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Abstract: To evaluate the association among complement factor H-related (CFHRs) gene deficiency,
complement factor H (CFH) autoantibodies, and atypical hemolytic uremic syndrome (aHUS)
susceptibility. EMBASE, PubMed, and the ISI Web of Science databases were searched for all
eligible studies on the relationship among CFHRs deficiency, anti-FH autoantibodies, and aHUS
risk. Eight case-control studies with 927 cases and 1182 controls were included in this study. CFHR1
deficiency was significantly associated with an increased risk of aHUS (odds ratio (OR) = 3.61,
95% confidence interval (95% CI), 1.96, 6.63, p < 0.001), while no association was demonstrated in
individuals with only CFHR1/R3 deficiency (OR = 1.32, 95% CI, 0.50, 3.50, p = 0.56). Moreover,
a more significant correlation was observed in people with both FH-anti autoantibodies and
CFHR1 deficiency (OR = 11.75, 95% CI, 4.53, 30.44, p < 0.001) in contrast to those with only CFHR1
deficiency. In addition, the results were essentially consistent among subgroups stratified by study
quality, ethnicity, and gene detection methods. The present meta-analysis indicated that CFHR1
deletion was significantly associated with the risk of aHUS, particularly when combined with
anti-FH autoantibodies, indicating that potential interactions among CFHR1 deficiency and anti-FH
autoantibodies might impact the risk of aHUS.

Keywords: complement factor H-related genes; complement factor H; atypical hemolytic uremic
syndrome; meta-analysis

1. Introduction

Atypical, non-diarrhea-associated hemolytic uremic syndrome (aHUS) is an aggressive, fatal
systemic disease, which is characterized by thrombocytopenia, microangiopathic hemolysis, and acute
renal injury [1]. The main populations affected are children and young adults. In comparison with
typical hemolytic uremic syndrome, aHUS has a higher risk of permanent renal failure and poorer
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prognosis [2]. It is reported that 25% of patients died in the acute phase, and up to 50% of patients who
progress to end-stage renal disease (ESRD) need renal transplantation or dialysis for the remainder of
their life [3,4]. Therefore, investigating the associated relevant risk factors may contribute to designing
new diagnostic approaches and therapeutic guidelines.

The dysregulation of the alternative pathway of the complement cascade has been confirmed
to play a pivotal role in the development of aHUS [5]. Mutations, polymorphisms, deficiency,
or rearrangements in gene coding for various complement proteins have been reported in aHUS
patients [6]. As the main complement protein, complement factor H (CFH) mediates the elimination of
central complement activation component C3b [7]. The available data indicated that the mutations in
CFH were linked to uncontrolled activation of the complement alternative pathway (CAP). Cell surface
lack of control of the CAP could lead to CAP over-activation, which promotes microthrombi formation
within small blood vessels, thereby resulting in tissue ischemia of the kidney [8,9]. Previous studies
have revealed that CFH activity was partly modulated by factor H-related (FHR) proteins [10].
CFHRs (CFHR1-5) encoding FHR proteins and manifesting high degrees of sequence identity with CFH
indicated that mutations in CFHRs may be partly responsible for the function abnormalities of CFH [11].
Several studies have investigated the association between CFHR deficiency and the pathogenesis of
aHUS [12,13]. Although some studies have found an increased risk with CFHR1 deficiency, others have
failed to find this correlation [14,15]. Furthermore, it has been proposed that anti-FH autoantibodies
together with CFHR1 deficiency took part in the formation of CFH dysfunction, indicating that both
autoantibodies and CFHR1 absence might participate in the occurrence of aHUS. However, there
still remains a need to attach importance to the effect of interactions among autoantibodies of the
complement factors and CAP regulators on the development of aHUS [16,17].

Therefore, we conducted a meta-analysis of all eligible studies to estimate the association among
CFHRs deficiency, anti-FH autoantibodies, and aHUS risk.

