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Abstract: Mitochondrial functionality is crucial for the execution of physiologic functions of metabol-
ically active cells in the respiratory tract including airway epithelial cells (AECs). Cigarette smoke
is known to impair mitochondrial function in AECs. However, the potential contribution of mi-
tochondrial dysfunction in AECs to airway infection and airway epithelial barrier dysfunction is
unknown. In this study, we used an in vitro model based on AECs exposed to cigarette smoke extract
(CSE) followed by an infection with Streptococcus pneumoniae (Sp). The levels of oxidative stress
as an indicator of mitochondrial stress were quantified upon CSE and Sp treatment. In addition,
expression of proteins associated with mitophagy, mitochondrial content, and biogenesis as well
as mitochondrial fission and fusion was quantified. Transcriptional AEC profiling was performed
to identify the potential changes in innate immune pathways and correlate them with indices of
mitochondrial function. We observed that CSE exposure substantially altered mitochondrial function
in AECs by suppressing mitochondrial complex protein levels, reducing mitochondrial membrane
potential and increasing mitochondrial stress and mitophagy. Moreover, CSE-induced mitochondrial
dysfunction correlated with reduced enrichment of genes involved in apical junctions and innate
immune responses to Sp, particularly type I interferon responses. Together, our results demonstrated
that CSE-induced mitochondrial dysfunction may contribute to impaired innate immune responses
to Sp.

Keywords: mitochondrial dysfunction; cigarette smokes extract; lung epithelial cells; pneumococcal
infection

1. Introduction

Cigarette smoking is largely associated with development and progression of airway
complications, inducing airway epithelial damage, mucus hypersecretion, and airway
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inflammation [1]. The airway epithelium forms the first line of defense against noxious par-
ticles/gases and inhaled pathogens by means of physical and immunochemical barriers [1].
Airway epithelial cells (AECs) actively function to detoxify and remove these stressors by
mucociliary function as well as production of host defense proteins [2]. Such active cells
are highly dependent on mitochondria as the central regulators of cellular energy [3]. Mito-
chondrial function not only regulates cellular bioenergetic processes, but may also affect
epithelial integrity and innate immune responses during inflammatory conditions [3]. AEC
dysfunction has been observed in response to cigarette smoke exposure as evidenced by
mucociliary dysfunction, defective remodeling, diminished cell–cell contacts, and impaired
mitochondrial function [1,3]. As such, a damaged epithelium with abnormal mitochondrial
function contributes to the development and progression of airway diseases [3].

Dysfunctional mitochondria in the lungs and airways of smokers may exhibit altered
morphology and abnormal quality control processes such as defects in mitochondrial
biogenesis and changes in fission and fusion events as well as mitochondrial-specific
autophagy or mitophagy [3]. Similar changes have been observed in AEC in response
to cigarette smoke (CS) resulting in the accumulation of damaged mitochondria within
the AECs and subsequent cell death [4,5]. These mitochondrial quality control processes
are important for cellular homeostasis, as they are essential for regulation of the normal
turnover of mitochondria upon stress and damage [6]. Collectively, these findings imply
that impaired mitochondrial quality control processes may contribute to the pathogenesis
of AEC dysfunction in airway diseases.

Microbial composition of the respiratory tract plays a key role in mucosal immune
responses to pathogens [7]. Many factors can affect the composition and distribution of
the respiratory microbiota of which CS was shown to increase dissemination of Strepto-
coccus pneumoniae (Sp) to the lower airways [8]. Ultimately, such imbalance of the airway
microbiota further enhances airway inflammations. Moreover, several respiratory bacterial
and viral pathogens have been reported to alter mitochondrial function in lung epithelial
cells [9,10]. However, the impact of Sp infection on mitochondrial function in AECs is
incompletely understood. Moreover, while CS exposure was shown to induce mitochon-
drial dysfunction in AECs [11], the effects of CS on mitochondrial function in AECs upon
a bacterial infection with Sp is unclear. To extend existing knowledge, in this study we
investigated mitochondrial function in AECs by measuring mitochondrial oxidative stress,
mitochondrial membrane potential, and mitochondrial quality control processes in an
in vitro model of exposure to CSE and Sp. Furthermore, we examined potential mechanistic
links between CS-induced mitochondrial dysfunction and altered innate immune response
to Sp infection in AECs by looking into pathways that directly or indirectly link the innate
immune response to the pathogen with mitochondrial function.

2. Materials and Methods
2.1. Cell Culture

A 16HBE-14o- SV-40 immortalized bronchial epithelial cell line was kindly donated
by Professor Dieter Gruenert, University of California. The cells were cultivated in
T75 flask (Greiner Bio-One GmbH, Frickenhausen, Germany) in minimum essential medium
with earle’s salt (Gibco, Life Technologies, Paisley, UK) supplemented with 10% fetal
bovine serum (PAN-Biotech GmbH, Aidenbach, Germany), L-Glutamine 2 mM (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, USA) and 1% penicillin/streptomycin (Invitro-
gen, Thermo Fisher Scientific, Waltham, MA, USA) and kept in a humidified incubator at
37 ◦C with 7.5% CO2. Upon 90% confluency, the cells were detached and harvested with
Trypsin/EDTA 0.025% (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA).

2.2. Cigarette Smoke Extract (CSE) Preparation

For preparation of aqueous CSE, 3R4F research cigarettes (University of Kentucky,
Lexington, KY, USA) were purchased and used throughout the study. Filterless cigarettes
were attached to 1 mL pipette tips and inserted to a 100 mL gas washing bottle (Borosilicate
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glass, VWR international GmbH, Darmstadt, Germany). Two cigarettes were bubbled
through the medium using a peristaltic pump (Longer pump, BT100-2J, Longer Precision
Pump Co., Ltd., Hebei, China) at flow rate 180 mL/min (each cigarette combusted in
around 5 min), which subsequently was considered as 100% concentration and further
diluted with culture medium upon the experiments. The prepared CSE was filtered through
a 0.22 µM filter (Merck KGaA, Darmstadt, Germany) to remove particles and pathogens.
The aqueous CSE was prepared freshly upon each experiment respectively and used not
more than 30 min after preparation.

2.3. Streptococcus Pneumoniae Culture

Sp clinical isolate 19F was plated on Columbia blood agar (BD Biosciences, San Jose,
CA, USA) and kept at 37 ◦C with 5% CO2 overnight. The single colonies were removed by a
sterile cotton swab and transferred to autoclaved pre-warmed Todd Hewitt broth medium
(Sigma-Aldrich GmbH, Taufkirchen, Germany) supplemented with Bacto Yeast extract (BD
Biosciences, San Jose, CA, USA). The initial optical density (OD) of the inoculated broth
was measured with a spectrophotometer (GeneQuant, Amersham Biosciences, Freiburg,
Germany) and set at ~0.09. The bacteria were grown until mid-log phase point equivalent
to an OD600 of 0.2–0.3 in the generated growth curve (Figure S1). The multiplicity of
infection (MOI) was adjusted based on the repetitive measurement of colony formation
unit (CFU) per ml of mid-log phase Sp stock. Before each experiment, the bacterial stock
was prepared separately, by washing the bacterial stock three times in cold 1X PBS (Gibco,
Life Technologies, Paisley, UK) and centrifuging at 14,000× g at 4 ◦C. The bacterial pellets
were then resuspended in 1 mL antibiotic-free MEM.

2.4. Experimental Design

16HBE-14o− cells were stimulated with different concentrations of CSE for 3 h, 14 h,
and 24 h. Furthermore, the cells were incubated with CSE for 24 h followed by Sp infection
with MOI 10 and 20 to mimic in vitro COPD exacerbations. For mitochondrial-targeted
therapies, the cells were pre-exposed to CSE for 24 h and subsequently incubated with
MitoTEMPO (Sigma-Aldrich GmbH, Taufkirchen, Germany) 50 µM or MOTS-c (Eurogentec
GmbH, Köln, Germany) 25 µM for 4 h.

2.5. MTT Assay

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromids (MTT) (Sigma-Aldrich
GmbH, Taufkirchen, Germany) assay was performed to determine the optimal concentra-
tion of CSE which exerts maximal effects on mitochondrial activity in 16HBE cells. MTT
was diluted in 1X PBS and filter-sterilized using 0.22 µm filter strip. 16HBE cells were
seeded into a transparent 96-well at 104 density and placed into a humidified with 7.5% CO2
incubator until forming a confluent monolayer. Subsequently, the cells were stimulated
with different concentrations of CSE (5–20%) for 24 h. After removing the medium, diluted
MTT with final concentrations of 0.5 mg/mL was added to the cells in a phenol-red-free
minimum essential medium (MEM). Following 4 h incubation in the incubator in dark, the
insoluble formazan produced by viable cells turned to a soluble solution using cell-grade
dimethyl sulfoxide (DMSO) (Carl Roth, Karlsruhe, Germany). The absorbance was read in
each well at 560 nm wavelength using a microplate reader (BioTek HT, BioTek Instrument
GmbH, Bad Friedrichshall, Germany).

2.6. RealTime-Glo MT Assay

RealTime-Glo MT assay (Promega GmbH, Walldorf, Germany) was performed to
examine the impact of CSE on the proliferation of metabolically active cells. The 16HBE
cells were first seeded in different densities (5 × 103, 104 and 2 × 104 cells/well) in the
96-well white-walled and transparent bottom plate (Greiner Bio-One GmbH, Frickenhausen,
Germany) to achieve an optimal cell density in which the signal remains linear throughout
the experiment. Next, the cells were seeded at 104 and incubated with 2X RealTime-Glo
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reagent. The luminescence at assay start (0 h) was then measured with a microplate reader
(BioTek HT, BioTek Instrument GmbH, Bad Friedrichshall, Germany). In the next rounds,
following incubating of the cells with the reagent the cells were stimulated with medium
control or different concentrations of CSE (5–20%) and incubated in at 37 ◦C with 7.5% CO2.
The luminescence was measured at 1 h, 3 h, 7 h, and 19 h post-treatment in the plate. The
luminescent signal was plotted versus cell number using a linear curve fit in GraphPad
prism version 9.3.1.

