of vast amounts of vacuoles filled the internal
tissues of nematodes completely (Figures 4Bi,iii). Newly formed
small vacuoles accumulate and progressively fuse into giant
ones, leading to membrane rupture and death (Maltese and
Overmeyer, 2014; Armenta and Dixon, 2020). This process is
defined as methuosis (Cai et al., 2013; Chen et al., 2014; Nirmala
and Lopus, 2020), a type of non-apoptotic cell death widely
described in animals (Jang et al., 2016; Rajasekharan et al.,
2017; Song et al., 2021). The death of B. xylophilus caused by
AA4 might be attributed to methuosis induced by the damage
to cell membranes.

In these vacuolated worms, some vital organs, e.g., intestine,
pharynx, and genital glands, disappeared in the mass of
bubbles. We also failed to capture a clear structure of stylet
at the head of PWN treated with wild-type AA4 cell extract
(Figures 4Bi,iii). The reproductive organ of male worms, the
copulatory spicule, dispersed after being incubated with cell
extract (Figure 4Bv). In contrast, we observed fewer vacuoles
in the control nematodes exposed only to PBS. All the critical
internal organs were intact and clearly visible in the control worm
bodies (Figures 4Bii,iv,vi). Therefore, E. ludwigii AA4 appeared
to destroy crucial internal organs of B. xylophilus through causing
a series of morphological defects.

The sdaB Gene Is Involved in the
Nematocidal Effect of E. ludwigii AA4
Against B. xylophilus
To resolve the molecular mechanisms underlying the strong
nematocidal effect of E. ludwigii AA4, we characterized genes
involved in its PWN-killing efficacy using transposon and
PCR-targeted mutagenesis. First, by screening a miniTn10
transposon mutant library of strain AA4, we identified a
mutant with greatly reduced nematocidal activity against
B. xylophilus. We further analyzed the genomic site where the
transposon was located and found a miniTn10 element that was
inserted into an open reading frame (ORF) located between
kilobase positions 3,956,912 and 3,955,545 (Supplementary
Figure 4). This ORF was identified as the sdaB gene
encoding the L-serine dehydratase beta subunit, indicating
that the sdaB gene might be involved in the PWN-killing
effect of AA4.
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FIGURE 2 | Nematocidal effect of E. ludwigii AA4 and its sdaB gene knock-out mutant against B. xylophilus. (A) Imaging analysis of the PWN-killing efficacy of
wild-type E. ludwigii AA4 and AA41sdaB against B. xylophilus. The dead nematodes showed cyan fluorescence when excited by 353 nm wavelength after being
stained by 4′6-diamidino-2-phenylindole (DAPI), while the live worms stained by DAPI were dim under excitation with the same wavelength. These images were
taken using a confocal laser scanning microscope (scale bars: 2 mm). (B) Mortality of the PWNs treated with bacterial cells or culture supernatants. B. xylophilus
was co-cultured with cells of wild-type AA4 and AA41sdaB or incubated with culture supernatants of wild-type AA4 and AA41sdaB for 24 h, respectively. CK,
sterile LB liquid medium; WT, cell culture of wild-type AA4; WTS, supernatant of wild-type AA4 culture; WTCE, cell extract of wild-type AA4; 1sdaB, cell culture of
AA41sdaB; 1sdaBS, supernatant of AA41sdaB culture; 1sdaBCE, cell extract of AA41sdaB; C1sdaB, cell culture of AA41sdaB complemented with the
wild-type sdaB gene; C1sdaBS, supernatant of culture of AA41sdaB complemented with the wild-type sdaB gene; C1sdaBCE, cell extract of AA41sdaB
complemented with the wild-type sdaB gene.

A B

FIGURE 3 | Biocontrol effect of E. ludwigii AA4 against PWD caused by B. xylophilus. (A) Symptoms on the 3-year-old Pinus sylvestris seedlings inoculated with
PWN alone or PWN jointly with E. ludwigii AA4 (PWN + AA4). Photographs were taken 30 days after inoculation (Scale bars: 15 cm). (B) Severity of PWD on the
3-year-old P. sylvestris seedlings inoculated with PWN alone and PWN jointly with E. ludwigii AA4 (PWN + AA4). The asterisk indicates that differences among the
means represented by the columns are statistically significant (*p < 0.0001). Two-tailed t-test (GrapPad Prism 8) was used for the analysis.