2. Materials and Methods

2.1. Search Strategy

A systematic literature search of PubMed, EMBASE, and the ISI Web of Science databases was
performed up to March 2016. The following search terms and key words were used: (“CFHRs” or
“complement factor H-related protein” or “FH-related proteins” or “anti-FH” or “factor H antibodies”
or “anti-complement factor H autoantibody”) and (“aHUS ”or “atypical hemolytic uremic syndrome or
atypical HUS”). There were no language restrictions. In addition, we manually searched the reference
lists and pertinent reviews of retrieved articles for published or unpublished data. When datasets
were incomplete for the required data, ongoing investigations or related experts were contacted for
more information.

2.2. Study Selection

An initial screen of abstracts and titles was performed to identify all potential retrieved articles.
Thereafter the full text was reviewed to determine whether the articles were suitable for this systematic
review. Articles were eligible for inclusion in this study if they fulfilled the following criteria: (1) the
study objective was to evaluate the relationship among CFHRs deficiency, anti-FH autoantibodies,
and aHUS; (2) the original article was published as a cohort, case-control, or cross-sectional study;
(3) the article provided the odds ratio (OR), relative risk (RR), or hazard ratio (HR) with a 95%
confidence interval (95% CI) or sufficient data was provided to calculate it. If the articles reported
on the same or overlapping data, only the article with the most updated data was included in this
study. Three investigators (Hong Jiang, Meng-Nan Fan, and Min Yang) identified the eligible studies
independently. Any differences in opinion were resolved through consensus with a third author
(Le Ma) for adjudication.
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2.3. Data Extraction and Quality Assessment

The following data were extracted using a standardized data extraction form that included:
first author’s name, publication year, country of origin, study design, characteristics of the study
population (number of aHUS cases and controls, origin of comparison group), gene and protein
detection methods. If a study provided several risk estimates, only the most completely adjusted
estimate was extracted. The quality of studies was evaluated based on the Newcastle-Ottawa
Quality Assessment Scale (NOS) [18]. Each article was estimated with three domains (eight aspects):
four criteria regarding the selection of participants (case definition, representativeness of the cases,
selection of controls, and definition of controls), one item relating to comparability (comparability
of cases and controls on the basis of the design or analysis), three items relating to outcomes
(ascertainment of exposure, same method of ascertainment for cases and controls, and comparison of
nonresponse rate between cases and controls). For each study, a maximum of one star can be given for
each numbered criterion within the selection and outcome categories, and a maximum of two stars
can be given for comparability. The quality scores of studies range from zero (worst) to nine (best).
When a study’s score was ≥5, it was considered high quality, otherwise, it was considered low quality.
Three authors (Hong Jiang, Meng-Nan Fan, and Min Yang) extracted data and assessed study quality
independently. Discrepancies were resolved through discussion with a third author (Le Ma).

2.4. Statistical Analysis

The relative risk (RR) was considered as a measure to estimate the strength of the association across
studies in principle. For case-control studies, relative odds ratios (OR) were considered as a surrogate
estimate of the corresponding RR. Because the absolute risk of aHUS is low, the OR could approximate
the RR. If articles did not report RR, we used the number of events in each group to calculate the RR for
each study and used them for pooling analyses. In this meta-analysis, pooled RR and 95% CI were used
to estimate the strength of the association among CFHRs, anti-FH autoantibodies, and aHUS, using a
fixed effects model or a random effects model according to the heterogeneity. Heterogeneity between
studies was examined by calculating Cochran’s Q statistic and the I2 test (p value less than 0.10 was
considered to indicate heterogeneity and I2 > 50% indicated a statistical significance). When significant
statistical heterogeneity was detected, a stratified analysis was conducted to explore the potential
source of heterogeneity. The variables included in the stratified analyses were study quality, ethnicity,
and gene detection methods. In addition, sensitivity analyses were performed to evaluate the effect of
each individual study by excluding each study from the meta-analysis. Egger’s weighted regression
method, Begg’s rank correlation method, and visual inspection of funnel plots were used to assess
the publication bias [19,20]. All analyses were performed using Stata version 11.0 (Stata Corp LP,
College Station, TX, USA).

