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Abstract:

Bacterial genomes often reflect a bias in the usage of codons. These biases are often most notable within highly expressed 
genes. While deviations in codon usage can be attributed to selection or mutational biases, they can also be functional, for 
example controlling gene expression or guiding protein structure. Several different metrics have been developed to identify 
biases in codon usage. Previously we released a database, CBDB: The Codon Bias Database, in which users could retrieve pre-
calculated codon bias data for bacterial RefSeq genomes. With the increase of bacterial genome sequence data since its release 
a new tool was needed. Here we present the Dynamic Codon Biaser (DCB) tool, a web application that dynamically calculates 
the codon usage bias statistics of prokaryotic genomes. DCB bases these calculations on 40 different highly expressed genes 
(HEGs) that are highly conserved across different prokaryotic species. A user can either specify an NCBI accession number or 
upload their own sequence. DCB returns both the bias statistics and the genome’s HEG sequences. These calculations have 
several downstream applications, such as evolutionary studies and phage–host predictions. The source code is freely available, 
and the website is hosted at www. cbdb. info.

DATA SUMMARY
The DCB webserver is available at www. cbdb. info and source 
code is available at https:// github. com/ BrianDehlinger/ 
DCB- Dynamic- Codon- Biaser.

INTRODUCTION
In many bacterial genomes there is a preferential usage of 
certain codons over other synonymous codons for the same 
amino acid. Processes such as mutational bias and transla-
tional selection often cause these biases (see reviews [1, 2]). 
Bacteria have been shown to have varying degrees of codon 
usage bias, suggesting that there are varying amounts of 
translational selection among different bacteria. In fact, genes 
that undergo more translational selection often have a greater 
codon usage bias [3, 4], and codon usage has been optimized 
by prokaryotic species over time to improve their translation 
[5]. Further bolstering this theory, evidence shows that high 

codon usage bias correlates with high gene expression [6]. 
Transcript structure and codon usage have been found to 
have significant effects on both protein production, mRNA 
abundance and stability, and also bacterial growth rate [7–14]. 
Biases in di- codon usage also have been observed [15, 16] 
and usage differs between the coding sequences of highly and 
lowly abundant proteins [17]. Furthermore, codon usage opti-
mization is well documented within bacteriophage species: 
phages frequently reflect the codon usage of their bacte-
rial host [18–22]. While similarities in subsequence usage, 
including codon bias, have been used to predict a phage’s 
host species [23, 24], alone it has limited success [24]. This 
prompted our prior development of CBDB: the Codon Bias 
Database [25], which contained precomputed calculations of 
codon bias usage within the highly expressed genes (HEGs) 
of bacterial Reference sequence (RefSeq) genomes [26].

A number of different metrics have been proposed to quan-
tify codon bias, including relative synonymous codon usage 
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(RSCU) [27], the codon adaptation index (CAI) [3], the 
self- consistent codon index (SSCI) [28] and relative codon 
adaptation index (rCAI) [29]. Rather than looking at the 
codons themselves to ascertain biases, a second approach 
exists in which biases are assessed relative to individual 
tRNA abundances, the tRNA adaptation index (tAI) [30]. 
Several resources for examining codon usage bias already 
exist (Table 1), including five web resources: CoCoPUTs [31], 
CAIcal [32], HEG- DB [33], SMS and COUSIN [34]. These 
web tools can be categorized as either a database (CoCoPUTs 
and HEG- DB) or interactive analysis for user- supplied 
sequences (CAIcal, SMS and COUSIN). The CoCoPUTs 
database provides a graphical user interface (GUI) that allows 
a user to specify a taxonomic id or scientific name and returns 
codon usage tables, the effective number of codons (ENC), 
and codon pair usage calculated from NCBI complete genome 
sequences [35]. HEG- DB gives the CAI values for HEGs 
of 200 bacterial genomes [32, 33]. Our previous database, 
CBDB, included codon usage metrics for HEGs for hundreds 
of bacterial RefSeq genomes [25], although with the introduc-
tion of our new tool presented here, it is no longer available. 
While the other tools listed in Table 1 are also capable of 
calculating codon metrics for HEGs, they require users to 
identify HEG sequences and supply these gene sequences 
(and/or codon usage tables).

Given the rate at which bacterial genomes are now being 
produced daily, a static resource has limited utility. Although 
CoCoPUTs integrates all complete genomes in GenBank, it 
does not include bacterial assemblies, the largest growing 
collection of bacterial genomic sequences. Furthermore, these 
databases must be updated by the tool’s team. The Dynamic 
Codon Biaser (DCB) was developed to facilitate statistical 
analysis of codon usage bias across different bacterial genomes 
using the 40 different highly conserved and highly expressed 

genes described by Sharp et al. [4]. This web application is 
dynamic and will identify HEG sequences and calculate 
results in real time for both publicly available genomes (draft 
or complete), by querying NCBI’s GenBank directly, as well 
as user- supplied genome sequences.

