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Abstract

Background

We recently reported improved glycemic control with reduced insulin dose in subjects with
type 1 diabetes treated with the sodium glucose co-transporter-2 inhibitor empagliflozin. To
further characterize the effects, we analyzed diurnal glycemic patterns by continuous glu-
cose monitoring (CGM).

Methods

In an 8-week single-arm open-label pilot study of empagliflozin, we compared ambulatory
glucose profiles produced from CGM data during 2-week intervals in a placebo run-in base-
line period, end-of-treatment, and post-treatment. Change in glycemic exposure was evalu-
ated by area under the median curve according to time of day (AUCtoTaL 12:00am-
11:55pm; AUCpay 7:05am-10:55pm, AUCy gnt 11:00pm-7:00am), as well as glycemic vari-
ability, glycemic stability and time-in-target (>70 to <140mg/dL).

Results

The 40 patients (26 on insulin pump) were aged 2445 years and BMI 24.5+3.2 kg/m?. Con-
sistent with the observed HbA1c decrease (8.0+0.9% to 7.6+£0.9%, p<0.0001), normalized
AUCto7aL CGM decreased from 153.7+25.4 to 149.0430.2mg/dL h at end-of-treatment

(p =0.31), and significantly increased post-treatment (164.1+29.5mg/dL-h, p = 0.02). The
numerical decrease in normalized AUCy gt (152.0£36.6 to 141.9+34.4mg/dL-h, p =0.13)
exceeded AUCpay (154.5+24.5 to 152.6+30.4mg/dL-h, p = 0.65). Trends toward lower gly-
cemic variability (83.1£18.9 to 75.6+28.6mg/dL, p = 0.06) and little change in glycemic
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stability (10.8+3.6 to 10.3+4.5mg/dL/h, p = 0.51) were observed. When empagliflozin
was discontinued, these worsened relative to baseline (89.3+19.3mg/dL, p = 0.04

and 11.8 £3.7mg/dL/hr, p = 0.08). Time-in-target numerically increased (40.2+11.9 to
43.1+£13.5%, p = 0.69) at end-of-treatment but reversed post-treatment. Findings were
similar on stratification of pump and MDI subjects.

Conclusions

We observed that empagliflozin was associated with patterns of improved nighttime glyce-
mia more prominent than daytime.

Trial Registration
Clinicaltrials.gov NCT01392560

Introduction

Despite the advent of new therapeutic strategies and technologies to improve type 1 diabetes
mellitus (T1DM) management, target glycemic control is not systematically achieved and fur-
ther optimization of therapy is hindered by hypoglycemia and weight gain.[1-5] Akin to stud-
ies in type 2 diabetes,[6-8] sodium glucose cotransporter-2 (SGLT2) inhibitors may be
effective as adjunctive-to-insulin therapy in T1DM to favourably improve glycemic control,
hypoglycemia risk, and the weight gain associated with over-insulinization.[9-15]

A potential clinical question linked to SGLT2 inhibitor therapy as adjunctive-to-insulin in
T1DM is the degree of possible insulin dose adjustment that may be required upon initiation
of treatment to minimize a potential hypoglycemia risk. Though the decision to adjust insulin
doses at initiation is clearly influenced by specific patient characteristics such as level of glyce-
mic control and current frequency of hypoglycemia, inherent antihyperglycemic features of
SGLT?2 therapy in patients with TIDM requires further analysis. From a clinical perspective, it
remains to be determined whether the antihyperglycemic effect is most prominent during the
day when post-prandial glycemic variability occurs, or whether the effect is prominent during
nighttime hours when subjects are primarily fasted. This knowledge could inform the design of
insulin dose adjustment in randomized control trials and the eventual application of adjunctive
SGLT?2 inhibitor therapy in T1DM clinical practice.

In the pivotal 8-week single arm, open-label adjunctive-to-insulin renal mechanistic pilot
trial of empagliflozin in 40 subjects with T1IDM, improvements in HbA1C, hypoglycemic risk,
and weight loss were observed.[10, 16, 17] To further characterize the glycemic effects of empa-
gliflozin, we explored diurnal glycemic patterns from interstitial fluid enzyme-based CGM
using analysis by ambulatory glucose profiles (AGP).[18] Additionally, we evaluated these
diurnal patterns stratified according to insulin pump and multiple daily injection (MDI)
subgroups.