3. Results

A total of 1145 articles were retrieved through comprehensive searching. After excluding
duplicates and irrelevant references, 39 records were left for full text and data effectiveness review,
and eight articles (nine studies) were included in this meta-analysis [10,13–15,17,21–23] (Figure 1).
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The characteristics of the included studies are presented in Table 1. All eligible studies were 
case-control designed, comprising a total of 1065 cases and 1266 controls. Seven studies were carried 
out in Western countries and two in Asian countries. Six of the included studies used population-
based (PB) controls, one investigation used hospital-based (HB) controls, and the remaining one used 
PB + HB controls. Six of nine studies detected CFHR deficiency through multiplex ligation-dependent 
probe amplification. The other three studies used polymerase chain reaction, comparative genomic 
hybridization, or Western blot, respectively. Six of the eight studies detected anti-FH autoantibodies 
in serum samples using enzyme-linked immunosorbent assay. Furthermore, quality assessment 
revealed that six studies scored ≥5 and were classified as high quality.

Figure 1. Flowchart for the selection of eligible studies.

3.1. Characteristics of the Studies

The characteristics of the included studies are presented in Table 1. All eligible studies were
case-control designed, comprising a total of 1065 cases and 1266 controls. Seven studies were carried
out in Western countries and two in Asian countries. Six of the included studies used population-based
(PB) controls, one investigation used hospital-based (HB) controls, and the remaining one used
PB + HB controls. Six of nine studies detected CFHR deficiency through multiplex ligation-dependent
probe amplification. The other three studies used polymerase chain reaction, comparative genomic
hybridization, or Western blot, respectively. Six of the eight studies detected anti-FH autoantibodies in
serum samples using enzyme-linked immunosorbent assay. Furthermore, quality assessment revealed
that six studies scored ≥5 and were classified as high quality.
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Table 1. Characteristics of studies included in this meta-analysis.

First Author (y) Country of
Origin Study Type Sample Size

(Cases)
Sample Size
(Controls)

Source of
Controls

Gene Detection
Methods

Protein Detection
Methods Study Quality *

Lee et al., 2015 Korea Case-Control 51 100 HB MLPA ELISA High
Sinha et al., 2014 Indian Case-Control 138 84 PB MLPA Western blot High
Hofer et al., 2013 European Case-Control 116 118 PB CGH ELISA Low
Moore et al., 2012 UK Case-Control 142 100 PB MLPA ELISA High
Zadura et al., 2012 German Case-Control 103 345 PB - ELISA High

Abarrategui-Garrid et al., 2009 Spain Case-Control 151 230 HB + PB MLPA ELISA High
Dragon-Durey et al., 2009 France Case-Control 177 70 PB MLPA ELISA High

Zipfel et al., 2007 Germany Case-Control 121 100 PB PCR NR Low
Zipfel et al., 2007 UK Case-Control 66 119 PB MLPA Western Blot Low

aHUS, Atypical hemolytic uremic syndrome; HB, Hospital-based; PB, Population-based; MLPA, Multiplex ligation-dependent probe amplification; CGH, Comparative genomic
hybridization; ELISA, Enzyme linked immunosorbent assay; PCR, polymerase chain reaction; NR, Not reported; * Study quality was judged based on Newcastle-Ottawa Scale.
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3.2. CFHR1 Deficiency and aHUS Risk