IMPLEMENTATION
The DCB was developed in Python 3 utilizing completely 
open source tools and software libraries including Prodigal 
[36], DIAMOND [37], Biopython [38], Beautifulsoup4 
(https://www. crummy. com/ software/ BeautifulSoup/) and 
Flask (http:// flask. pocoo. org/). DIAMOND and Prodigal 
identify HEGs and annotate genome sequences, respectively. 
While there are many homology tools available, DIAMOND 
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Codon usage bias is a key feature of many genomes. 
Within bacterial genomes, codon usage can emerge as 
a result of mutational bias and translational selection 
and has been associated with gene expression levels. 
Highly expressed genes often represent the strength 
of the bias within a given genome. We have developed 
a web tool – Dynamic Codon Biaser (DCB) – for users 
to calculate codon usage bias for any publicly avail-
able genome sequence (complete or draft) or upload 
their own sequence. Currently no tool exists for users 
to analyse individual strains or unpublished sequences. 
Thus, researchers can consider this important metric 
when analysing a bacterial genome. The source code for 
this tool is also publicly available.

Table 1. Available tools for calculating codon usage metrics

Tool Functionality Availability URL (citation)

CAIcal Calculates CAI for provided gene sequences and 
codon usage tables

Web http://genomes.urv.es/CAIcal/ [32]

CoCoPUTs Database of codon- pair and dinucleotide 
statistics for all genomes in GenBank

Web https://hive.biochemistry.gwu.edu/review/codon2 [31]

CodonW Calculates codon metrics for user- selected gene 
set and correspondence analysis

Local installation https://sourceforge.net/projects/codonw/

coRdon Calculates codon bias statistics R package https://www.bioconductor.org/packages/devel/bioc/vignettes/coRdon/
inst/doc/coRdon.html

COUSIN Calculates codon usage for user- supplied 
sequences

Web or install http://cousin.ird.fr/index.php [34]

EncPrime Calculates ENC metric Local installation https://github.com/jnovembre/ENCprime

GCUA Calculates codon metrics for user- selected gene 
set and correspondence analysis

Local installation http://mcinerneylab.com/software/gcua/

HEG- DB Database of CAI index of HEGs for 200 genomes Web http://genomes.urv.cat/HEG-DB/ [33]

SMS Calculates codon metrics for user- supplied 
sequences

Web https://www.bioinformatics.org/sms2/codon_usage.html
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was selected for its speed. Python flask was chosen as the web 
framework as it requires minimal support and is lightweight 
and scalable. The DCB webserver is available at www. cbdb. 
info and source code is available at https:// github. com/ Brian-
Dehlinger/ DCB- Dynamic- Codon- Biaser.

Fig. 1 outlines the process for analysis using either publicly 
available sequences from NCBI (left) or user- supplied 
genome sequences (right). For NCBI sequences, the web 
application accepts a RefSeq accession number as input. 
This can be either a complete genome or draft genome 
assembly. Beautifulsoup4 is used to navigate NCBI’s ftp 

back end and retrieve the organism’s assembly and anno-
tated coding sequences from the genome (*.fna files). If 
the genome sequence is not annotated, Prodigal is run to 
identify coding regions. DIAMOND then queries coding 
sequences (from either NCBI’s annotation or Prodigal 
predictions) against a local protein database containing 
representatives of the 40 HEGs described by Sharp et al. 
[4]. This database was constructed by utilizing the Identical 
Protein Groups tool on NCBI and filtering to only include 
prokaryotes from the UniProtKB/Swiss- Prot source data-
base [39]. The final database size included 1186 different 
sequences, representative of the phylogenetic diversity 
of sequenced prokaryotic species. This database can be 
retrieved via our GitHub repository, https://githubcom/
BrianDehlinger/DCB-Dynamic-Codon-Biaser./blob/
master/testApp/protein_databasefasta. The top DIAMOND 
hit for each of the 40 HEGs is identified and codon usage is 
calculated using a modified version of Biopython’s Codo-
nUsage module [38]. DCB reports three statistics related to 
codon usage: the relative synonymous codon usage (RSCU), 
the normalized relative synonymous codon usage (NRSCU) 
and frequency bias (HEG FB). The web application returns 
a zip file containing the statistics in addition to the HEG 
file. Statistics are written in comma- separated value (csv) 
files to facilitate analysis via Excel or Python or R.

Computer code providing the same functionality available 
through the web is also available through our GitHub reposi-
tory. Users can install and run the tool locally or set up their 
own web service. This code was developed using Python, 
HTML, CSS and Javascript for Linux Ubuntu 14.04 or higher. 
Dependencies include Prodigal and the following Python 
modules: Biopython, Beautifulsoup4, Pandas, Numpy, flask, 
requests and flask- bootstrap.