Methods

The methods of the open-label 8-week Adjunctive-To-Insulin and Renal MechAnistic pilot
trial (ATIRMA trial) have previously been published,[10, 16, 17, 19] and the study protocol is
included in supplemental materials to this manuscript (S1 Protocol). In brief, we recruited
normotensive, normoalbuminuric adult patients with TIDM and HbA1C 6.5-11.0% (48-97
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mmol/mol). Glycemic measures in this trial were exploratory, while renal outcomes repre-
sented the primary analysis.[10, 16] Subjects underwent a 2-week placebo run-in period,
8-week treatment period with open-label empagliflozin 25 mg oral once daily, and 2-week
post-treatment follow-up period. Participants documented daily capillary glucose, carbohy-
drate intake, and insulin doses. Given anticipated increases in daily urinary glucose excretion
(by 80-90 g, which represents approximately one-third of typical daily carbohydrate intake),
prandial insulin was reduced by 30%.[20] As an additional safety measure, basal insulin was
reduced by 30%.[20] Subsequent insulin dose adjustments were performed under investigator
guidance based on capillary glucose measurements. Recruitment began in July 2011, and the
study took place from August 2011 to August 2012. The protocol and consent procedures were
conducted in accordance with the World Medical Association’s Helsinki Declaration and were
approved by the local Research Ethics Board at the University Health Network (Toronto, ON,
Canada) prior to participant recruitment; all subjects gave informed written consent prior to
start of study procedures. The study was registered in the Clinicaltrials.gov registry with the
unique identifier NCT01392560, and the authors confirm that all ongoing and related trials for
this drug/intervention are registered

Ambulatory Glucose Profile Data Handling

Subjects used unblinded continuous glucose monitoring (Sof-Sensor electrochemical sensors,
Sen-serter insertion device, MiniLink radio frequency transmitter, Guardian REAL-Time Con-
tinuous Glucose Monitoring System [Medtronic], and Contour Link Blood Glucose Meter
[Bayer]) throughout the study. CGM results were analyzed and averaged over 2-week AGP
assessment periods to provide modal day estimates of pre-specified conventional parameters of
glycemic exposure, glycemic variability, and glycemic stability during the 2-week placebo run-
in period (baseline), weeks 7 and 8 (end-of-treatment) and the two week period following dis-
continuation of empagliflozin (post-treatment).[18, 21, 22] Glycemic Exposure was repre-
sented by the pre-specified area under the median curve of sensor glucose readings (AUC).
AUCrora1 was calculated as the sum of 24 hourly median AUC and reported normalized in
units of mg/dL*hr and stratified according to daytime (AUCpay, 7:05am-10:55pm) and night-
time (AUCyigur, 11:00pm-7:00am) periods.[18, 21, 22] Glycemic variability was represented
as the pre-specified mean interquartile range (IQR, mg/dL) for each two week study period, in
which lower values represent less variability.[18, 21, 22] Glycemic stability was determined
through calculation of the pre-specified mean absolute hourly rate of change in the median
curve (mg/dl/hr). As such, it is a reflection of the fluctuations in glucose levels throughout the
day with lower values indicating better glycemic stability. Time in target, hypoglycemic, and
hyperglycemic range were determined by tabulation of the percentage of time spent in target
(>70 to <140mg/dL), hypoglycemia (<70mg/dL), and hyperglycemia (>>180mg/dL) ranges.

Statistical Analysis

All analyses were performed using SAS System Version 9.3 (SAS Institute, Cary, NC). Data are
presented as means + standard deviation throughout the manuscript. Analysis of AGP parame-
ters included evaluable data from baseline and end-of-treatment periods for 39 subjects. The
post-treatment period included 38 evaluable subjects due to missing data from a subject in the
MDI group. Comparisons of AGP parameters were performed using paired student’s t-tests
between baseline and each of the subsequent AGP assessment periods. Statistical significance
was defined by p-value <0.05. As part of an ad-hoc sensitivity analysis, in addition to the three
pre-specified measures of glycemic exposure, glycemic variability, and glycemic stability
described above, other CGM metrics were calculated as alternatives to the AGP. Mean sensor
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glucose (measured in mg/dL) was calculated as an alternative measurement of glycemic expo-
sure. The standard deviation of all glucose instances (SD, mg/dL) and the coefficient of varia-
tion (%CV, %) were calculated as alternative measurements of glycemic variability. As an
alternative measurement of glycemic stability, the mean amplitude of glycemic excursions
(MAGE, mg/dL) was calculated. MAGE, originally proposed by John Service and colleagues at
Mayo Clinic, was not designed for CGM data, and a modified algorithm was used for the deter-
mination of MAGE, as outlined in S1 File. Due to limitations in its calculation using CGM, 23
participants were included in the MAGE analysis. We note that IQR takes into account the
14-day CGM period, while MAGE uses only one representative day selected a priori; addition-
ally, while IQR is not affected by standard deviation, MAGE is dependent on SD for its
calculations.