We next created a knock-out mutant of the sdaB gene by
employing the Red (λ, β, exo)-mediated DNA homologous
recombination system. The L-serine hydrolase activity of the sdaB
gene knock-out deletion mutant AA41sdaB was significantly
lower than that of the wild-type AA4 or the AA41sdaB
mutant strain complemented with the sdaB wild-type gene
(Figure 5B), which indicated that the interruption of the sdaB
gene affected the biosynthesis of L-serine dehydratase. Then, we
compared the PWN-killing activities of the wild-type AA4 and
AA41sdaB by using the fluorescent staining-based nematocidal
activity assay (Figure 2A). Nearly no fluorescence could be
detected in the worms treated with AA41sdaB cells or their
extracts, which confirmed the loss of nematocidal activity of
the miniTn10 insertional mutant. Complementation of the
mutant with a recombinant plasmid harboring sdaB partially

restored the PWN-killing activity (Figure 2A). These results
were corroborated by the nematode mortality curves, which
documented that the corrected death rate of the PWNs treated
by AA41sdaB was significantly lower than those incubated with
wild-type AA4, while the mortality of nematodes exposed to
the mutant strain complemented with the sdaB wild-type gene
increased remarkably (Figure 2B). Therefore, sdaB gene product
has a major impact on the nematocidal activity of E. ludwigii AA4.

Then, we investigated the role of the sdaB gene product on the
protective effect of E. ludwigii AA4 on P. sylvestris against PWD.
Using a Pine-Nematode-Bacterium tripartite interaction system
with 1-month-old P. sylvestris seedlings, a lower disease index
was estimated when wild-type AA4 cells or their extracts were
added to the system. Under these conditions, much less wilted
and fewer chlorotic pine seedlings were observed compared
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FIGURE 4 | Nematocidal effect of cell extracts of E. ludwigii AA4 and its sdaB gene knock-out mutant against B. xylophilus. (A) Mortality of the B. xylophilus
nematode treated with bacterial cell extracts. The worms were incubated with the cell extracts of wild-type AA4 and AA41sdaB for 24 h or 48 h, respectively. WT24,
PWNs treated with a cell extract of wild-type AA4 for 24 h; WT48, PWNs treated with a cell extract of wild-type AA4 for 48 h; 1sdaB24, PWNs treated with a cell
extract of AA41sdaB for 24 h; 1sdaB48, PWNs treated with a cell extract of AA41sdaB for 48 h; C1sdaB24, PWNs treated with a cell extract of AA41sdaB
complemented with a wild-type sdaB gene for 24 h; C1sdaB48, PWNs treated with a cell extract of AA41sdaB complemented with a wild-type sdaB gene for 48 h.
(B) Morphological changes of B. xylophilus incubated with the cell extract of wild-type E. ludwigii AA4. The L4 stage worms exposed to a wild-type AA4 cell extract
containing total proteins of 5 mg/mL for 24h, are shown in the left column, where the vacuoles in front (i) and back (iii) sections of worm bodies as well as dispersed
copulatory spicule (v) are indicated by arrows. Non-treated L4 stage nematodes (ii,iv,vi) are presented in the right row, where the arrows indicate the intestine,
pharynx, and stylet (ii), genital gland (iv), copulatory spicule and vacuoles (vi), respectively (scale bars: 1 mm).