2.7. Intracellular Reactive Oxygen Species (ROS) Levels

Intracellular oxidative stress was evaluated based on detection of fluorescent dye
2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) (DCFDA cellular ROS detection kit,
Abcam, Cambridge, UK) using a microplate reader (BioTek HT, BioTek Instrument GmbH,
Bad Friedrichshall, Germany). The 16HBE cells were seeded at 104 cells/well density into
a 96-well black-walled plate with transparent bottom (Greiner Bio-One GmbH, Fricken-
hausen, Germany) and incubated for 3 days at the humidified incubator with 7.5% CO2.
Next, the cells were washed once with diluted assay buffer and stained with 25 µM of
DCFDA diluted in an assay buffer for 45 min. The cells were then stimulated with different
concentrations of CSE (5–20%), medium control or a ROS-positive control compound tBHP,
diluted in the complete serum-free medium. The fluorescent signal was initially measured
at 0 h time before stimulating the cells by exciting at 488 nm and emitting at 528 nm (FITC
filter set) and a PMT gain set at 45. Afterwards, the plate kept in the incubator and read
at 1 h, 3 h, 6 h, 19 h, 21 h, 23 h, 25 h, and 28 h post treatment. The fluorescent signal was
calculated by subtracting the unstained background and normalizing the signals from each
condition to 0 h.

2.8. FACS Staining for MitoSOX

The mitochondrial ROS levels were measured by MitoSOXTM Red fluorescent-based
labelling of the superoxide (Thermo Fisher Scientific, Waltham, MA, USA) generated
in the mitochondria of 16HBE cells and, subsequently, by detection of signal with flow
cytometry. The cells were seeded into 6-well plates (Corning, Saint Louis, MO, USA) at
3 × 105 cells/well and incubated with medium control or different concentrations of CSE
(5–20%) and placed in the humidified incubator (7.5% CO2) until 90% confluency. The
antibiotic-supplemented medium was replaced with antibiotic-free medium 24 h before
the experiment to rule out the impact of antibiotic on pneumococci growth. Next, the
stimulated cells were harvested by trypsin/EDTA and washed once with 1X PBS. The
cells were then stained with 5 µM of diluted MitoSOX dye (5 mM stock in DMSO) in a
serum- and phenol red-free medium for 15 min. Subsequently, the cells were washed
three times with 1X PBS and stained with a live/dead fluorescent dye (efluor 780, Thermo
Fisher Scientific, Waltham, MA, USA) to gate out dead cells. The fluorescent signal was
detected with the 8-colors FACS Canto II device (BD Biosciences, San Jose, CA, USA). The
MitoSOX-positive cell population and the shift in fluorescent signal was analyzed using
FlowJo software version 10.3. The mean fluorescent intensity of MitoSOX positive cells was
plotted for each condition using GraphPad prism version 9.3.1.

2.9. Mitochondrial Membrane Potential Analysis

JC-1 dye (MitoProbe JC-1 Assay kit, Thermo Fisher Scientific, Waltham, MA, USA),
which shows potential-dependent localization into the mitochondrial membrane, was used
to assess the impacts of CSE and Sp on the mitochondrial membrane potential. 16HBE
cells were plated at 104 cell/well in a black-wall 96-well plate (Greiner Bio-One GmbH,
Frickenhausen). After 3 days, the medium was removed, and the cells were incubated in
2 µM JC-1 dye diluted in serum-free medium for 1 h. After measuring the signal from
J-aggregates (ref) and monomer (green) at 0 h, the cells were stimulated with medium
control or CSE (5–20%), different MOI of Sp (MOI 10 and 20) and carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP) 50 µM (Sigma-Aldrich GmbH, Taufkirchen,
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Germany) as mitochondrial complex V uncoupler. The fluorescent signal was measured
at 1 h, 3 h, 6 h, 19 h, 21 h, 23 h, 25 h, and 27 h post-treatment by exciting the cells at
488 nm and emitting at 529 nm and 590 nm for monomer and J-aggregates, respectively,
using the microplate reader (BioTek HT, BioTek Instrument GmbH, Bad Friedrichshall,
Germany). The ratio of J-aggregates to green monomer, which is used to calculate the
mitochondrial membrane potential, was measured. After subtraction of the background, the
ratio of red/green fluorescent signal at each time point was normalized to 0 h and plotted
versus time.

2.10. Immunoblotting

16HBE cells were seeded into 10 cm culture dishes (Corning, Saint Louis, MO, USA)
and placed in the humidified incubator until reaching 90% confluency. Based on the
experimental design, the cells were either stimulated with medium control and CSE for
3 h, 14 h, and 24 h or stimulated with CSE 28 h, Sp MOI 10, and MOI 20 for 4 h, CSE
24 h followed by Sp MOI 10 and 20 for 4 h as well as CSE 24 h followed by 4 h medium,
and FCCP 50 µM for 4 h. The cells were lysed with a 1X-chilled RIPA buffer (RIPA buffer
10×, Cell Signaling Technology, Leiden, Netherlands) containing the EDTA-free protease
inhibitor cocktail (cOmplete TM Ultra Mini tablet, EDTA-free, Roche, Penzberg, Germany)
and after centrifugation for 10 min at 14,000× g, the supernatants were collected and kept
at –80 ◦C until further use.

Mitochondrial fractions were isolated from the cells using a commercial kit (Mito-
chondrial Fractionation kit, Active Motif, Carlsbad, CA, USA) by gradient centrifugation.
Accordingly, 2 × 106 16HBE cells were seeded into the culture dishes and placed in the
humidified incubator until reaching 90% confluency. For each condition, cells from three
cell culture dishes were used by pulling cell pellets together to harvest 3 × 107 cells. Next,
the cells were washed with cold 1X PBS and collected by gently scratching the culture
surface in chilled 1X PBS using cell scraper (Greiner Bio-One GmbH, Frickenhausen). Fol-
lowing cell lysis with a pestle homogenizer (Carl Roth, Karlsruhe, Germany), debris and
intact cells were separated by centrifugation at 800 g. Next, the lysates were centrifuged at
10,000 g to pellet the mitochondria. The isolated mitochondria were lysed in the mitochon-
drial buffer including a protease inhibitor and DTT (Mitochondrial Fractionation kit Active
Motif, Carlsbad, CA, USA) and were then aliquoted and transferred to –80 ◦C.

The immunoblotting was performed to evaluate the expression of selected mitochon-
drial targets in both total cell lysates and the cytosolic or mitochondrial fractions. The
protein concentrations in each cell lysate were measured using a BCA kit following the man-
ufacturer’s instruction (Thermo Fisher Scientific, Waltham, MA, USA). After calculating
and normalizing the protein concentration, the lysates were diluted in a 1× sample buffer
(1% β-Mercaptoethanol in 4X Laemmli buffer, BioRad, Feldkirchen, Germany) and boiled
at 95 ◦C for 5 min and transferred to –80 ◦C. Immunoblotting was conducted using two
different protocols, respectively, i and ii. The samples (4.25–10 µg) were loaded together
with i one protein ladder (PageRuler, Thermo Fisher Scientific, Waltham, MA, USA) or
ii at least two protein ladders (Precision Plus ProteinTM All Blue Standards #161-0373,
BioRad, Feldkirchen, Germany) into i manually casted SDS-PAGE gels or ii Criterion XT
Precast 4–12% or 12% Bis-Tris gels (BioRad, Feldkirchen, Germany). Subsequently, the
proteins were separated by electrophoresis at 100–130 for respectively i 2.5 h (Mini-Protean
tetracell, BioRad, Feldkirchen, Germany) or ii 1 h (BioRad, Feldkirchen, Germany). The
proteins on the gels were then transferred to the membrane by electroblotting to i the
methanol-activated PVDF membrane (0.45 µm; Merck KGaA, Darmstadt, Germany) using
a semi-dry transfer system (Semi-dry Blotter, Maxi, Carl Roth, Karlsruhe, Germany) or ii the
nitrocellulose transfer membrane (0.45 µm; BioRad, Feldkirchen, Germany) using a Bio-Rad
Criterion Blotter. In case of protocol ii, the Nitrocellulose membranes were incubated for
5 min with 0.2% (w/v) Ponceau S in 1% (v/v) acetic acid (Sigma-Aldrich GmbH, Taufkirchen,
Germany) followed by MilliQ wash and imaging, conducted to quantify the total protein
content for normalization, using the AmershamTM Imager 600 (GE Healthcare, Solingen,
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Germany). Subsequently, the membranes were washed, and non-specific binding sites
were blocked by 1 h incubation in milk in a Tween20 Tris-buffered saline (TBST) buffer
i 5% skimmed milk (Carl Roth, Karlsruhe, Germany) in TBST (Tris-base 200 mM, NaCl
1.4 M, 0.1% v/v Tween20) or ii 3% non-fat dry milk (Campina Melk Unie, Eindhoven, The
Netherlands) in TBST (Tris-base 20 mM, NaCl 137 mM, 0.1% (v/v) Tween20). Next, the
membranes were washed and incubated in the primary target-specific antibodies (Table S1)
diluted in 3% Bovine Serum Albumin (BSA fraction V, GE Healthcare, Solingen, Germany)
or non-fat dry milk in TBST at 4 ◦C overnight. Following a washing step, the membranes
were incubated in horseradish peroxidase-conjugated secondary antibodies (Table S1) di-
luted in either 3% BSA, 3% or 5% milk (Campina or Carl Roth) in TBST for 1 h at room
temperature. The membranes were finally washed with TBST before imaging. The mem-
branes were incubated for 1–3 min with i the chemiluminescent substrate PierceTM ECL
plus (Thermo Fisher Scientific, Waltham, MA, USA) and visualized using a CCD imager
(Intas ChemoCam, INTAS Science Imaging, Göttingen, Germany) or ii a 0.25× Supersignal
West FEMTO or 0.5× Supersignal West PICO chemiluminescent substrate (Thermo Fisher
Scientific, Waltham, MA, USA) and visualized using the Amersham™ Imager 600 (GE
Healthcare, Solingen, Germany).