Results

The study flow chart is shown in Fig 1. The clinical characteristics of the 40 study subjects are
presented in the first section of Table 1, and are also stratified according to insulin pump

(n =26; 65%) and MDI (n = 14; 35%) subgroups. The second section of Table 1 summarizes
the baseline, end of treatment and follow-up glycemic measures. In comparing baseline to end-
of-treatment and baseline to post-treatment effects, as previously reported[10] we found that
HbAIc improved from 8.03+0.91 to 7.62+0.15% over the 8-week baseline to end-of-treatment
periods (p<0.0001) and remained lower in the 2-week post-treatment interval at 7.74+0.16%
(p =0.007). A similar pattern was seen among members of the pump subgroup, while members
of the smaller MDI subgroup showed a reduction at end-of-treatment that was similar in mag-
nitude but not statistically significant, and there was a subsequent non-significant rise in
HbAIc post-treatment.

Glycemic exposure, assessed over a 2-week period, demonstrated a numerical improvement
from baseline to end-of-treatment. Specifically, normalized AUCrora1 numerically decreased
from baseline to end-of-treatment (153.7+25.4 to 149.0+30.2 mg/dL*hr, p = 0.31), which
increased significantly post-treatment to 164.1+29.5 mg/dL*hr compared to baseline (p = 0.02,
Table 1). Mean sensor glucose, evaluated in sensitivity analysis as an alternative glycemic expo-
sure measure to and highly correlated with AUC, also decreased from baseline to end-of-treat-
ment (from 161.5+24.2 mg/dL to 155.6£28.5 mg/dL, p = 0.16), and increased post-treatment
(to 171.3+28.6 mg/dL, p = 0.02). Similar patterns were observed in the insulin pump and MDI
subgroups, though statistical significance for the post-treatment worsening of glycemic expo-
sure was only observed in the MDI subgroup. To emphasize the diurnal patterns in glycemic
exposure, we show the mean baseline, end-of-treatment and post-treatment AUC in Fig 2. The
baseline to end-of-treatment trend in decreased glycemic exposure was associated with
improvement during nighttime hours as compared to daytime hours. Secondly, the increased
glycemic exposure that occurred post-treatment was observed during both nighttime and day-
time hours, but statistical significance was seen specifically for the daytime post-treatment val-
ues compared to baseline (p = 0.02).

A trend toward lower glycemic variability (IQR) from baseline to end-of-treatment (83.1
+18.9 to 75.6+28.6mg/dL, p = 0.06) was observed, and levels increased in the post-treatment
interval relative to baseline (89.3+19.3mg/dL, p = 0.04, Table 1). This pattern was also observed
in sensitivity analysis for the alternative measures of glycemic variability, though in these
instances the improved variability at 8 weeks was statistically significant. Specifically, SD was
65.1+13.0mg/dL at baseline, 59.5+17.1mg/dL at end-of-treatment (p = 0.02 compared to base-
line), and 68.4+13.3mg/dL post-treatment (p = 0.08 compared to baseline). Similarly, %CV
was 40.5+6.5% at baseline, 38.2+7.6% at end-of-treatment (p = 0.02), and 40.3+6.75% post-

PLOS ONE | DOI:10.1371/journal.pone.0141085 November 6, 2015 4/11



" ®
@ ’ PLOS ‘ ONE SGLT2 Inhibition and Diurnal Glycemic Patterns

Assessed for eligibility (n=52)

‘ 5> Excluded (n=8): Not meeting
l study inclusion criteria

Entered in placebo runin phase (n=44)

Excluded (n=2): Not meeting
study inclusion criteria

>

\ 4
Entered in empagliflozin treatment phase (n=42)

> Discontinued intervention
l due to adverse events (n=2)

Completed treatment and follow-up phases (n=40)

Excluded (n=1): Non-
evaluable CGM data

>
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Fig 1. Flow chart for study participants.
doi:10.1371/journal.pone.0141085.g001

treatment (p = 0.71). A similar significant pattern of change in IQR was observed among mem-
bers of the pump subgroup, while members of the smaller MDI subgroup showed an increase
in IQR post-treatment that was similar in magnitude but not statistically significant.