A B

FIGURE 5 | L-serine hydrolase activity of E. ludwigii AA4 and its sdaB gene knock-out mutant. (A) Colorimetrical quantification of pyruvate generated in a L-serine
hydrolase activity assay. The color shown in each well of the microplate corresponds to the pyruvate concentration measured by a spectrophotometer at 520 nm.
The values of optical density (OD) range from 0 (white) to 0.8 (orange). (B) Comparison of L-serine hydrolase activities of wild-type E. ludwigii AA4, its sdaB gene
knock-out mutant, and AA41sdaB complemented with a wild-type sdaB gene. DW, distilled water; WT, E. ludwigii AA4 wild-type strain; 1sdaB, AA4 sdaB gene
knock-out mutant; C1sdaB, AA41sdaB complemented with a wild-type sdaB gene. The asterisks indicate that differences among the means represented by the
columns are statistically significant (*P < 0.0001). Two-tailed t-test (GrapPad Prism 8) was used for the analysis.
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to the control containing B. xylophilus alone (Figure 6B). We
found more wilted and chlorotic seedlings when AA41sdaB
cells or their extracts were added instead of wild-type AA4 cells
or their extracts. The number of diseased plants was reduced
when the seedlings were treated with PWNs together with cells
or cell extracts of the AA41sdaB mutant strain complemented
with the sdaB wild-type gene (Figure 6A). These findings were
supported by disease severity analysis, where the disease index
of plants treated with PWNs and AA41sdaB mutant cells or cell
extracts was significantly higher than that with PWNs treated
with the cells or cell extracts of wild-type AA4 or the sdaB
mutant complemented with the sdaB wild-type gene (Figure 6B).
The indices of the PWN infected seedlings treated with cells or
cell extracts of the AA41sdaB mutant complemented with the
wild-type sdaB gene and seedlings treated with PWNs plus the
wild-type AA4 strain cells or cell extracts showed no significant
differences. The culture supernatants of the wild-type AA4, the
AA41sdaB mutant strain, or AA41sdaB mutant complemented
with the sdaB wild-type gene not only exhibited nearly no
nematocidal activity against B. xylophilus in vitro, but also failed
to display biocontrol efficacy against PWD (Figure 6). The sdaB
gene encoding the beta subunit of L-serine dehydratase, is highly
related to the PWN-killing activity of E. ludwigii AA4 and may be
a key molecular element controlling the interplay between strain
AA4 and PWNs.

Colonization of E. ludwigii AA4 on
Needles of P. sylvestris
Efficient colonization of plant surfaces and tissues is fundamental
for successful inhibition of pathogens by biological control
agents. To investigate the ability of E. ludwigii AA4 to colonize
P. sylvestris, we sprayed the needles with a GFP-labeled transgenic
strain of AA4. We observed by CLSM that strain AA4 was capable
of adhering to the surface of P. sylvestris needles by forming
robust biofilms (Figure 7A). Although there was a dramatical
reduction of the abundance of AA4 cells sticking to the needles,
from around 1.9 × 107 CFU (colony-forming unit)/g (of pine
needle fresh weight) 4 h after inoculation to 3.8 × 104 CFU/g
144 h after inoculation, the colonization rates of AA4 at days
6 and 7 (2.8 × 104 CFU/g) showed no significant difference
(Figure 7B). This indicates that E. ludwigii AA4 can colonize the
needles of P. sylvestris, presumably a precondition for its disease-
controlling efficacy against PWD. AA41sdaB cells were equally
able to colonize pine needles compared to the wild-type AA4
(Figure 7A), demonstrating that the sdaB gene function is not
needed for colonization. The biomass accumulation rate of both
strains was at the same level along our 7-day-long experiment
(Figure 7B). Therefore, E. ludwigii AA4 may be an efficient
colonizer of pine needles, and that the eradication of sdaB gene
did not affect its adherence to needles.

DISCUSSION

Compared to the control of phytopathogens in agroecosystems,
forest disease suppression puts more emphases on the sustainable
management of pests due to the vital functionality of forests

in maintaining the balance and health of their ecosystems
(Nascimento et al., 2015; Proenca et al., 2017; Khan et al.,
2020; Ozair et al., 2020). To this end, biological control of
forest pathogens, including the PWNs, by beneficial microbes
have been receiving increasing attention (Nunes da Silva
et al., 2015; Ponpandian et al., 2019; Proenca et al., 2019).
A considerable number of nematocidal microbial strains
suppressing B. xylophilus have been identified and characterized.
These strains are, mainly, species of Bacillus (Crickmore, 2005;
Niu et al., 2011; Park et al., 2020), Streptomyces (Kang et al.,
2021), Serratia (Paiva et al., 2013; Nascimento et al., 2016; Abd
El-Aal et al., 2021), and Stenotrophomonas (Huang et al., 2009;
Ponpandian et al., 2019).

