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Abstract

In murine neurocysticercosis (NCC), caused by infection with the parasite Mesocestoides corti, the breakdown of the Blood
Brain Barrier (BBB) and associated leukocyte infiltration into the CNS is dependent on the anatomical location and type of
vascular bed. Prior studies of NCC show that the BBB comprised of pial vessels are most affected in comparison to the BBB
associated with the vasculature of other compartments, particularly parenchymal vessels. Herein, we describe a
comprehensive study to characterize infection-induced changes in the genome wide gene expression of pial vessels using
laser capture microdissection microscopy (LCM) combined with microarray analyses. Of the 380 genes that were found to be
affected, 285 were upregulated and 95 were downregulated. Ingenuity Pathway Analysis (IPA) software was then used to
assess the biological significance of differentially expressed genes. The most significantly affected networks of genes were
‘‘inflammatory response, cell-to-cell signaling and interaction, cellular movement’’, ‘‘cellular movement, hematological
system development and function, immune cell trafficking, and ‘‘antimicrobial response, cell-to-cell signaling and
interaction embryonic development’’. RT-PCR analyses validated the pattern of gene expression obtained from microarray
analysis. In addition, chemokines CCL5 and CCL9 were confirmed at the protein level by immunofluorescence (IF)
microscopy. Our data show altered gene expression related to immune and physiological functions and collectively provide
insight into changes in BBB disruption and associated leukocyte infiltration during murine NCC.
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Introduction

The blood brain barrier (BBB) separates the peripheral

circulation from the CNS and plays a critical role in homeostasis

of the CNS environment. In the healthy brain BBB selectively

restricts molecular and cellular trafficking between the blood and

brain tissue and between blood and cerebrospinal fluid (CSF) [1].

The restrictive properties are largely controlled by specialized

endothelial cells of the CNS vasculature which differ from those in

the peripheral vasculature in terms of polarized expression of

various transport systems, low transcytosis activity, high mito-

chondrial volume and sealing of the paracellular cleft between

endothelial cells by continuous strands of interendothelial junction

proteins including tight junctions [1]. However, additional

components of the BBB are present in different CNS compart-

ments and vary according to their anatomical location in the CNS

and nature of the vasculature. The blood vessels present in

leptomeninges (pia) in subarachnoid space are collectively termed

pial vessels. The BBB associated with pial vessels in adult brain are

largely devoid of pericytes, astrocytic endfeet processes, additional

basement membranes and parenchymal tissue in comparison to

that of parenchymal vessels [2,3,4]. Infection of the CNS leads to

changes in barrier properties of the BBB allowing the leakage of

serum components (edema) and infiltration of leukocytes resulting

in CNS pathology [5,6]. In addition, the BBB transport system is

also affected further disturbing the homeostasis of the CNS

environment [1].

Neurocysticercosis (NCC) is a CNS infection caused by the

metacestode (larva) of the tapeworm Taenia solium. It is one of the

most common parasitic infections of the CNS and a major cause of

acquired epilepsy worldwide [7]. Depending upon the size,

location, and number of parasites as well as sex, age and immune

status of the host, there are differences in disease severity and

pathologies [8]. Epidemiological studies show that among the

various forms of NCC, subarachnoid NCC has the worst outcome

and is associated with poor prognosis, more resistance to anti-

helminthic drugs and more severe inflammation [9]. The chronic

inflammation of the vasculature and arachnoid thickening (chronic

basal meningitis) leads to blockade of CSF further contributing to

CNS pathology [8].

Similarly, using a murine model for NCC by infection with the

highly related parasite Metacestoides corti, prior studies from our

laboratory have demonstrated that breakdown of the BBB and

associated leukocyte infiltration depends on many criteria includ-

ing the anatomical site, type of vascular bed, and infiltrating cell

phenotype [6,10,11]. Assessment of the integrity of the BBB by

changes in the architecture of interendothelial junction proteins

and leakage of serum proteins revealed that the BBB associated

with pial vessels were compromised earlier and to a greater extent

in comparison to the BBB associated with vessels present in other
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CNS compartments [12,13]. In addition, previous studies have

shown that during murine NCC, the temporal pattern of

infiltrating leukocyte subsets is characterized by a large infiltration

of macrophages and cd T cells followed by ab T cells and lastly B

cells [14]. Further characterization of leukocyte subset infiltration

in different CNS compartments has established that the majority

of the infiltration occurs via pial vessels [13].