The abundance of the target proteins was quantified and normalized using i ImageJ
software and normalized to loading control proteins GAPDH or β-actin or ii Image Quant
software (GE Healthcare, Solingen, Germany) and the total protein loading content was
assessed by Ponceau S staining over the entire size range of proteins (10 kDa–250 kDa).
Selected Western blot images of one sample/treatment group are reflecting changes for the
replicates/experiment. Representative Western blot images shown in the figures of this
manuscript have been equally adjusted for brightness and contrast throughout the picture.

2.11. Immunofluorescence Staining

The cells were seeded into the FluroDish (WPI, Saratosa, FL, USA) at 15 × 104 cells/dish
and stimulated with either CSE for 28 h or with CSE for 24 h followed by MitoTEMPO
50 µM for 4 h (Sigma-Aldrich GmbH, Taufkirchen, Germany) or MOTS-c 25 µM (Eurogentec
GmbH, Köln, Germany). The cells were then fixed with pure chilled methanol. After
washing, the cells were permeabilized with 5% goat serum (Cell Signaling Technology,
Leiden, Netherlands) and 0.01% TritonX-100 (Carl Roth, Karlsruhe, Germany) in 1X PBS
for 1 h. Subsequently, the cells were incubated in primary antibodies DRP1, p-DRP1,
TOMM20, ERRα, ZO-1, and E-cadherin (Table S2), diluted in 1% BSA with 0.01% TritonX-
100 in 1X PBS, and kept at 4 ◦C overnight. Following washing with 5% goat serum (Cell
Signaling Technology, Leiden, The Netherlands) in 1X PBS, the cells were incubated in
the secondary antibodies (goat anti-rabbit Alexa fluor 647, goat anti- mouse Alexa fluor
488, Cell Signaling Technology, Leiden, Netherlands) for 1 h. After the final washing
step, the cells were stained with 4′,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich
GmbH, Taufkirchen, Germany) to locate the nucleus. The cells were then mounted with
a mounting medium (ProTaqs® MountFlour, quartet, Berlin, Germany), covered with
coverslips and placed at 4 ◦C overnight. Microscopy was performed under a fluorescent
microscope Zeiss Axiovert 200 m (Carl Zeiss MicroImaging GmbH, Oberkochen, Germany)
with the appropriate filter sets. The images were analyzed using the latest version of
ImageJ software.

2.12. Mitochondrial Morphology (TEM Analysis)

The cells were prepared as mentioned above and fixed in six well plates by adding the
fixative solution, a 0.1 M EM-HEPES buffer (HEPES 0.1 M, 0.09 M sucrose, 10 mM CaCl2,
10 mM MgCl2, pH 6.9) with 5% paraformaldehyde and 2% glutaraldehyde. The fixed
samples were washed twice with a 0.1 M EM-HEPES buffer and treated with osmium
tetroxide (1% in HEPES buffer) for 1 h at room temperature. After additional washing
steps with the HEPES buffer, the cells were mechanically detached from the surface and
centrifuged in a swingout rotor for 4 min at 5000 RPM. The pellet was stabilized in 2%
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noble agar before dehydration in a graded series of ethanol (10%, 30%, 50%, 70%, and
90%) on ice, and two steps in 100% ethanol at room temperature, each step for 30 min.
Samples were subsequently infiltrated with the LR White (LRW) resin (LRW: EtOH: 1:1,
2:1, 2 × 100%), each incubating step for approx. 8 h respectively overnight followed by a
polymerization step in small gelatin capsules at 50 ◦C for 48 h. Ultrathin sections of approx.
50–70 nm thickness were prepared with an Ultramicrotome Ultracut UC7 (Leica, Wetzlar,
Germany) and counterstained with 4% aqueous uranyl acetate for 3 min and both with
and without lead citrate for 15 s. The TEM image acquisition at calibrated magnifications
was performed with a Libra 120 Plus (Zeiss, Oberkochen, Germany) using an acceleration
voltage of 120 kV. For image analysis, the software ITEM (Olympus) was used.

2.13. Gene Expression Microarray

RNA from 16HBE cells was isolated and purified using the RNeasy Mini plus and
RNase-free DNase kit (both Qiagen, Hilden, Germany). For each stated condition, two
independent biological replicates were analyzed. Samples were amplified, labelled, frag-
mented, and hybridized to human ClariomTM S microarray (Thermo Fisher Scientific,
Waltham, MA, USA) according to manufacturer’s instructions. Microarray scanning was
performed using a GeneChipTM 3000 scanner and GCOSv1.1 software. Microarray analy-
sis was performed at the Genome Analytics Group at the Helmholtz Centre for Infection
Research, Braunschweig (Germany). Data analyses were conducted using Transcriptome
Analysis Console 4.0 (Thermo Fisher Scientific, Waltham, MA, USA). Data were normalized
with the Signal Space Transformation Robust Multi-Array Analysis (SST-RMA) algorithm
with quantile normalization, log2-transformation of signal intensities (SI). Only transcripts
with SI-values above the 20th percentile (4.5) of the total normalized SI-distribution in all
microarrays from all conditions were retained. Fold changes of transcripts were calcu-
lated from mean SI of replicate microarrays versus the untreated medium control. Only
transcripts with an absolute fold change > 3-fold in at least one condition were retained.
Significance of differential expression was calculated by ANOVA. Only transcripts with
an ANOVA p-value < 0.05 were retained. Normalized log2 SI data of regulated transcripts
were z-score-transformed, k-means-clustered, color-coded, and visualized using Genesis
Software (Version 1.8.1) [12].

Gene Set Enrichment Analysis (GSEA) of each condition in reference to the unstim-
ulated medium control with a fold-change-based gene ranking was performed using the
GSEA desktop application (Version 4.1.0) that is available online [13,14]. Gene sets from
GSEA-Hallmark, Reactome, and Gene Ontology database were used. Only gene sets with
FDR < 0.1 were considered.

2.14. Statistical Analysis

Statistical analysis and graphical representation of the data were done using GraphPad
prism version 9.3.1. All experiments were repeated at least twice with different passages
of the cells, and the calculations were performed based on these repeated measurements
and plotted as mean ± SEM. Dependent on the experimental condition, the significant
difference between the conditions were determined using one-way and two-way ANOVA
with Dunnett’s multiple comparison test or paired a two-tailed t-test. Statistical signifi-
cance was considered if p-values were less than 0.05 (* p < 0.05), 0.001 (** p < 0.001), and
0.0001 (*** p < 0.0001).

3. Results
3.1. Optimization of the CSE-Induced Mitochondrial Dysfunction Model

In order to establish our in vitro model of CSE-induced mitochondrial dysfunction
and to determine the optimal CSE concentration to be used in our study, 16HBE cells were
cultured for 24 h in the presence of graded concentrations of CSE (5–20%) and the levels
of cell proliferation, mitochondrial reactive oxygen species (mtROS) and mitochondrial
membrane potential (MMP) were measured (Figure S2).The results show that the effects of
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CSE on mitochondrial function is concentration- and time-dependent. Furthermore, the
highest analyzed CSE concentration (20%) not only impairs mitochondrial function, but also
has a negative effect on cell proliferation and viability. As such, 15% of CSE was selected
for subsequent experiments and for the sake of simplicity, we will use the abbreviation CSE
without further stating the percentage of 15% in the following paragraphs.

3.2. CSE Reduces Protein Expression of Key Regulators Involved in Mitochondrial Function in
16HBE Cells

Immunoblotting was performed to check the impact of CSE not only on the expression
of different mitochondrial complex proteins, but also to investigate the expression of
mitochondrial outer membrane proteins and key regulators of mitochondrial biogenesis.

Protein levels of several subunits of oxidative phosphorylation (OXPHOS) complexes
were initially probed in total cell lysates of 16HBE cells stimulated with CSE for 3 h,
14 h, and 24 h (Figure 1a). Immunoblotting revealed a significant reduction in the protein
expression of a subunit of complex II protein (succinate dehydrogenase B-SDHB) after 3 h,
14 h, and 24 h stimulation with CSE (Figure 1b), while the expression of subunits of complex
III (cytochrome b-c1 complex subunit 2-UQCRC2) and complex V (ATP synthase subunit
alpha-ATP5A) proteins as well as a mitochondrial import protein, translocase of the outer
mitochondrial membrane complex subunit 20 (TOMM20) remained unchanged (Figure 1a,c;
quantification not shown for UQCRC2 and TOMM20) at the same time point. Further-
more, CSE exposure for 3 h resulted in significantly decreased complex IV cytochrome c
oxidase (subunit of COXIV) protein levels; however, it returned to basal levels already after
14 h and remained unaltered after 24 h (Figure 1d). Although 3 h stimulation with CSE
increased the protein levels of mitochondrial outer membrane protein voltage-dependent
anion channel 1 (VDAC1), 14 h and 24 h of treatment with CSE significantly decreased the
protein expression of VDAC1 compared to the medium (Figure 1a,e).

In addition, the mitochondrial proteins were separately probed in the cytoplasmic and
mitochondrial fractions upon stimulation of 16HBE cells with CSE for 24 h (Figure 1f). The
abundance of SDHB (complex II) significantly decreased upon stimulation with CSE for
24 h in the mitochondrial fractions (Figure 1g). Moreover, the abundance of TOMM20
slightly increased but failed to reach statistically significant difference compared to the
medium (p = 0.08) (Figure 1h).