We selected a PWN-killing Enterobacter ludwigii strain,
designated as AA4 from a large-scale screening of nematocidal
activity and inhibition of PWD (Figures 1C, 3). Representatives
of the genus Enterobacter are able to inhibit a wide range of
phytopathogens (Demirci et al., 2000; Kageyama and Nelson,
2003; Windstam and Nelson, 2008; Del Barrio-Duque et al., 2019;
Batyrova et al., 2020), including plant pathogenic nematodes,
such as root-knot nematodes (Munif et al., 2000; El-Sayed et al.,
2014; Oh et al., 2018). To our knowledge, E. ludwigii AA4 is
the first Enterobacter strain described as a nematocidal agent
suppressing B. xylophilus. Our findings expand the knowledge
of the biocontrol potential of the genus Enterobacter, one of the
most expanding bacterial taxa in recent decades (Taghavi et al.,
2010; Ibort et al., 2018; François et al., 2021).

Accurate and rapid determination of the mortality of
nematodes is the key to efficient screening and selection of
microbial strains with nematocidal activity. In earlier studies on
PPN-bacterium interactions, the killing rate of nematodes was
estimated mainly by the morphology of the worms, where rigid
nematodes were considered dead, while the curved ones were
considered alive (Liu et al., 2016, 2019; Ponpandian et al., 2019;
Qiu et al., 2019). Such criteria do not always work well. We found
that a significant number of apparently rigid nematodes could
still move after being touched with a needle, suggesting that they
were still alive. In addition, counting dead nematodes under a
microscope is time consuming and tedious.

We developed a visual PWN-killing activity DAPI dye
exclusion which is faster and more reliable (Figure 2). DAPI
passes slowly through intact cell membranes of living nematodes,
and thus preferentially stains the dead nematodes. Once entering
the cells and binding to the minor groove of A-T-rich regions
of DNA, DAPI fluorescence is greatly enhanced (Atale et al.,
2014). As a result, dead worms display intense fluorescent signals.
A similar method was employed in a previous study, where the
dead Caenorhabditis elegans nematodes were stained with the
fluorophore Sytox Orange (Natalia et al., 2013; Rajamuthiah et al.,
2015; Xie et al., 2020). Applying fluorescence staining in the
identification of PWN-killing bacterial strains may be amenable
to high throughput or automated screening for biocontrol agents
against other plant pathogenic nematodes.

In present study, we observed that the PWNs treated with
cell extracts of wild-type E. ludwigii AA4 displayed dramatic
morphological defects associated with the accumulation of
numerous vacuoles, recognized as a sign of reversible cell
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FIGURE 6 | Disease-suppressing effect of E. ludwigii AA4 against PWD caused by B. xylophilus. (A) Biocontrol effect of E. ludwigii AA4 and its sdaB gene knock-out
mutant against PWD on 1-month-old P. sylvestris seedlings. (B) Severity of PWD on 1-month-old P. sylvestris seedlings treated with PWN jointly with wild-type AA4
or AA41sdaB. The horizontal bars within boxes represent the median. The tops and bottoms of boxes represent the 75th and 25th quartiles, respectively. The upper
and lower whiskers extend from 75th quartiles to the maxima and from the 25th quartiles to the minima, respectively. The asterisks indicate that differences among
the means represented by the boxes are statistically significant (*p ≤ 0.0345). Two-tailed t-test (GrapPad Prism 8) was used for the analysis. PWN, treatment with
PWN alone; PWN + 1sdaB, joint treatment with PWN and AA41sdaB; PWN + C1sdaB, joint treatment with PWN and AA4C1sdaB; PWN + WT, joint treatment
with PWN and wild-type AA4; PWN + 1sdaBCE, joint treatment with PWN and AA41sdaB cell extract; PWN + C1sdaBCE, joint treatment with PWN and
AA4C1sdaB cell extract; PWN + WTCE, joint treatment with PWN and wild-type AA4 cell extract; PWN + 1sdaBS, joint treatment with PWN and AA41sdaB culture
supernatant; PWN + C1sdaBS, joint treatment with PWN and AA4C1sdaB culture supernatant; PWN + WTS, joint treatment with PWN and wild-type AA4 culture
supernatant; DW, treatment with distilled water (scale bars: 2 cm).
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FIGURE 7 | Colonization of E. ludwigii AA4 on needles of P. sylvestris seedlings. (A) Image analysis of needle colonization of green fluorescent protein (GFP)-labeled
wild-type AA4, AA4 sdaB gene knock-out mutant, and AA41sdaB complemented with a wild-type sdaB gene. These images were taken using a confocal laser
scanning microscope at 48 h post inoculation (Scale bars: 20 µm). (B) The abundance of wild-type AA4, AA4 sdaB gene knock-out mutant, and AA41sdaB
complemented with a wild-type sdaB gene colonizing on the needles of P. sylvestris seedlings. WT, AA4 wild-type strain; 1sdaB, AA4 sdaB gene knock-out mutant;
C1sdaB, AA41sdaB complemented with a wild-type sdaB gene. The asterisks indicate that differences among the means represented by the columns are
statistically significant (*p ≤ 0.0041). Two-tailed t-test (GrapPad Prism 8) was used for the analysis.