There was little evidence of a change in glycemic stability (10.8+3.6 to 10.3+4.5mg/dL/h,
p =0.51, Table 1) from the baseline interval to the end-of-treatment interval, followed by a
trend to worsened stability compared to baseline in the post-treatment period (11.8+3.7mg/
dL/hr, p = 0.08). In sensitivity analysis for glycemic stability, the changes in MAGE were simi-
lar. Specifically, MAGE demonstrated a non-significant decrease from 126.5+45.7mg/dL at
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Table 1. Characteristics of the 40 Subjects with Type 1 Diabetes.

Total Cohort (N = 40) Insulin Pump Subgroup (n = 26) MDI Subgroup (n = 14)

Clinical Characteristics
Male Sex, N (%) 20 (50) 13 (50) 7 (50)
Age 243 +5.1 248+53 232+46
Diabetes Duration

>1to 5 years 4 2 2

>5 years 36 24 12
Total Daily Insulin (units) 54.7 +20.4 53.9+19.8 56.3 £ 22.3
BMI (kg/m?) 245+3.2 247 +3.6 242+23

Glycemic Measures*

Baseline Fasting Glucose (mg/dL) 180.18 + 87.66 164.88 £ 66.24 208.62 + 115.2
HBA1c (%)

Baseline 8.03 £ 0.91 7.95 £ 0.83 8.16 + 1.06

End-of-treatment 762+0.15¢ 7.52+0.16 t 7.81 £0.31

Post-treatment 774016 1 757 +£0.16 8.05+0.34
Glycemic Exposure (mg/dL)*hr

Baseline 153.7 £ 25.4 156.3 + 26.1 148.3 £23.9

End-of-treatment 149.0 £ 30.2 151.6 £ 26.9 143.8 £ 36.7

Post-treatment 164.1£29.5 162.9 £ 28.4 166.5 +32.6 T
Glycemic Variability (mg/dL)

Baseline 83.1 £ 18.9 81.3+17.8 86.7 £21.2

End-of-treatment 75.6 £ 28.6 751 +£325 76.5+19.7

Post-treatment 89.3+19.3 ¢ 89.2+216 ¢ 89.4+14.7
Glycemic Stability (mg/dL/hr)

Baseline 10.8 + 3.6 10.1 £ 3.1 122 +4.2

End-of-treatment 103145 10.0+ 4.6 11.0+4.3

Post-treatment 11.8+3.7 11.5+38 1 12.3+3.6
Percentage of Time Spent 70-140mg/dL

Baseline 40.2+11.9 39.9+13.8 409+ 7.1

End-of-treatment 43.1+13.5 43.9+14.2 41.7+12.2

Post-treatment 35.0+12.1 36.4+125 322+11.2¢
Percentage of Time Spent >180mg/dL

Baseline 34.1+14.4 34.8+16.0 32.6+10.8

End-of-treatment 29.1+149 29.8+ 155 27.8+14.3

Post-treatment 39.8+15.7 38.9+15.0 415+17.4 1
Percentage of Time Spent <70mg/dL

Baseline 5.0+4.6 3.7+29 76+6.2

End-of-treatment 52+6.4 33+28 9.1+94

Post-treatment 5.0+4.9 40+35 6.9+6.5

Unless otherwise indicated all data are presented as mean * SD.

Comparisons are made between end-of-treatment and baseline, or post-treatment and baseline within the Total Cohort and within each of the Insulin
Pump and MDI subgroups.

* For the analysis of AGP parameters, evaluable data from baseline and end of treatment periods was available for 39 subjects. The post-treatment
period included 38 evaluable subjects due to missing data from a subject in the MDI group.