Mitochondrial biogenesis was probed by quantifying the expression of proteins es-
sentially involved in the molecular control of this process, including nuclear respiratory
factor 1 (NRF1) and estrogen-related receptor α (ERRα) in the total 16HBE cell lysates
(Figure 1i). The abundance of the NRF1 protein was unaltered post-CSE exposure com-
pared to the medium control (Figure 1j). ERRα protein levels were reduced both 14 h and
24 h post-CSE (Figure 1k). Moreover, NRF1 and ERRα were analyzed in the cytoplasmic
and mitochondrial fractions of 16HBE cells exposed to CSE for 24 h (Figure 1l). The levels
of NRF1 significantly increased in the cytoplasmic fraction upon CSE for 24 h (Figure 1m),
while ERRα was only detected in the mitochondrial fraction and decreased but not sig-
nificantly (Figure 1n). Furthermore, immunostaining for ERRα revealed an increase in
peri-nuclear accumulation of the ERRα protein when the cells were stimulated with CSE
for 28 h (Figure S3). The peri-nuclear accumulation of ERRα, induced by CSE, was not
altered by an additional 4 h post-treatment with 25 µM MOTS-c, a mitochondrial-derived
peptide regulating OXPHOS. Stimulation with 50 µM FCCP increased the spread of the
fragmented ERRα signal in the cytoplasm. Thus, ERRα peri-nuclear localization in 16HBE
cells seems specific for CSE treatment.
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Figure 1. Abundance of mitochondrial complex (OXPHOS) components and constituents controlling
mitochondrial biogenesis upon CSE stimulation in 16HBE cells. (a) Immunoblot representing protein
expression of subunits of mitochondrial oxidative phosphorylation (OXPHOS) complexes: complex
II (succinate dehydrogenase B-SDHB), complex III (cytochrome b-c1 complex subunit 2-UQCRC2),
complex IV (cytochrome c oxidase subunit IV, COXIV), and complex V (ATP synthase subunit alpha-
ATP5A); and translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20) and
voltage-dependent anion channel (VDAC1) in the total cell lysates of 16HBE cells incubated with
medium (Med) as control or cigarette smoke extract (CSE) for 3 h, 14 h, and 24 h. Fold change of
protein levels of (b) SDHB, (c) ATP5A, (d) COXIV, and (e) VDAC1 in the total cell lysates. The data



Cells 2022, 11, 1771 10 of 27

are represented as mean ± SEM of four independent experiments (N = 4). (f) Immunoblots represent-
ing subunits of mitochondrial OXPHOS complex proteins in the cytoplasmic (Cyto) and mitochondrial
fractions (Mito) of 16HBE cells incubated with Med or CSE for 24 h. Fold change of SDHB protein
expression of (g) SDHB and (h) TOMM20 compared to the medium control (N = 4). (i) Immunoblots
representing the protein expression of constituents involved in mitochondrial biogenesis including
nuclear respiratory factor 1 (NRF1) and estrogen- related receptor α (ERRα) in the total cell lysates of
16HBE cells upon incubation with medium as a control or CSE for 3 h, 14 h, and 24 h. Fold change of
protein levels of (j) NRF1 and (k) ERRα compared to the medium control (N = 4). (l) Immunoblots
representing NRF1 and ERRα in the Cyto and Mito fractions upon incubation of 16HBE cells with
either medium or CSE for 24 h. Fold change of protein levels of (m) NRF1 protein expression and
(n) ERRα compared to the medium control (N = 4). The data are represented as mean ± SEM of four
independent experiments (N = 4). Representative Western blot images are selected and depicted
of one replicate as quantified in the corresponding graph. Normalization of protein expression
was performed by GAPDH or Ponceau S (Pon S) staining. Statistically significant differences were
calculated with multiple t-test and with Holm–Sidak post hoc correction test (* p < 0.05, ** p < 0.001).
ND: not detectable.

Together, these data show that CSE significantly reduces the abundance of sub-
units of OXPHOS complexes in 16HBE cells. Furthermore, while CSE reduced the mem-
brane potential-dependent protein VDAC1, CSE increased the membrane import protein
TOMM20. The ERRα protein, which is essential for mitochondrial biogenesis, was reduced
in 16HBE cells upon CSE stimulation and showed a distinct peri-nuclear localization.

3.3. CSE Affects the Abundance of Regulators Associated with Mitochondrial Quality Control Processes

Mitochondrial quality control processes are crucial for maintaining mitochondrial
homeostasis especially upon damage by, e.g., exogenous stimuli. In order to assess the
influence of CSE on these processes, the proteins involved in mitophagy and mitochondrial
fission and fusion were probed in total cell lysates by immunoblotting (Figures 2a and 3a).
Protein expression of a constituent involved in receptor-mediated mitophagy and au-
tophagophore formation, gamma-aminobutyric acid (GABA) A receptor-associated protein-
like 1 (GABARAPL1), increased in the total cell lysates after 14 h and 24 h of stimulation
with CSE, but failed to reach a statistically significant difference compared to the medium
control (p = 0.06 and p = 0.05) (Figure 2b). In contrast, the levels of another protein involved
in receptor-mediated mitophagy and cell death BCL2-interacting protein 3 (BNIP3) were
significantly reduced after 24 h of exposure of the cells to CSE (Figure 2c). Moreover, the
abundance of mitophagy adaptor protein sequestosome-1 (SQSTM1) was increased upon
14 h and 24 h stimulation with CSE compared to the matched medium control (Figure 2e).
The protein levels of another adaptor of mitophagy microtubule-associate protein 1 light
chain 3 beta (LC3B) I were increased as well, both 14 h and 24 h post CSE stimulation
(Figure 2f). The protein levels of the ubiquitin-mediated mitophagy factor, phosphatase,
and tensin homolog (PTEN)-induced putative kinase I (PINK-I) were significantly increased
in the total cell lysates of 16HBE cells stimulated with CSE for 24 h as compared to the
medium control (Figure 2g).

Furthermore, these mitophagy proteins were studied in the cytoplasmic and mito-
chondrial fractions upon stimulation with medium or CSE for 24 h (Figure 2h). The levels
of GABARAPL1 increased in both cytoplasmic and mitochondrial fractions upon CSE 24 h
incubation but failed to reach a statistically significant difference compared to the medium
(Figure 2i). The abundance of SQSTM1 and the LC3BII/LC3BI ratio were significantly
increased in, respectively, the cytosolic and the mitochondrial fraction of CSE-stimulated
cells after 24 h compared to the medium control (Figure 2j,k).
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expression of receptor-mediated constituents gamma-aminobutyric acid A receptor-associated
protein-like 1 (GABARAPL1), BCL2-interacting protein 3 (BNIP3), BCL2-interacting protein 3-like
(BNIP3L), and ubiquitin-mediated mitophagy factor phosphatase and tensin homolog (PTEN)-
induced kinase I (PINK-I) mitophagy factors as well as mitophagy adaptor proteins sequestosome-1
(SQSTM1) and (ratio) microtubule-associated protein 1 light chain 3 beta (LC3B)I/II in 16HBE cells
incubated with cigarette smoke extract (CSE) or medium (Med) for 3 h, 14 h, and 24 h in total cell
lysates. Fold change of protein levels of (b) GABARAPL1, (c) BNIP3, (d) BNIP3L, (e) SQSTM1,
(f) LC3BI, and (g) PINK-I over the medium control. The data are represented as mean ± SEM of
four independent experiments (N = 4). (h) Immunoblots representing the selected mitophagy factors
in the cytosolic (Cyto) and mitochondrial (Mito) fraction of the cells stimulated with either Med or
CSE for 24 h. Fold change of protein levels of (i) GABARAPL1, (j) SQSTM1, and (k) LC3BII/LC3BI
ratio in CSE-stimulated cells over the Med control. The data are represented as mean ± SEM
of four independent experiments with triplicate samples (N = 4). Immunoblotting of adenosine
monophosphate (AMP)-activated protein kinase (AMPK)α, phospho-AMPKα (Thr172), unc-51-like
autophagy-activating kinase 1 (ULK1), phospho-ULK1 (Ser555) upon incubation with either Med
or CSE for (l) 14 h and (m) 24 h. Fold change of protein levels of (n) p-AMPKα/AMPKα ratio and
(o) p-ULK-1/ULK1 ratio upon incubation with medium or CSE for 14 h. The data are represented as
mean ± SEM of three independent experiments with triplicate samples (N = 3). Normalization of
protein expression was performed using Ponceau S (Pon S) staining (GABARAPL1 to Pon S in blot
I, BNIP3 and LC3B to Pon S blot II-I, BNIP3L and PINK-I to Pon S blot II-II, SQSTM1 normalized
to Pon S in blot III) or β-actin. Representative Western blot images are selected and depicted of
one replicate representing the changes of all replicates as quantified in the corresponding graph.
Significant differences were analyzed by a paired two-tailed t-test (* p < 0.05, ** p < 0.001).

Subsequently, phosphorylation of mitophagy regulators adenosine monophosphate
(AMP)-activated protein kinase (AMPK)α at threonine 172 and unc-51-like autophagy
activating kinase 1 (ULK1) at serine 555 was assessed using immunoblotting of total
cell lysates from 16HBE cells stimulated with CSE for 14 h and 24 h (Figure 2l,m). The
ratio of phosphorylated AMPKα to total AMPKα did not alter at 14 h and 24 h post
CSE treatment compared to the medium control (Figure 2n, quantification not shown for
24 h). Phosphorylated ULK1 only slightly increased upon 14 h (non-significant) (Figure 2n)
and returned to the basal levels 24 h post CSE treatment compared to the medium control
(Figure 2o, quantification not shown).