The relationship between CFHR1 deficiency and the risk of aHUS was evaluated in seven studies,
including 832 cases and 1028 controls. Among the studies, five reported a statistically significant
relationship. There was significant heterogeneity (I2 = 63.4%; p = 0.01) between the data sets, and the
random-effects model was used to calculate the pooled OR. The pooled results showed that CFHR1
deficient individuals had a higher susceptibility to aHUS by approximately 2.6-fold in comparison
with no-deficiency patients (OR = 3.61; 95% CI, 1.96, 6.63; p < 0.001; Figure 2). The result of stratified
analyses by study quality and ethnicity showed that these factors did not alter the association direction
and magnitude of the overall effect. The meta-regression analysis showed that gene detection methods
were associated with an increased risk of aHUS (Table 2). The sensitivity analysis showed that the
significant association among the pooled OR remained stable between CFHR1 deficiency and aHUS.
In addition, there was no obvious asymmetry of funnel plots, and no evidence of publication bias was
detected among studies (Begg’s test p = 0.76; Egger’s test p = 0.16).
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Figure 2. Forest plot on the association between CFHR1 deficiency and aHUS risk. For each study,
the estimation of OR and its 95% confidence interval (95% CI) are plotted with a box and a horizontal
line. The pooled odds ratio is represented by a diamond. The area of the black squares reflects the
weight of the study in the meta-analysis.

Table 2. Meta-analysis of the association between the CFHR1 deficiency/CFHR1/R3 deficiency and
atypical hemolytic uremic syndrome risk.

Subgroup N Pooled OR 95% CI
p

Heterogeneity Meta-Regression

CFHR1 Deficiency - - - - -

Study Quality 7 - - -
0.059High 5 2.12 1.55, 2.90 0.572

Low 2 3.61 1.96, 6.63 0.095

Ethnicity - - - -
0.703Caucasians 6 1.88 1.22, 2.54 0.005

Asians 1 3.36 0.42, 6.30 NA

Gene Detection Methods 6 - - - -
MLPA 5 2.58 1.70, 3.91 <0.001

0.001CGH 1 18.22 5.33, 62.26 NA
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Table 2. Cont.

Subgroup N Pooled OR 95% CI
p

Heterogeneity Meta-Regression

CFHR1/R3 Deficiency - - - - -

Study Quality 5 - - -
0.763High 4 1.35 0.44, 4.15 0.001

Low 1 1.25 0.20, 7.61 NA

Ethnicity 5 - - -
0.694Caucasians 3 1.41 0.31, 6.52 0.06

Asians 2 1.26 0.27, 5.09 0.001

Gene Detection Methods 5 - - - -
MLPA 3 1.86 0.47, 7.35 0.376

0.461CGH 1 0.44 0.10, 1.82 NA
PCR 1 1.25 0.20, 761 NA

OR, odds ratio; 95% CI, 95% confidence interval; MLPA, Multiplex ligation-dependent probe amplification;
CGH, Comparative genomic hybridization; PCR, polymerase chain reaction. NA, Not Available.

3.3. CFHR1/R3 Deficiency with aHUS Risk

Five studies reported data on the association between only CFHR1/R3 deficiency (without anti-FH
autoantibodies) and aHUS risk, with a total of 477 cases and 436 controls. Three reported a slight
association of such deficiency with aHUS incidence. Findings from the current analysis showed that
there was no significant association among CFHR1/R3 absence and the risk of aHUS (OR = 1.32; 95% CI,
0.50, 3.50; p = 0.56; Figure 3), using the random-effects model (I2 = 77.5%; p = 0.001). Subsequently, we
also performed stratified analysis by study quality, ethnicity, and gene detection methods. The result
showed that these factors did not alter the association direction and magnitude of the overall effect.
Moreover, no publication bias was detected and the funnel plots were symmetric upon visual inspection
(p = 0.46), which is confirmed by the Egger’s test (p = 0.35).
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Figure 3. Forest plot on the association between CFHR1/R3 deficiency and aHUS risk. For each study,
the estimation of OR and its 95% CI are plotted with a box and a horizontal line. The pooled odds
ratio is represented by a diamond. The area of the black squares reflects the weight of the study in
the meta-analysis.