T Indicates p<0.05 for comparison with the corresponding baseline value. Specifically: HbA1c end-of-treatment comparison with baseline for the Total
Cohort, p<0.0001; post-treatment comparison with baseline for the Total Cohort, p = 0.007; end-of-treatment comparison with baseline for the Pump
Group, p<0.0001; post-treatment comparison with baseline for the Pump Group, p = 0.0007. Glycemic Exposure post-treatment comparison with baseline
for the Total Cohort, p = 0.02; post-treatment comparison with baseline for the MDI Group, p = 0.01. Glycemic Variability post-treatment comparison with
baseline for the Total Cohort, p = 0.04; post-treatment comparison with baseline for the Pump Group, p = 0.047. Glycemic Stability post-treatment
comparison with baseline for the Pump Group, p = 0.03. Percentage of Time Spent >180mg/dL post-treatment comparison with baseline for the MDI
Group, p = 0.04. Percentage of Time Spent 70-140mg/dL post-treatment comparison with baseline for the MDI Group, p = 0.003.

doi:10.1371/journal.pone.0141085.1001
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Fig 2. Average Hourly Glycemic Exposure According to Nighttime, Daytime, and Total Hours. Hourly glycemic exposure was evaluated by area under
the median curve according to time of day: AUCtotaL 12:00am-11:55pm; AUCpay 7:05am-10:55pm, AUCygut 11:00pm-7:00am. P>0.05 for all
comparisons except for those significant differences indicated. 25(64%) participants saw a reduction in AUCtotaL from baseline to end-of-treatment, while 14
(36%) saw an increase. 28(72%) participants saw a reduction in AUCy,gHT from baseline to end-of-treatment, while 11(28%) saw an increase.

doi:10.1371/journal.pone.0141085.9002

baseline to 120.3+57.1mg/dL at end-of-treatment (p = 0.68) and rose to 130.9+51.9mg/dL
post-treatment (p = 0.76).

Percentage of time spent in target range (70-140 mg/dL) showed a trend toward an increase
from baseline to end-of-treatment and a trend toward a decrease post-treatment, but this post-
treatment decrease in time in target was significant only for the MDI subgroup. While trend
toward a decrease in the percentage of time spent in hyperglycemia (>180 mg/dL) and trend
toward an increase post-treatment were observed, the post-treatment increase was only statisti-
cally significant for the MDI subgroup. Percentage of time spent in hypoglycemia did not
appear to change from baseline, regardless of pump or MDI subgroups (Table 1).

Associated with these glycemic patterns were a change in the mean total daily insulin dose
requirements, which we have reported previously.[10] Specifically, total daily insulin decreased
from 54.7+20.4 units at baseline to 45.8+18.8 units at end-of-treatment (p<0.0001 compared
to baseline), restoring to 54.2+21.1 units post-treatment. This change was mostly attributable
to basal insulin, which decreased from 25.7+10.6 units at baseline to 19.5+7.9 units at end-of-
treatment (p<0.0001 compared to baseline), restoring to 24.0+9.8 units post-treatment. These
end-of-treatment reductions corresponded to 17% for total daily insulin and 24% for basal
insulin. In contrast, mean prandial insulin delivered was 29.0+15.8 units at baseline, 27.0+14.2
units at end-of-treatment (p = 0.19 compared to baseline), and 30.2+16.1 units post-treatment.
We observed (and previously reported)[10] an overall increase in carbohydrate intake from
baseline to end-of-treatment, from 177+121 g/day to 229+160 g/day (p = 0.0007).

Discussion

We observed that the improvement in HbA1c associated with 8-week adjunctive-to-insulin
therapy with empagliflozin in patients with T1DM was associated with: 1) Trends toward
improvement in glycemic exposure and the percentage of time spent in hyperglycemic and tar-
get ranges; 2) Significant improvement in two of the three measures of glycemic variability; 3)
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Trend toward improvement in glycemic exposure that was primarily explained by the improve-
ment observed during nighttime hours despite a decrease in overnight basal insulin delivery; 4)
Significant worsening in glycemic exposure and glycemic variability when empagliflozin ther-
apy was discontinued; and 5) A similar magnitude of glycemic impact regardless of insulin
pump or MDI use. Although we previously observed a significant improvement in Alc (from
8.0+0.9% at baseline to 7.6+0.9% at end-of-treatment)[10], the lack of significance in the
decrease in glycemic exposure as measured by AGP may relate to the effects of a concomitant
decrease in basal insulin doses and an increase in the total carbohydrate intake over the 8
weeks of study.