Key constituents of mitochondrial fusion and fission were examined by immunoblot-
ting (Figure 3a). Mitofusion 2 (MFN2), one of the proteins regulating mitochondrial fusion,
was significantly reduced in 16HBE cells upon stimulation with CSE for 24 h compared to
the medium control (Figure 3b). Moreover, total levels of the fission factor dynamin-related
protein 1 (DRP1) protein appeared to be increased after 14 h and 24 h in response to CSE
compared to the medium but failed to reach statistical significance (p = 0.10 and 0.17, re-
spectively) (Figure 3c). Immunostaining, however, revealed an increase in phosphorylated
DRP1 at serine 616 (activated form of the protein) upon CSE as well as in response to
50 µM FCCP (Figure 3d). As depicted in Figure 3d, post-treatment with 25 µM MOTS-c
attenuated CSE-induced increase in p-DRP1 and improved DRP1 signals as compared
to the CSE-stimulated condition implying that improving mitochondrial OXPHOS may
suppress mitochondrial fission.
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Figure 3. Stimulation with cigarette smoke affects expression of mitochondrial fission/fusion-
associated proteins. (a) Immunoblots representing protein expression of fusion-marker mitofusion 2
(MFN2) and fission-marker dynamin-related protein 1 (DRP1) in 16HBE cells incubated with medium
(Med) or cigarette smoke extract (CSE) for 3 h, 14 h, and 24 h. Fold change of protein levels of
(b) MFN2 and (c) DRP1 in CSE-stimulated conditions over the medium control. The data are
represented as mean ± SEM of four independent experiments with triplicate samples (N = 4).
Normalization of protein expression was performed using GAPDH or Ponceau S (Pon S) stain-
ing. Representative Western blot images are selected and depicted of one replicate representing
the changes of all replicates as quantified in the corresponding graph. Significant differences
were calculated by multiple t-test and with the Holm–Sidak post hoc correction test (** p < 0.001).
(d) Immunofluorescence imaging of treated cell co-stained with anti-DRP1 (red) and anti-phospho-
DRP 1 at serine 616 (green) antibodies in combination with 4′,6-diamidino-2-phenylindole (DAPI)
nuclear staining in blue. 16HBE cells were either incubated with for 28 h with medium and CSE
or CSE for 24 h followed by 4 h treatment with 25 µM MOTS-c and 24 h medium, with 4 h car-
bonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP). False color-coded image columns are
shown here to depict differences in staining intensity. Merged images have been gamma-corrected to
visualize weak signals without losing the highlights. The scale bar is equivalent to 20 µm.
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Together, these findings indicate that CSE stimulation affects the regulatory pathways
controlling mitochondrial function and content including both receptor-mediated and
ubiquitin-mediated mitophagy as well as mitochondrial fission and fusion.

3.4. CSE-Induced Mitochondrial Dysfunction Affects Epithelial Barrier Integrity

In order to unravel the links between CSE-induced mitochondrial dysfunction and
epithelial cell junction integrity, mitochondrial-targeted compounds were used to examine
whether improving mitochondrial function would affect barrier integrity. To this end,
16HBE cells were stimulated with CSE followed by incubation with the mitochondrial ROS
scavenger MitoTEMPO (50 µM) and MOTS-c (25 µM) for 4 h. Methanol-fixed cells were
stained for cell junction proteins (ZO-1 and E-cadherin) and the mitochondrial outer mem-
brane protein TOMM20 and subsequently analyzed by immunofluorescence microscopy.
CSE stimulation disrupted ZO-1 and E-cadherin, which was partly reversible by MOTS-c
treatment (Figure 4a,b). Moreover, incubation with MitoTEMPO for 4 h counteracted the
effect of CSE on the barrier function by ameliorating ZO-1 and E-cadherin (Figure 4b).

Together, the findings on physical epithelial barrier function indicate that, while
CSE disrupts the cell–cell junctions, post-CSE treatment with mitochondrial-targeted com-
pounds, which improve mitochondrial oxidant status, restores cell junctional defects in-
duced by CSE.

3.5. Streptococcus Pneumoniae Infection with Prior CSE Exposure Induces Mitochondrial
Dysfunctions and Ultrastructure Damage in 16HBE Cells

In order to assess the impact of (i) Sp infection and (ii) Sp infection in cells pre-
exposed to CSE on mitochondrial read-out parameters, we conducted mtROS and MMP
measurements as well as immunoblotting for selected proteins involved in mitochondrial
metabolism and mitophagy.

Firstly, MitoSOX was quantified by FACS to examine the mtROS levels upon Sp
infection alone (MOI 10 and MOI 20) and Sp infection in CSE pre-exposed 16HBE cells.
Both Sp infection doses induced a shift in the MitoSOX fluorescence intensity compared to
the medium control and the CSE-only condition (Figure 5a). Pre-treatment of cells with
CSE for 24 h reduced the shift in the Sp-induced MitoSOX fluorescence signal, as compared
to the Sp only infection. These results showed that Sp infection may increase mtROS levels
in 16HBE cells, which was inhibited by prior exposure to CSE.

Secondly, the JC-1 test was performed to examine the impact of Sp infection alone and
Sp infection in CSE pre-exposed cells on the MMP. Treatment with Sp alone (both MOI)
initially resulted in increased MMP in 16HBE cells 1 h post-infection (24 h + 1 h; 25 h) and
reduced MMP 4 h post-infection (24 h + 4 h; 28 h) in 16HBE cells (Figure 5b). However,
pre-stimulation with CSE for 24 h followed by 4 h Sp infection (time point 28 h) reduced
MMP to levels similar to the CSE-only condition (Figure 5b). These findings may show that
Sp infection time-dependently affects MMP and that pre-exposure with CSE in combination
with Sp may reduce MMP stronger than Sp infection alone.
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Figure 4. Airway epithelial barrier disruption induced by cigarette smoke extract is reversible
with mitochondrial-targeted compounds. 16HBE cells incubated for 28 h with medium (control)
or cigarette smoke extract (CSE) for 28 h, or for 24 h with CSE followed by incubation for fur-
ther 4 h with either mitochondrial-targeted compounds MOTS-c (25 µM) or MitoTEMPO (50 µM).
(a) Immunofluorescence imaging of treated cells co-stained with antibodies against translocase of
the outer mitochondrial membrane complex subunit 20 (TOMM20) in red, the tight junction protein
zonula occludens (ZO-1) in green or the nucleus with 4′,6-diamidino-2-phenylindole (DAPI) for
nucleus staining (blue). (b) Treated cells were (co-)stained with anti-TOMM20-antibody (red) and
anti-E-cadherin-antibody (green) or with nuclear staining dye DAPI (blue). False color-coded image
columns shown here to depict differences in intensities. To visualize the barrier disruption, magnified
regions of interest are indicated in the fourth column and shown in column five. Merged images
have been gamma-corrected to visualize weak signals without losing the highlights. The scale bar is
equivalent to 20 µm (a) and 10 µM (b).
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for 28 h, cigarette smoke extract (CSE) for 28 h, CSE for 24 h followed by medium for 4 h (cessation),
medium for 24 h followed by Streptococcus pneumoniae (Sp) multiplicity of infection (MOI) 10 for
4 h, CSE for 24 h followed by Sp MOI 10 for 4 h, medium for 24 h followed by Sp MOI 20 for
4 h, CSE 24 h followed by Sp MOI 20 for 4 h, and medium for 24 h followed by carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP) 50 µM for 4 h. (a) Half offset histogram showing changes
in the curve of MitoSOX fluorescence signal as measured by FACS and analyzed by FlowJo, indicative
of changes in mitochondrial ROS levels (left panel), and fold change of mean fluorescence intensity
(MFI) of MitoSOX-positive cells upon treatments calculated over the medium (right panel). The data
are represented as mean ± SEM of two independent experiments. (b) Mitochondrial membrane
potential using JC-1 by dividing J-aggregate (red signal) by monomer (green signal) in the stimu-
lated 16HBE cells normalized to the assay start 0 h. The graph is representative of one out of two
independent experiments with similar outcome in triplicates. (c) Immunoblots representing protein
expression of subunits of oxidative phosphorylation complex, components of the glycolytic pathway,
and constituents controlling mitochondrial biogenesis in the total cell lysates upon stimulation with
either medium for 28 h, CSE for 28 h or medium for 24 h followed by FCCP 50 µM for 4 h, CSE for
24 h followed by medium for 4 h, Sp MOI 10 for 4 h, CSE for 24 h followed by Sp MOI 10 for 4 h,
medium for 24 h followed by Sp MOI 20 for 4 h, and CSE for 24 h followed by Sp MOI 20 for 4 h.
Densitometrically quantified fold change of protein levels was calculated for (d) subunit of complex
V (adenosine triphosphate 5A-ATP5A), (e) subunit of complex II (succinate dehydrogenase B-SDHB),
(f) hexokinase II (HKII), (g) nuclear respiratory factor 1 (NRF1), as well as (h) estrogen related receptor
α (ERRα). The data are represented as mean ± SEM from four independent experiments (N = 4).
Immunoblotting of total cell lysates from stimulated cells for proteins involved in (i) mitochondrial
fusion and fission, as well as in (l) autophagy and mitophagy. Protein levels of (fold change) (j) fusion-
associated protein mitofusion 2 (MFN2), (k) fission-associated protein dynamin-related protein 1
(DRP1); receptor-mediated mitophagy regulators: (m) BCL2-interacting protein 3 (BNIP3), (n) Fun14
domain-containing protein 1 (FUNDC1), marker associated with ubiquitin-mediated mitophagy:
(o) PTEN-induced kinase I (PINK-I); and autophagy-associated constituents: (p) gamma-
aminobutyric acid (GABA) A receptor-associated protein-like 1 (GABARAPL1), (q) ratio of
microtubule-associated protein 1 light chain 3 beta (LC3B) II to I (r) sequestosome-1 (SQSTM1).
The data are represented as mean ± SEM of four independent experiments in triplicates (N = 4).
Normalization of protein expression was performed using GAPDH or Ponceau S (Pon S) staining,
respectively, for ATP5a, SDHB, and HKII to Pon S blot (B) I-I, DRP1 and SQSTM1 to Pons S BI-II,
NRF1 and ERRα to Pon S BII-I, BNIP3 and LC3BI/II to Pon S BII-II, BNIP3L and PINK-I to Pon
S BIII-I, FUNDCI to BIII-II and GABARAPL1 to Pons S BIII-I. Representative Western blot images
are selected and depicted of one replicate representing the changes of all replicates as quantified in
the corresponding graph. The significant differences of treated cells versus medium control were
calculated with a paired two-tailed t-test (* p < 0.05, ** p < 0.001, *** p < 0.0001).