There is a lack of detailed analysis of BBB disruption in vivo in a

CNS compartment-specific manner. To address this deficiency

and to obtain insights into changes occurring only to pial vessels,

we designed a microarray-based, comprehensive study to analyze

the changes in gene expression associated with the BBB comprised

of pial vessels of the leptomeninges and subarachnoid spaces. We

utilized laser capture microdissection microscopy (LCM) to isolate

pial vessels from mock- and parasite-infected mice and performed

microarray analyses. Our transcriptome data indicate an altered

expression of genes related to the immune response and to

physiological function and collectively provide insight into the

dysfunction of the BBB during murine NCC associated with pial

vessels.

Materials and Methods

Ethics statement
This study was conducted in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the U.S. National Institutes of Health.

Experiments were carried out under the approved guidelines of

the Institutional Animal Care and Use Committee (IACUC),

University of Texas at San Antonio (approved IACUC protocol

number MU003-07/11A0).

Animals, parasites and infection
Female Balb/c mice were purchased from National Cancer

Institute program (Bethesda, MD). Parasite maintenance and

intracranial infection were performed using a protocol developed

earlier [14]. M. corti metacestodes were maintained by serial

intraperitoneal (i.p.) inoculation of 8- to 12-week-old female BALB/

c mice. For intracranial inoculations, parasites were aseptically

collected from the peritoneal cavity of mice that had been infected

for about 4–6 months. Harvested parasites were extensively washed

in HBSS. After that, the metacestodes (70 microorganisms) were

suspended in 50 ml of HBSS and injected intracranially into 3–5-

week-old female BALB/c mice using a 1-mL syringe and a 25-gauge

needle using our protocol developed earlier. The needle was

inserted to a 2-mm depth at the junction of the superior sagittal and

the transverse sutures. This allows insertion of the needle into a

protective cuff avoiding penetration of the brain tissue. Control

mice were injected with 50 ml sterile HBSS using the same protocol.

Before intracranial inoculation, mice were anesthetized intramus-

cularly with 50 ml mixture of ketamine HCL and xylazine (30 mg/

ml ketamine and 4 mg/ml xylazine).

In vivo labeling of vessels and laser captured
microdissection

Animals were sacrificed at 3 weeks after inoculation. Before

sacrifice, animals were anesthetized with 50 ml of mixture of

ketamine HCL and xylazine. The thoracic cage was opened and

100–125 ml of a Rhodamine Red-X conjugated Ricinus communis

agglutinin (Rh-RCA) lectin (Vector Lab) was injected through the

left ventricle in heart. After 2 minutes of Rh-RCA injection,

perfusion was performed through the left ventricle with 15 mL of

cold HBSS [15]. Perfused brains were immediately removed,

embedded in O.C.T. resin (Sakura, Torrance, CA) and snap frozen

in 2-methyl butane (Fisher Scientific, Pittsburgh, PA) contained/

cooled in liquid nitrogen and stored at 280uC for later use. 10 mm

thick horizontal cryosections were obtained from each brain on

polyethylene naphthalate membrane slides (Leica Microsystems,

Wetzlar, Germany). The tissues were fixed in 220uC acetone for

20 seconds and kept in dry ice. Subsequently brain sections were

dehydrated in 70% (10 s), 95% (20 s), 100% (3x, 30 s each) and

xylene (2x, 30 sec). After dehydration, the slides were kept in

desiccators until the time of dissection to avoid the humidity. LCM

was performed with Leica LMD 7000 micro systems (Leica

Microsystems, Wetzlar Germany) as described previously [16].

RNA isolation and linear amplification
From LCM isolated endothelial cells, RNA was extracted with

Pico Pure RNA isolation kit (Arcturus Bioscience, Mountain View,

CA) according to manufacturer’s protocol. DNase (Qiagen,

Valencia, CA) treatment was performed directly within the

purification column to remove any possible genomic contamination

during the RNA extraction process. The quality of the RNA was

inspected with Agilent 2100 Bioanalzyer and NanoDrop ND-1000.