3.4. CFHR1 Deficiency, Anti-CFH, and aHUS Risk

We subsequently evaluated the effect of anti-FH autoantibodies with CFHR1 deficiency on the
risk of aHUS in five studies, which included 545 cases and 377 controls. Of the included studies,
three showed that both CFHR1 deficiency and autoantibody had a positive relationship with aHUS risk.
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There was no evidence of statistical heterogeneity among the eligible studies (I2 = 0.0%, p = 0.55), and
the fixed-effects model showed that individuals with CFHR1 deletion and anti-FH autoantibodies had
an obviously increased risk of aHUS (OR = 11.75; 95% CI, 4.53, 30.44; p < 0.001; Figure 4). In addition,
neither the Egger’s test (p = 0.77) nor the Begg’s test (p = 0.46) revealed significant publication bias.Int. J. Environ. Res. Public Health 2016, 13, 1209 8 of 12 
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4. Discussion

The results from this comprehensive meta-analysis demonstrated that the deletion of CFHR1
was significantly associated with aHUS. Additionally, further analysis found a stronger association
in patients with both CFHR1 deletion and anti-FH autoantibodies in comparison with only CFHR1
deficiency, indicating that CFHR1 deficiency might integrate with anti-FH autoantibodies, which
contributes to the development of aHUS.

Insufficient inhibition of complement is associated with a quantity of autoimmune and
inflammatory diseases’ pathological processes such as aHUS [23,24]. Several studies have suggested
that CFH plays a key role in maintaining complement homeostasis through inhibiting the formation
and accelerating the decay of C3-convertase or acting as a cofactor to complement factor I (CFI) in
the degradation of C3b in the alternative pathway [25,26]. Moreover, as the major components of a
complement system, CFH activities were modulated by other factors consisting of FHRs. Both CFH
and FHRs (FHR1-5) belong to human chromosome 1q32 and reside in the regulators of complement
activation (RCA) gene cluster [11,27]. CFHRs do encode proteins (FHR1-5) that are likely to modify
the function of CFH and regulate complement activity, which would maintain the balance of the
complement system and prevent humans from damaging aHUS. In concordance with previous
studies that reported CFHR1 deletion was relevant to aHUS susceptibility, the results of present
meta-analysis showed a significant association between CFHR1 deficiency and an increased risk
of aHUS. The potential mechanism of FHR1 on complement activation and regulation might be
via its ability to mediate CFH activity [28]. Under normal circumstances, alternative pathway
discrimination between activator and non-activator surfaces is mediated by CFH, CFH can use the
heparin/gycosaminoglycan site on short consensus repeats (SCRs) 20 for binding to endothelial
cells and to C3b and its cleavage fragment C3d [29–31], which has high homology with FHR4-5.
Nevertheless, the auto-antigenic epitope of CFH and its homologous site in FHR1 are structurally
different [30]. Therefore, CFHR1 deficiency may induce auto-antigenic neoepitope which is related
to the formation of autoantibodies, and reduces the function of CFH. Meanwhile, subtotal CFH
insufficiency can give rise to aHUS after a complement-activating trigger within the kidney and that the
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latter is C5 dependent [32,33]. Moreover, FHRs could influence complement activation and regulation
through efficiently competing with CFH for binding to the specific surface. The abnormal multimeric
structure of FHR1 proteins likely contributes to the cell surface dysregulation [29]. Cell surface
lacking control of the CAP would lead to its over-activation and promote microthrombi formation
within small blood vessels. Such microthrombi will injure the red blood cells and cause kidney tissue
ischemia [8,33]. Moreover, CFHRs and CFH have several independent large genomic duplications,
such repeats tend to occur in nonallelic homologous recombinations, which results in the loss of
CFHR1 [34,35]. FHR1 deficiency has a potential impact on CFH binding to the CAP convertase or
the regulatory function of the terminal pathway, which is related to the occurrence of aHUS [8,35].
In addition, a regulatory function of FHR1 on the C5 convertase or terminal pathway has recently
been reported, which might also contribute to aHUS pathogenesis [36]. In contrast with the significant
association between CFHR1 deficiency and the increased risk of aHUS, the present studies showed that
individuals carrying CFHR1/R3 deficiency (without autoantibodies) had no significant association with
aHUS. It is possibly influenced by the small number of included studies. Thus, further multi-centric
studies investigating the relationship between aHUS and different combinations of CFHRs deficiency
need to be conducted before definitive conclusions can be made.