Next, immunoblotting was performed to assess the levels of key proteins involved
in metabolic processes such as OXPHOS and glycolysis. Moreover, protein abundance
of constituents of mitochondrial biogenesis were investigated upon CSE or Sp infection
alone and with CSE pre-exposure in 16HBE cells (Figure 5c). The abundance of complex V
(ATP5A) protein significantly decreased upon Sp infection with CSE pre-exposed cells com-
pared to Sp only infection (Figure 5d). Moreover, Sp infections with CSE pre-stimulation
significantly decreased the levels of complex II (SDHB) protein compared to the medium
control (Figure 5e). Sp infection with CSE pre-exposure reduced glycolysis protein hexoki-
nase II (HKII) compared to the medium control (Figure 5f). Importantly, the suppressing
effects of CSE on HKII levels were inhibited by removing CSE from the medium after 4 h
(CSE + Med) (Figure 5f), suggesting that the effect of CSE on HKII is transient.

In addition, the levels of NRF1 clearly decreased after Sp infection in comparison to
the medium control, while CSE pre-exposure had no additional effect on this (Figure 5g).
Although CSE stimulation alone only tends to reduce the ERRα protein in 16HBE cells
compared to the medium control (p = 0.05), we did observe that Sp infection with CSE
pre-stimulation significantly reduced the abundance of ERRα only compared to Sp infection
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alone (Figure 5h), implying the strong additive effects on mitochondrial biogenesis when
CSE pre-exposed cells were infected with Sp. Collectively, these results showed that
Sp infection with CSE pre-exposure significantly diminishes mitochondrial processes in
16HBE cells.

Moreover, immunoblotting was carried out to probe selected factors that regulate
mitochondrial fusion and fission (Figure 5i) as well as mitophagy (Figure 5l) upon CSE
or Sp infection alone and with CSE pre-exposure. Although infection with Sp induced a
significant decrease in the protein levels of MFN2 in 16HBE cells compared to the medium
control, Sp infection with CSE pre-exposure did not affect the MFN2 protein (Figure 5j).
Moreover, Sp infection with CSE pre-exposure did not alter the protein abundance of
DRP1 compared to the medium control (Figure 5k), suggesting that Sp mainly affects
mitochondrial fusion and CSE pre-exposure inhibits the effect of Sp infection. In addition,
Sp infection with CSE pre-stimulation induced a significant decrease in abundance of
BNIP3 compared to the medium control and Sp infection, and this effect on BNIP3 was
less prominent than CSE alone, suggesting that Sp infection has no additive effect on the
effects induced by CSE on BNIP3 (Figure 5m). Moreover, a significant decrease in the
Fun14 domain-containing protein 1 (FUNDC1) protein expression was observed upon Sp
infection with CSE pre-exposure compared to the Sp infection alone and to the medium
control (Figure 5n), suggesting that Sp infection does not alter the effects induced by CSE
pre-exposure on FUNDC1. The levels of PINK-I significantly enhanced upon infection
with Sp with CSE pre-stimulation compared to the Sp infection only and the medium
(Figure 5o), indicating that Sp infection has strong additive effect on PINK-I levels upon
CSE pre-exposure. The abundance of GABARAPL1, SQSTM1, and LC3BII/I ratio increased
upon Sp infection with CSE pre-exposure compared to the medium control (Figure 5p,q,r),
showing that Sp infection has no additional effects on the effects induced by CSE pre-
exposure on mitophagy adaptor protein levels. These data suggest that Sp infection with
CSE pre-exposure may affect mitophagy stronger than CSE alone and in a different way
than Sp infection alone.

In order to examine the ultrastructural changes induced by Sp infection alone and the
impact of CSE on this, a transmission electron microscopy (TEM) analysis was carried out.
Swollen mitochondria with damaged crista were clearly observed once untreated or CSE
pre-exposed cells were infected with Sp only (MOI 10). The same aberrant mitochondrial
morphology was observed for the cells treated with FCCP 50 µM (Figure S4).

Together, CSE affected 16HBE cells responses to Sp infection by altering the mitochon-
drial function and ultrastructure.

3.6. CSE Pre-Exposure Changes Expression Profiles of Genes Involved in Glycolysis, Innate
Immune Responses, and Autophagy upon Sp Infection

To explore the potential association between CSE-induced changes in mitochondrial
gene expression and changes in expression of target genes belonging to epithelial cell
responses to Sp infection in 16HBE cells, the expression of the relevant genes was analyzed
using transcription microarray analysis of data. For details on microarray data analysis,
see material and methods section. Briefly, heatmaps of differentially expressed genes
(assessed by ANOVA; p < 0.05), with FC > 3 in at least one differential comparison, were
z-score-transformed and k-means-clustered (Figure S5). The result was a combined Gene
set enrichment analysis (GSEA) of hallmark sets, selected Gene-Ontology-based gene sets,
and selected gene sets provided by the Reactome database. GSEA was calculated for each
condition with fold-change-based ranking, using the untreated condition as universal
reference. Significantly overrepresented gene sets (FDR < 0.1) were restricted to GSEA-core-
enriched genes, whose expression data were then z-score-transformed, clustered, plotted
as heatmap, and combined with the results of the initial differential ANOVA analysis, but
showed a total of 834 differentially regulated genes over all the condition comparison.
GSEA analysis showed that the genes encoding for proteins belonging to the mitochondrial
ribosomal translation and import machinery are enriched upon infection with Sp (MOI 10)
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alone and with CSE pre-exposure compared to the medium control (NES: 2.02 and 1.91,
respectively) (Figure S6 and 6b), implying that Sp has more distinct effect on mitochondrial
gene expression than CSE.

Interestingly, Sp infection with CSE pre-stimulation and CSE stimulation alone de-
creased the normalized enrichment score of the genes involved in glycolysis (Figure 6a)
and several of these genes were significantly downregulated compared to the medium
control (Figure 6b). In contrast, the expression of these genes was high in both, the medium
control and Sp infection alone, but became downregulated in all other conditions as soon
as CSE was involved (Figure 6b).

Moreover, data from GSEA analysis showed that Sp infection alone drives func-
tional enrichment of the genes involved in complement (NES: 1.23), interferon α (NES:
1.29), and interferon γ responses (NES: 1.39). Expression of the according genes within
those gene sets as well as the major histocompatibility complex (MHC) class II path-
way was significantly reduced upon Sp infection with CSE pre-exposure and CSE alone
(Figures S7 and 6c). This is in line with significant downregulation of interferon γ response
genes in CSE stimulated conditions (Figure 6d). Moreover, CSE significantly downreg-
ulated c-c motif chemokine 5 (CCL5) and Toll-like receptor 3 (TLR3) while these genes were
upregulated upon Sp only infection (cluster 1 and 5, Figure S5). In order to find the mech-
anistic factor linking the observed decrease in interferon responses to mitochondria, we
investigated the abundance of the mitochondrial-located NOD-like receptor X1 (NLRX1)
as a mitochondrial factor known to suppress interferon responses [15]. We observed that
CSE stimulation of 16HBE cells for 24 h resulted in significantly increased abundance of the
NLRX1 protein (Figure 6e), suggesting a potential contribution of mitochondrial damage to
diminished interferon responses upon CSE.

Furthermore, autophagy-related genes were significantly GSE-enriched (NES: 2.09) in
CSE only stimulation conditions compared to the untreated medium (Figure 6f). Genes in
this category became however upregulated in all three CSE-treated conditions, including
CSE pre-exposure with Sp infection. Moreover, expression of SQSTM1, which was observed
to be increased at protein level, was upregulated in all CSE-treated conditions (cluster 4,
Figure S5). Contrary, expression of autophagy genes remained relatively unchanged upon
Sp infection alone (Figure 6g).

Collectively, these data show that while Sp infection alone induced the expression of
genes related to innate immune responses, CSE stimulation decreased these responses, in
particular interferon responses and cell surface antigen recognition in 16HBE cells. These
CSE-induced changes in genes regulating innate immune responses were accompanied
with an increased abundance of the negative regulator of interferon responses NLRX1.
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Figure 6. Gene expression and gene set enrichment analysis of 16HBE epithelial cell responses upon
cigarette smoke extract stimulation and Streptococcus pneumoniae infection in 16HBE cells. Total-RNA
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from 16HBE cells from stated treatment conditions was isolated and transcriptome was analyzed with
Clariom S Microarrays. For details on data analysis, see material and methods and text. Microarray
data for each condition was analyzed by Gene Set Enrichment (GSEA) with untreated medium control
as reference (ranked by fold change, FDR < 0.1). Normalized log2 signal intensities of core-enriched
genes were z-score-transformed, color-coded, and plotted as heatmap (row labels: gene symbols).
Details on bold gene symbols are mentioned in the text. Significance of differential expression with
fold change cutoff |FC| > 3 in reference to the medium (Med) control was calculated by ANOVA
(p < 0.05). White points in heatmap plots indicate |FC| > 3 with p < 0.05. Green/black/red color
bars represent z-scores. Only selected significantly over-represented gene sets for (a) glycolysis,
(c) interferon γ responses, and (f) positive regulation of autophagy with their according heat map
of core-enriched genes (b,d,g) are shown. NES: normalized enrichment score, FDR: false discovery
rate. (e) Immunoblotting of the NLR family member X1 (NLRX1) upon incubation of 16HBE cells
with Med or CSE for 24 h (left panel). Normalized densitometrical quantification of NLRX1 protein
expression (right panel). Bars and whiskers represent mean ± SEM (N = 3) of fold change over the
medium control. Statistical significance was calculated by a paired t-test (** p < 0.001).