injury (RCI) and methuosis, resulting in the destruction
of internal organs of B. xylophilus needed for absorbing
nutrients, pathogenicity, and reproduction (Figure 4). Similar
changes in morphology were also reported in B. xylophilus
incubated with indoles and abamectin (Rajasekharan et al., 2017).
Another plant pathogenic nematode, Meloidogyne incognita,
the causal agent of root knot in several crops, showed
bubbling in its body when meeting toxic compounds as
well (Jang et al., 2016). A large number of vacuoles were
present in the transgenic C. elegans with an ectopically
expressed and activated mek-1 gene (Koga et al., 2000).
Intracytoplasmic vacuolation may commonly occur when
nematodes live under stressful conditions, which can be triggered
by fluid accumulation within the cytoplasm due to Ca2+

and water influx caused by RCI (Jurkowitz-Alexander et al.,
1992; Basavappa et al., 1998; Rajasekharan et al., 2017). The
death of B. xylophilus caused by AA4 might be attributed
to methuosis induced by damage to the cell membrane
caused by this nematocidal bacterial strain. The mechanisms
underlying the PWN-killing function of E. ludwigii AA4 remains
to be determined.

Some mechanisms of nematocidal activity against
B. xylophilus have been recently documented, such as
parasitization (Proenca et al., 2017; Ponpandian et al., 2019),
production of toxins (Abd El-Aal et al., 2021; Kahn et al.,
2021), antibiotics and destructive enzymes (Yang et al., 2007;
Huang et al., 2009) or competing for nutrients (Proenca et al.,
2019), and inducing systemic resistance of plants (Liang et al.,
2019; Han et al., 2021). The molecular mechanisms underlying
these PWN-killing effects are still largely unknown. In this
work, we demonstrate that the sdaB gene encoding the beta
subunit of L-serine dehydratase is involved in the nematocidal
activity of E. ludwigii AA4 against PWNs. The deletion of this
gene caused significant impairment in both L-serine hydrolase
activity (Figure 5) and ability to inhibit PWN (Figures 2, 6),
but not the growth of E. ludwigii AA4 in vitro or in planta
(Supplementary Figure 2). L-serine dehydratase activity is
widely found in diverse organisms. It specifically deaminates
L-serine to produce pyruvate and ammonia (Xu et al., 2011;
Grant, 2012; Thoden et al., 2014), and plays a critical role in
maintaining amino acid homeostasis during shifts in nutrient
availability (Velayudhan et al., 2004; Zhang et al., 2010;
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Chen et al., 2012). Until now, little or no data about the
contribution of L-serine dehydratase to microbial nematocidal
activities has been reported. L-serine is an important biomolecule,
and excessive amounts of intracellular serine inhibit the
biosynthesis of other amino acids (Zhang et al., 2018,
2019; Révora et al., 2020; Wang et al., 2020) essential
to the production of certain bacterial toxins via the non-
ribosomal peptide synthetase (NRPS) pathway (Cao et al., 2008;
Soeriyadi et al., 2021).