RESULTS
To evaluate the utility of DCB, three investigations were 
conducted. First, we evaluated the codon usage of Escherichia 
coli str. K- 12 substr. MG1655 (accession NZ_CP032667.1). 
Entering this accession number into the web interface, the 
results are quickly generated and automatically downloaded 
in a zipped folder. These results include two files: (1) a 
comma- separated value file listing the codon usage statis-
tics within the HEGs and (2) a fasta format file listing the 
HEG sequences used to compute the codon usage statistics. 
Note, these usage statistics could be used to evaluate all 
coding sequences within the genome; such codon usage 
tables are required for several of the tools listed in Table 1, 
such as CAIcal. This genome was selected as it is also one 
of the 200 genomes available in HEG- DB, which identi-
fies codon usage biases in ribosomal proteins and predicts 
gene expression of all genes in the genome based upon 
their usage of these biases. Furthermore, this strain is an 
available option in CoCoPUTs. While DCB provides codon 
usage metrics based upon HEGs, CoCoPUTs provides 
raw counts of usage for the entire sequence. In this first 
proof- of- concept example, we selected a complete genome 

Fig. 1. Basic workflows for DCB.
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sequence. In the event that we wanted to evaluate a draft 
assembly or a user- supplied sequence, neither HEG- DB nor 
CoCoPUTs would be capable of conducting this analysis.

In our second investigation, we focused on comparison of 
several draft and complete assemblies. In March 2020 a new 
species of lactobacilli was identified, Lactobacillus mulieris 
[40], which also resulted in taxonomic reclassification of 
several Lactobacillus jensenii strains [40, 41]. Using DCB, we 
wanted to examine the codon usage profiles of L. mulieris and 
L. jensenii as well as other Lactobacillus species of the urogenital 
tract and lactobacilli of the gut. As expected, L. mulieris and 
L. jensenii have the most similar codon usage of the species 
examined (Fig. 2). Furthermore, L. jensenii has a codon usage 
more similar to other members of the Lactobacillus delbrueckii 
group, which are also found in the urogenital microbiota, than 
the Lactobacillus casei group (represented by L. casei from the 
gut microbiota). Generally speaking, the observed variation in 
codon usage mirrors other phylogenetic markers for the genus 
[42]. An open question, however, is how does the different 
environments in which these strains are found (urogenital vs. 
gut) shape codon usage. Previous metagenomic studies have 
noted such adaptations of entire microbial communities to their 
environments [43].

In our third proof- of- concept example, we returned to our 
original motivation behind exploring codon usage in bacteria 
– phages. Phage Pbunalikevirus phiHabibi was isolated from 
Lake Michigan and found to be able to lyse both Pseudomonas 
aeruginosa ATCC 15692 and E. coli C [44]. Codon usage biases 
were calculated by DCB for these two hosts, accession numbers 
NC_010468 and NZ_CP017149, respectively. RSCU values for 
each host were compared to RSCU values calculated for the 
phage coding regions individually and collectively (accession 
number KT254132). Python code to perform this calculation 
is provided in File S1 (available in the online version of this 
article). phiHabibi had a codon usage bias more similar to the P. 

aeruginosa HEGs (r=0.8205) than the E. coli HEGs (r=0.5500), 
suggesting that P. aeruginosa is more likely to be the native or 
frequent host of this isolated phage. In total, 85 of the 90 protein 
coding genes similarly exhibited a codon usage more similar to 
P. aeruginosa HEGs (Table S1). Most notable is the similarity in 
codon usage between the P. aeruginosa HEGs and phiHabibi 
structural proteins. Previous bioinformatic analyses of phages 
and hosts have made similar observations [20]. Conducting such 
codon usage comparisons can also be useful for engineering 
phages; previous work has shown that codon optimization and 
deoptimization can increase and decrease, respectively, phage 
fitness [45, 46]. Given the recent renewed interest in phages for 
therapeutic use, codon usage is a promising avenue for phage 
engineering [47, 48].

DCB was specifically designed such that it has access to the 
latest publicly available complete and draft genomes; it is not 
dependent upon database updates, but rather it directly retrieves 
data from NCBI. Furthermore, it is flexible, allowing the user 
to upload a FASTA format file directly and does not require 
the user to supply HEGs; they are automatically detected for 
unannotated sequences, and HEG sequences are returned for 
all searches. For the calculation of a single genome, DCB uses 
around 70–75 MB of HDD space and around 72 MB of RAM. 
These run- time and memory usage statistics are informative for 
those users interested in running the tool locally rather than via 
the webserver, which is hosted as an EC2 instance. The source 
code is written to utilize one CPU core but allows for concurrent 
requests if a concurrent WSGI server is used as a wrapper for 
the flask server.

CONCLUSION
DCB provides codon usage bias analysis for all publicly available 
or user- supplied prokaryotic genomes. The program is available 
as a web application with source code available for those users 
interested in running it locally. The program is also modular 
and can be modified and expanded upon to meet different 
use cases. Because calculations can be generated in a matter of 
seconds and new prokaryotic genomes are being deposited in 
GenBank daily, a dynamic web service provides a better solu-
tion than static databases. Data generated from DCB analyses 
can easily be integrated into, for example, evolutionary studies 
of prokaryotes, comparative genomic studies and phage–host 
investigations.
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