While CGM parameters have been explored in a 2-week T1DM trial of the SGLT?2 inhibitor
dapagliflozin, in which highest doses showed a trend toward improved glucose variability com-
pared to placebo,[15] the current analysis represents a longer-term study specifically evaluating
diurnal patterns in the effect of these agents. Although studies of type 1 and type 2 diabetes
have shown substantial incremental benefit of different SGLT2 inhibitors on fasting glucose
values,[6-8, 23-27] most studies have implied that a fundamental effect of SGLT2 inhibition is
the attenuation of post-prandial glucose excursions.[28, 29] The use of the CGM-based AGP in
the current study afforded a unique opportunity to explore these diurnal patterns among a
cohort of patients with a range of baseline HbA1c from target levels as low as 6.5%. These
results indicated that the improvement in glycemic exposure was most prominent in the inter-
val of time from 11 pm to 7 am, when subjects were primarily asleep, fasted, and when the
effect of basal rather than prandial insulin was dominant. That this improvement was accom-
panied by a substantial decrease in basal insulin doses over 8 weeks (from 25.7+10.6 at baseline
to 19.5+7.9 units at end-of-treatment, p<0.0001; previously published[10]) implies that the
improvement in nighttime glycemic exposure was a direct effect of empagliflozin therapy. To
the contrary, the 2-week study of dapagliflozin found that reduction in total daily insulin was
primarily a result of prandial rather than basal insulin reduction. Though we cannot explain
this inconsistency between the two studies, a different insulin-adjustment strategy, the lower
baseline HbA1c, and the longer duration of SGLT2 inhibitor therapy observed in the current
study may account for these findings. Taken together, these two studies suggest that a reduc-
tion in total daily insulin may be needed for subjects with T1DM at the time of initiation of an
SGLT?2 inhibitor. The optimal level of insulin adjustment should be based inherently on patient
needs at the time of adjunctive treatment. Baseline HbA1c levels and other variables such as
the level of physical activity, changes in dietary adherence, and concomitant conditions are
clinical considerations that may influence the magnitude of potential insulin adjustments.
Assessment of glycemic status during the first few days of treatment with an SGLT?2 inhibitor
may be warranted by patients or care providers in order to appropriately adjust the insulin reg-
imen based on individual requirements.

The finding of worsened glycemic exposure and glycemic variability after discontinuation
of empagliflozin therapy in the current study is an important observation that supports phar-
macological efficacy, particularly in light of the a priori insulin dose reductions. In support of
the findings in the short-term randomized controlled trial,[15] worsened glycemic parameters
after withdrawal-also observed with fasting capillary glucose[10] strongly supports the 8-week
efficacy of empagliflozin independent of the confounding interventions in the study such as
use of unblinded CGM and clinical trial participation. That differences in glycemic exposure
were not systematically seen from empagliflozin therapy between the insulin pump and the
MDI regimen subgroups implies that method of insulin delivery does not influence SGLT2
inhibitor efficacy.

Although this represents the first outpatient and longest SGLT?2 inhibitor study in subjects
with T1DM, it was limited by the restricted sample size that may not allow confident
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conclusions to be drawn from the stratified analysis. Furthermore, it was limited by its single
arm exploratory design and by categorization of diurnal patterns based on time of day rather
than on explicitly known fasted and prandial time intervals. The unbiased and continuous
nature of CGM versus the episodic and biased nature of capillary glucose measurement and
symptom reporting, along with their inherent differences in methodology, may explain the
inconsistency between hypoglycemia reported in this analysis and the improved rates of hypo-
glycemia detected by capillary glucose and by symptoms during empagliflozin treatment
reported previously.[10]

In summary, the previously-demonstrated impact of empagliflozin treatment on glycemic
control in subjects with TIDM appears to be comparable between patients on insulin pump
therapy and MDI. Furthermore, the improved glycemic control appears to result from
improvement in nighttime glycemia more prominently than daytime. This novel observation
may inform insulin dose adjustment in future T1DM clinical trials with SGLT2 inhibitors.
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