4. Discussion

In this study, we investigated the impact of acute exposure of 16HBE cells to CSE on the
regulation of mitochondrial function in the presence or absence of subsequent infection with
Sp. The major aim was to investigate the impact of mitochondrial abnormalities (induced by
CSE) on airway epithelial responses, particularly innate immune responses, and the airway
epithelial barrier function. Moreover, we sought to determine mitochondrial changes and
innate immune responses in 16HBE cells by CSE and Sp alone and in combination.

We have demonstrated that short-term CSE exposure induced mitochondrial dysfunc-
tion in AECs by enhancing the mitochondrial oxidative stress, loss of MMP as well as
by reducing mitochondrial complex protein levels, which is in line with previous studies
showing similar mitochondrial dysfunction in AECs upon short and long-term exposure to
low doses of CSE [11,16]. In addition, CSE affected the regulation of mitochondrial quality
control processes by attenuating mitochondrial fusion-associated markers and altering
the abundance of constituents associated with mitochondrial fission and mitophagy. The
abnormal mitophagy was identified through increased mitochondrial protein levels of
LC3B and SQSTM1 as well as decreased receptor-mediated mitophagy constituents, respec-
tively BNIP3 and FUNDC1, in AECs upon CSE exposure. Several mechanistic explanations
can be suggested for the observed imbalanced abundance of mitophagy-associated con-
stituents upon CSE, respectively regulation via mTOR signaling, oxidative stress response or
AMPK regulation.

Firstly, the LC3B-SQSTM1-mediated increase in mitophagy may not be regulated by
mTOR signaling, the negative regulator of autophagy, as only a subtle upregulation of
genes involved in the mTORC1 pathway, particularly SQSTM1 and CDKN1a were observed
upon CSE. Interestingly, CSE deprivation from the medium was able to counteract the
enrichment in mTORC1 gene set, indicating that the activation of mTOR may be transient
(data not shown). Secondly, the influence of an increased oxidative stress response in
CSE-induced mitophagy was ruled out by using the mtROS inducer FCCP, which did not
alter the levels of mitophagy markers. Thirdly, we hypothesized that AMPK may regulate
GABARAPL1-mediated mitophagy upon CSE stimulation, as it is known that AMPKα

phosphorylation positively regulates initiation of autophagy via phosphorylation of ULK1
at serine 555 [17]. AMPKα is a metabolic sensor which is dependent on mitochondrial
OXPHOS activity, and a decrease in its phosphorylated form has been reported in the
lung of COPD patients [18]. It is postulated that the levels of phosphorylated AMPKα

initially increases in response to CSE to resolve the inflammation by increasing antioxi-
dant regulators such as mitochondrial superoxide dismutase 2 (SOD2) and nuclear factor
erythroid 2-like 2 (NRF2) [18–20]. However, it is incompletely understood whether this
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pattern of AMPKα phosphorylation is associated with the severity of the stage of COPD.
In contrast, several studies reported that CSE exposure resulted in decreased AMPKα

phosphorylation in AECs in a time-dependent manner both in vitro and in vivo [21,22].
In our study, we have observed that stimulation of AECs with CSE resulted in slightly
reduced phosphorylation of AMPKα at Thr172, while it upregulated AMPKβ2 gene ex-
pression, suggesting a potential involvement of other subunits of AMPK in CSE-induced
increase in mitophagy. Phosphorylation of ULK1 by AMPK leads to its translocation to
the mitochondria and an increased abundance of constituents involved in the mitophagy
machinery [23]. Immunoblotting for phospho-ULK1 at Ser555 only showed a slight increase
upon stimulation with CSE for 14 h, suggesting that the increased mitophagy induced by
CSE was minimally affected by the AMPKα/ULK1 pathway and mainly triggered by other
mitophagy regulators.

Besides our finding on CSE-induced impairment in mitochondrial function and dis-
rupted regulation of mitochondrial quality control processes in AEC, the existing literature
has shown that CS exposure dysregulates innate immune responses to pathogens resulting
in a secondary bacterial infection with, e.g., Sp serotypes [8,24,25]. Sp serotypes are mainly
composed of non-invasive and invasive strains [26], of which non-invasive common nasal
colonizer serotypes such as serotype 15A, 19A, 19F, and 23B were frequently isolated from
patients with airway diseases [27]. Sp serotype 19F is one of the increasingly isolated
serotypes that does not respond to routine antimicrobial treatments [28]. It was reported
that Sp infection increases the oxidative burden and reduces MMP in the lung of aged
mice [29]. Furthermore, stimulation with virulence factors of Sp pneumolysin and hydrogen
peroxide were shown to induce mitochondrial membrane permeability in alveolar epithe-
lial cells leading to mitochondrial DNA release and a pro-inflammatory response [30,31].
We have shown that while infecting 16HBE cells with Sp increased mtROS levels, this Sp
treatment did not alter protein levels of subunits of mitochondrial OXPHOS complexes,
suggesting that changes in mitochondrial components are not necessarily ROS-dependent
upon Sp infection in AECs. Furthermore, Sp infection enhanced the abundance of mito-
chondrial fission protein DRP1, showing that increased mitochondrial fragmentation may
proceed with the cell death in Sp infection. This is also in line with the observed decrease
in abundance of constituents controlling mitochondrial biogenesis and abnormal mitochon-
drial morphology, respectively loss of crista and mitochondrial swelling in response to Sp.
Moreover, increased hypoxia-mediated mitophagy levels as well as increased levels of HKII,
responsible for the first step in glycolysis, and enhanced enrichment of genes involved in
glycolysis were observed upon Sp infection. In contrast, prior CSE exposure followed by
Sp infection mainly induced similar but stronger changes than CSE alone on the abundance
of mitochondrial proteins involved in mitophagy and OXPHOS/glycolysis in 16HBE cells,
suggesting potential changes in mitophagy and OXPHOS/glycolysis processes. Together,
infection with non-invasive Sp alone elicited different mitochondrial abnormalities than
those induced by CSE alone, and Sp infection with CSE pre-exposure exacerbated the
mitochondrial dysfunction in 16HBE cells.

Inhaled pathogens and noxious gases first encounter physical and chemical barriers in
AECs as the gatekeeper of innate immune responses [2]. The mitochondrial function may
regulate the innate immune response during infection and inflammation [3]. Although
early pro-inflammatory responses to the pathogens may resolve the infection and mitigate
the damage, chronic infection with persistent inflammation may break this barrier [32].
We observed that CSE exposure induced pro-inflammatory responses by increasing acute
phase response gene expression of cytokines, for example, neutrophil attractants, such as
CXCL8 and IL-23A, and IL1β. This early protective inflammatory response was confirmed
in our model by the observation that pre-incubation of 16HBE cells with CSE reduces the
bacterial viability (data not shown). Contrary, CS is known to suppress certain antimicrobial
responses of airway epithelium to pathogens such as epithelial β-defensins [33]. We
observed that while Sp infection increased type I and II interferon responses as well as
complement activity at mRNA levels, CSE exposure dampened these responses in AECs.
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In line, several studies reported that CS exposure suppresses innate immune responses in
AECs by negatively regulating IFN responses [34–36]. The CSE-induced impairment in IFN
responses and consequent dampened innate immune suppression may be triggered through
downregulation of RIG-I, MDA-5 and TLR3 via IKB kinase epsilon (IKBKE)-mediated
regulation of interferon regulatory factors (IRFs), as observed by downregulation of RIG-I,
MDA-5, and TLR3 genes upon CSE stimulation. Additionally, CSE-induced attenuation
of interferon responses may be triggered by increased levels of mitochondrial antiviral
signaling (MAVS) inhibitors such as E3 ligases Trim29, Smurf1/2, March5 that degrade
MAVS or by NLRX1-mediated MAVS inhibition [37]. This NLRX-mediated inhibition
of MAVS and downregulation in interferon response is reported to be regulated via the
Tu mitochondrial translation elongation factor (TUFM) [38]. In addition to the effects
on interferon responses, mitochondrially localized NLRX1 has been reported to affect
mitophagy via TUFM [38] or via direct interaction with LC3B [39]. We have observed that
CSE exposure enhances NLRX1 protein levels, which may subsequently inhibit MAVS and
lead to the observed dampened interferon responses and likely contributes to the increased
mitophagy. Therefore, our findings suggest that CSE-induced mitochondrial dysfunction
may contribute to impaired interferon responses and increased mitophagy especially at the
earlier phase of infection.

Next, we used mitochondrial-targeted compounds to untangle the impacts of im-
proving mitochondrial function on restoration of CSE-induced disrupted airway epithelial
physical barriers. We found that post-treatment of AECs with both mitochondrial-derived
peptide MOTS-c as well as mitochondrial antioxidant MitoTEMPO restores tight and ad-
herens junctions disrupted by CSE exposure. MOTS-c is a mitochondrial short open reading
frame peptide with a potential metabolic activity by activating AMPK and increasing the
glucose uptake [40]. Furthermore, MOTS-c improves sirtuin 1 through increasing NAD+
levels and thus enhances glycolysis [40]. To our knowledge, this is the first report showing
an epithelial barrier protective effect for MOTS-c. The barrier protective effects of both
mitochondrial compounds may be triggered via improvement of mitochondrial biogenesis
via increased glycolysis as already reported for MitoTEMPO in AECs upon rhinovirus
infection [41].