Evidence from a previous study found that autoantibodies to CFH were connected with the
development of aHUS [37]. The epitope of the autoantibody is located on the C-terminal SCRs
19–20 of CFH, which is responsible for recognition and binding to C3b and to cellular surfaces.
Blocking the SCRs 19–20, anti-FH autoantibodies could impair the binding of factor H to C3b and
be associated with uncontrolled complement activation at the cell surface and with hemolysis [31].
Results from the present study indicated that both anti-FH autoantibodies and CFHR1 deficiency were
significantly associated with the increased risk of aHUS, which suggests that this autoantibody might
cross-react with CFHR1 deficiency to promote the progress of aHUS. The underlying mechanism for
such an observed relationship might be that such a deficiency may favor development of these specific
autoantibodies. CFH and FHR1 have high degrees of sequence duplications, especially in SCRs 19–20
and SCRs 4–5 (autoantibody epitope site) [35,38]. Such a special gene structure would cause a failure
of central and/or peripheral tolerance and induce the anti-FH autoantibodies, resulting in increased
progression of kidney injury [39,40].

Findings from this meta-analysis have important public health significance. Cases of aHUS
generally have a poor outcome [2,41]. Therefore, early specific diagnosis and treatment might
lead to favorable outcomes. The central pathophysiology of aHUS is uncontrolled activation of the
complement pathway. The finding of a significant relationship between aHUS and CFHRs deficiency
and/or autoantibodies potentially has important clinical implications for investigating these risk
factors in the early stage of aHUS and improving prognosis. Though the result from Holmes et al.
suggests that CFHR1/R3 deletion in the normal population is different worldwide. Depending on
ethnic origin, the highest frequency for the deletion (54.7%) was seen in Nigeria [42]. CFHRs deficiency
and autoantibodies could also be considered as a surrogate biomarker for some clinically relevant
incidents or aHUS susceptibility, especially in designing new diagnostic approaches, identifying
susceptible people, and monitoring the treatment effects.

Several potential limitations should be also considered in interpreting the results of this
meta-analysis. First, as no available cohort studies were found, this meta-analysis only extracted data
from case-control studies. Retrospective study is subjected to internal methodological deficiencies,
which may limit the power of this meta-analysis. Second, our results were based on unadjusted
estimates, potential confounding components such as pregnancy, family history, drugs, other
complement factor genes, and other genetic abnormalities [43] likely affect the risk of aHUS, and
studies in this meta-analysis did not control for these factors or provide sufficient data to analyze the
association among CFHRs deficiency, anti-FH autoantibodies, and aHUS adjusted for these covariates.
Thereby, other complement factors, genetic abnormalities, or other confounding factors might affect
the results of the present analysis. Nevertheless, the qualities of most of the eligible studies were high,
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which adds to the strength of our analysis. Third, the present results were also likely to be affected
by different separate examination methods of CFHR1. The way to examine the CFHR1 status of the
patients and controls, varies from one study to another, and that might affect the present results as a
potential confounding factor. Furthermore, one study used western blot to identify CFHR1 deficiency.
As aHUS could be treated by administration of blood derived products, the approach by western
blotting might be at high risk of false results in aHUS. Although this study should not substantially
affect the overall qualitative inference, we cannot exclude the potential influence which might have
led to underestimation or overestimation of the association. Fourth, the pooled results were mainly
conducted in Western countries, which limited the generalization of findings. Last, although statistical
tests did not suggest the presence of publication bias for the present study, we could not exclude all
publication bias.

5. Conclusions

The present meta-analysis provides evidence of the association between CFHR1 deletion, anti-FH
autoantibodies and aHUS. CFHR1 deficiency was significantly associated with increased risk of
aHUS. Moreover, this study also identified potential interactions between anti-FH autoantibodies and
CFHR1 deletion in aHUS patients, indicating that the development of aHUS could be exacerbated via
interaction between CFHR1 deficiency and anti-FH autoantibodies.
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