Here, we assume that the sdaB gene product might
control B. xylophilus by regulation of potential anti-nematode
compounds in E. ludwigii AA4. Considering the tight relationship
between L-serine and methylation reactions (Kalhan and
Hanson, 2012; Datta et al., 2016; Bignell et al., 2018;
Kriner and Subramaniam, 2020), such modulation may be linked
to bacterial epigenetics. We noticed that the supernatant of strain
AA4 cell culture has almost no effect (Figures 2, 6), which may be
due to the low concentration of nematocidal compounds in the
broth or suggests that the PWN-killing efficacy of AA4 might be
contact-dependent. In future work, we will more deeply analyze
the function of the sdaB gene in the nematocidal activity of
E. ludwigii AA4.

Colonization of plant hosts is a necessary precondition for
efficient pathogen inhibition by microbial biocontrol agents
(Vurukonda et al., 2018; Niu et al., 2020; Zhang J. et al., 2020;
Vandana et al., 2021). E. ludwigii AA4 was capable of colonizing
the needles of P. sylvestris by forming sturdy biofilms (Figure 7),
indicating its high affinity to pine needles, despite its presumed
origin from herbaceous host plants. This finding underlines the
great adaptability of the genus Enterobacter, which appears to
be highly adaptable to diverse environments (Shoebitz et al.,
2009; Singh et al., 2017; Shastry et al., 2020; Ranawat et al.,
2021). These features may facilitate the development of an AA4-
based biopesticide against B. xylophilus. Identification of genes
and proteins involved in resistance to pests and pathogens
is of long-term interest because such molecules represent the
next generation of targets for creation of nematode resistant
plants through genetic engineering or targeted mutagenesis. Our
findings also pave the way for introducing agriculture biocontrol
agents in forest disease management.
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Supplementary Figure 1 | The corrected mortality of 43 efficient pine wood
nematode (PWN)-killing bacterial strains. Bacillus pumilus YLT40 and Paenibacillus
polymyxa M-1 were used as positive and negative controls, respectively. Asterisk
indicates that differences among the means represented by the columns are
statistically significant (∗p < 0.0001). Two-tailed t-test (GrapPad Prism 8) was
used for the analysis.

Supplementary Figure 2 | Growth curves of wild-type E. ludwigii AA4, its sdaB
gene knock-out mutant, and AA41sdaB complemented with a wild-type sdaB
gene. WT, E. ludwigii AA4 wild-type strain; 1sdaB, AA4 sdaB gene knock-out
mutant; C1sdaB, AA41sdaB complemented with a wild-type sdaB gene; LB,
sterile Luria-Bertani liquid medium.

Supplementary Figure 3 | Disease ranks of the pine wilt disease (PWD) caused
by B. xylophilus under greenhouse conditions on day 9 after inoculation (scale
bars: 20 µm). In rank 0, stems and needles are green and plump. In rank 1,
yellowish speckles are presented on stems, and stems and needles appear
slightly shriveled. In rank 2, stems turn yellow and shriveled, and less than 25%
needles are partially wilted. In rank 3, stems turn yellow and shriveled, among
which 25–50% of needles are partially wilted. In rank 4, stems turn brownish and
completely shriveled, and more than 50% of needles are completely wilted and
turn yellowish. W, the whole views of P. sylvestris seedlings; T, the top views of
P. sylvestris seedlings; S, the stems of P. sylvestris seedlings; N, the needles of
P. sylvestris seedlings.

Supplementary Figure 4 | The location of miniTn10 transposon on the genome
sequence of E. ludwigii AA4. The site of miniTn10 transposon insertion is indicated
by a black triangle.

Supplementary Table 1 | Corrected mortality rates for the 43 efficient pine wood
nematode (PWN)-killing strains.
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