Together, CSE-induced mitochondrial dysfunction may contribute to a weakened
immunological and physical epithelial barrier function in AECs. Our study was, however,
limited by several technical issues. Firstly, we only used a monolayer of undifferentiated
and immortalized airway epithelial cells. In physiological condition, AECs function in
interaction with other airway structural cells as well as resident and circulated immune
cells [42]. Moreover, CSE that has been used in this study mainly contains soluble gas phase
contents, excluding the particle phase. Finally, mitochondrial function such as respiration
or acidification could be assessed by more functional assays. Future studies will further
illuminate the impacts of mitochondrial dysfunction induced by exposing animals or
differentiated AECs to whole CS on the epithelial responses by considering the interaction
with resident and circulating immune cells.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11111771/s1, Figure S1: Growth curve of Streptococcus
pneumoniae upon CSE exposure. Sp growth curve in presence and absence of different concen-
trations of cigarette smoke extract (CSE) (5–25%) for 5 h. Data were represented as mean ± SEM
of triplicate samples for each condition.; Figure S2: Optimization of CSE-induced mitochondrial
dysfunction model. 16HBE cells were incubated with medium control or various concentrations of
cigarette smoke extract (CSE) (5, 10, 15 and 20%) for 24 h. (a) Proliferation of the treated 16HBE cells
was quantified using 3-(4,5-dimethylthiazole-2-yl) 2,5-diphenyl-2H-tetrazolium bromide (MTT) test.
The data is presented as mean of triplicates (±SEM) and representative of one out of two independent
experiments with similar outcomes. (b) Real-Time Glo MT assay for time-point measurement of cell
proliferation until time 19 h. The data is representative of one out of two independent experiments
with similar outcome in triplicates. (c) Total reactive oxygen species (ROS) levels analyzed with
dichlordihydrofluorescein diacetate (H2-DCFDA) test presented as mean fluorescent intensity (MFI)

https://www.mdpi.com/article/10.3390/cells11111771/s1
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of triplicates (±SEM) normalized to measurement at assay start (0 h). Tert-butyl hydroperoxide (tBHP)
50 µM was used as positive regulator of ROS. Statistically significant difference was calculated with
multiple t-test compared to the medium control (* p < 0.05). The data is representative of one out of
three independent experiments with similar outcome and in triplicates. (d) Half offset histogram was
used to display shift in the MitoSOX fluorescent signal detected by FACS and analyzed by FlowJo,
indicative of changes in mitochondrial ROS levels (left panel) and fold change of MFI MitoSOX
upon CSE and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP; positive regulator of
mitochondrial ROS). MitoSOX MFI fold change was calculated for each condition compared to the
medium. The MFI is representative of two independent experiments. (e) Mitochondrial membrane
potential was measured using JC-1 test by dividing J-aggregate (red signal) by monomer (green
signal) and normalized to the ratio in the corresponding condition at 0 h. The data is representative
of one experiment out of two independent experiments with triplicate samples; Figure S3: Immunos-
taining for estrogen related receptor α (ERRα). The 16HBE cells were stimulated with medium
control, cigarette smoke extract (CSE) for 28 h, CSE 24 h followed by mitochondrial ORF of the 12S
rRNA type-c (MOTS-c) 25 µM for 4 h or with carbonyl cyanide-p- trifluoromethoxyphenylhydrazone
(FCCP) 50 µM. Immunofluorescence staining was performed using an antibody against ERRα (red)
and 4′,6-diamidino-2-phenylindole (DAPI) (blue) for nuclei staining. The scale bar is equivalent to
20 µm. Figure S4: Ultrastructure of 16HBE cells upon CSE stimulation and Streptococcus pneumoniae.
Mitochondrial morphological changes were analyzed under transmission electron microscope (TEM).
Dark arrows indicating normal mitochondrial morphology, whereas red arrows showing loss of
crista and swollen mitochondria. Representative images of 16HBE cells incubated with (a) medium
for 28 h, (b) cigarette smoke extract (CSE) for 28 h, (c) Streptococcus pneumoniae (Sp) multiplicity
of infection (MOI) 10 for 4 h, (d) CSE for 24 h followed by Sp MOI 10 for 4 h (e), CSE for 24 h
followed by medium for 4 h and (f) carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP)
50 µM for 4 h. The scale bar is equivalent to 2 µm; Figure S5: Microarray analysis of gene expres-
sion upon CSE stimulation and Streptococcus pneumoniae infection. 16HBE cells were stimulated
with medium (Med) or cigarette smoke extract (CSE) for 28 h, CSE for 24 h followed by medium
4 h (CSE cessation), Streptococcus pneumoniae (Sp) multiplicities of infection (MOI) of 10 and 20 for
4 h, CSE for 24 h followed by Sp MOI 10 and 20 for 4 h. Total RNA was isolated and investigated
by using human Clariom S microarray. Differentially expressed transcripts were determined by
comparing each condition with medium control (fold change ≥3-fold, false discovery rate <0.05).
Log2 signal intensities data of the transcripts were z-score transformed and k-means clustered (k = 8),
and transcripts in resulting clusters were sorted by maximal absolute z-score (row labels: gene
symbols). Data represent color-coded z-scores. Details on bold gene symbols are mentioned in
the text. Figure S6: Expression of genes regulating mitochondrial function in 16HBE cells upon
Streptococcus pneumoniae infection with and without CSE pre-exposure. Gene set enrichment analysis
(GSEA) for mitochondrial ribosomal translation and mitochondrial import Reactome genes upon
(a) infecting 16HBE cells with Streptococcus pneumoniae (Sp) multiplicity of infection (MOI) 10 for
4 h and (b) incubation with cigarette smoke extract (CSE) for 24 h followed by Sp infection with
MOI 10 for 4 h compared to the untreated medium (ranked by fold change, FDR < 0.1). The data
were collected from two independent experiments; Figure S7: Expression of genes regulating innate
immune responses upon cigarette smoke extract stimulation and Streptococcus pneumoniae infection.
(a) Gene set enrichment analysis (GSEA) for cell surface major histocompatibility complex II (MHCII)
in Reactome gene set upon cigarette smoke extract (CSE) stimulation compared to the medium
(Med) control. Normalized log2 signal intensities of core-enriched genes were z-score transformed,
color-coded and plotted as heatmap (row labels: gene symbols). Details on bold gene symbols are
mentioned in the text. Significance of differential expression with fold change cut-off |FC| > 3 in
reference to Med control was calculated by ANOVA (p < 0.05). White points in heatmap plots indicate
|FC | > 3 with p < 0.05. Green/black/red color bars represent z-scores. (b) GSEA for interferon α

and γ hallmarks upon infection of 16HBE cells with multiplicity of infection (MOI) 10 of Streptococcus
pneumoniae (Sp). (c) GSEA for complement hallmarks upon stimulation of 16HBE cells with CSE for
28 h and Sp MOI 20 for 4 h compared to the untreated medium as well as regulated genes in this hall-
mark calculated by ANOVA (p < 0.05). The data were collected from two independent experiments.
* NES: Normalized enrichment score, FDR: false discovery rate; Figure S8: Airway epithelial barrier
disruption induced by cigarette smoke extract is reversible with mitochondrial-targeted compounds.
16HBE cells incubated for 28 h with medium (control) or cigarette smoke extract (CSE) for 28 h, or
for 24 h with CSE followed by incubation for further 4 h with either mitochondrial-targeted com-
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pounds MOTS-c (25 µM) or MitoTEMPO (50 µM). (a) Immunofluorescence imaging of treated cells
co-stained with antibodies against translocase of the outer mitochondrial membrane complex subunit
20 (TOMM20) in red, tight junction protein zonula occludens (ZO-1) in green or the nucleus with
4′,6-diamidino-2-phenylindole (DAPI) for nucleus staining (blue). (b) Treated cells were (co-)stained
with anti-TOMM20-antibody (red) and anti-E-cadherin-antibody (green) or with nuclear staining dye
DAPI (blue). False color-coded image columns shown here to depict differences in intensities. To
visualize the barrier disruption, magnified regions of interest are indicated in the fourth column and
shown in column five. Merged images have been gamma corrected to visualize weak signals without
losing the highlights. The scale bar is equivalent to 20 µm (a) and 10 µM (b); Figure S9: Quantification
of signal intensities of immunofluorescence staining in 16HBE cells. The cells were stained with anti-
bodies against (a) dynamin-related protein 1 (DRP1) and (b) translocase of the outer mitochondrial
membrane complex subunit 20 (TOMM20). Mean fluorescence intensity (MFI) was calculated for each
cell in the corresponding immunofluorescence images by Fiji software. The statistically significant
differences with the medium (Med) were determined by unpaired t-test and using Welch’s post-hoc
test (** p < 0.001, *** p < 0.0001); Table S1: Antibodies used for immunoblotting. Abbreviations:
AMPKα, AMP-activated protein kinase; p-AMPKα, Phosphorylated AMP-activated protein kinase;
β-Actin, beta-Actin; BNIP3, BCL2-interacting protein 3; BNIP3L, BCL2 interacting protein 3-like;
COXIV, Cytochrome c oxidase subunit IV; DRP1, Dynamin-related protein 1; ERRα, Estrogen-related
receptor alpha; FUNDC1, Fun14 domain-containing protein 1; GABARAPL1, Gamma-aminobutyric
acid receptor-associated protein-like 1; GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; HKII,
hexokinase II; HRP, Horseradish peroxidase; LC3B, Microtubule-associated protein 1A/1B-light chain
3B; MFN2, Mitofusion 2; NLRX1, Nucleotide-binding domain and leucine-rich repeat–containing
protein X1; NRF1, Nuclear respiratory factor 1; OXPHOS, Oxidative phosphorylation antibody
cocktail (containing SDHB: Succinate dehydrogenase subunit B, UQCRC2: Ubiquinol-cytochrome C
reductase core protein 2, ATP5A: adenosine triphosphate 5A); PINK, Phosphatase and tensin homolog
(PTEN)-induced kinase; SQSTM1, Sequestosome 1; TOMM20, Translocase of the outer mitochondrial
membrane complex subunit 20; ULK1, Unc-51 like autophagy activating kinase 1; p-ULK1, Phospho-
rylated Unc-51 like autophagy activating kinase 1; VDAC1, Voltage-dependent anion channel 1; Table
S2: Antibodies used for immunocytochemistry. Abbreviations: DRP1, Dynamin-related protein 1; p-
DRP1, phosphorylated dynamin-related protein 1; ERRα, Estrogen-related receptor alpha; TOMM20,
Translocase of the outer mitochondrial membrane complex subunit 20; ZO-1, Zonula occludens 1.
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