Samples passing quality control assessment were then subjected to

linear amplification and subsequently labeled with NuGEN Ovation

Aminoallyl RNA Amplification and Labeling System (NuGEN

Technologies, San Carlos, CA) as per manufacturer’s instructions.

DNA microarray
Arrays were printed at the Duke Microarray Facility using the

Genomics Solutions OmniGrid 100 Arrayer and mouse genome

oligo set (version4.0). The Mus musculus Operon v4.0 spotted

microarray contains 35,852 longmer probes representing 25,000

genes and about 38,000 gene transcripts (Operon Biotechnologies,

Huntsville, AL).

Microarray and data processing
The amplified and labeled product was hybridized to Mus

musculus Operon v4.0 spotted microarray according to the

Author Summary

Neurocysticercosis (NCC) is one of the most common
parasitic diseases of the CNS caused by the metacestode
(larva) of the tapeworm Taenia solium. Epidemiological
studies show that among the various forms of NCC,
subarachnoid NCC is associated with poor prognosis, more
resistance to anti-helminthic drugs and more severe
inflammation. The chronic inflammation of the vasculature
and arachnoid thickening (chronic basal meningitis) leads
to blockade of CSF further contributing to CNS pathology.
Using a murine model for NCC, we have found that among
the different types of vasculature associated with the
blood-brain barrier (BBB), pial vessels of BBB are compro-
mised earlier and to a greater extent during NCC. In
addition, pial vessels are likely the most important
entryway for leukocyte infiltration during NCC. The aim
of this study was to characterize infection-induced
changes in the genome-wide gene expression of pial
vessels. Our approach was to isolate pial vessels of the BBB
by in vivo labeling of vessels followed by laser capture
microdissection microscopy (LCM). Further, microarray
analysis of pial vessels showed infection-induced changes
in the expression of genes associated with both immunity
and disease, and collectively provides insight into the
dysfunction of the BBB and mechanisms associated with
leukocyte infiltration during murine NCC.

Parasite Infection Induced Genes in Pial Vessels of BBB
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manufacture protocol at 42uC with the MAUI hybridization

system (BioMicro Systems, MAUI hybridization System, Salt Lake

City, Utah). The array was then washed at increasing stringencies

and scanned on a GenePix 4000B microarray scanner (Axon

Instruments, Foster City, CA). The Genespring 11 program

(Agilent Technologies, Redwood City, CA) was used to perform

data processing and statistical analysis. Intensity-dependent (Low-

ess) normalization was done on the entire data set. To assess the

quality of a data set, a principle component analysis was

performed on samples on expression of all genes with mean

centering and scaling. Datasets were filtered based on values and

probe sets with background-subtracted intensity of 44 or less were

excluded from the analysis. Subsequently, t-test analysis was

performed to calculate the p-values using an asymptotic method

and Benjamini-Hochberg, for multiple testing correction. Differ-

entially expressed probe sets were selected based on volcano plot

with a 2-fold change and p-value cut off of 0.05. Differentially

expressed genes were then clustered using Average Linkage with

Pearson Correlation as the similarity measurement. Molecular

networks of the selected molecules and specific pathways were

analyzed through Ingenuity Pathway Analysis software (Agilent

Technologies, Redwood City, CA).

Real time RT-PCR analysis
RNA obtained from LCM isolated endothelial cells (as described

above) was subjected to linear amplification by the WT-Ovation

Pico System (Nugen technology, San Carlos, CA). Resulting cDNA

was loaded onto Taq-Man Low Density Arrays (Applied Biosys-

tems, CA) microfluidic cards either preloaded with fluorogenic

probes and custom-designed primers and housekeeping genes b-

actin, ribosomal 18S, and GAPDH (glyceraldehyde 3-phosphate

dehydrogenase) [17] or commercially available Mouse Immune

Array (catalog number – 4367786, Applied Biosystems, CA). These

plates were then loaded on an ABI Prism 7900 HT Sequence

Detection System (Applied Biosystems, CA). The target expression

levels were normalized to the levels of the house keeping genes 18S,

b-actin and GAPDH in the same sample. Expression of each

specific gene in infected samples over mock was calculated by DDCt

method and results are represented as DDCt over mock [18].

Tissue preparation and immunofluorescence microscopy
Tissue preparation and immunofluorescence (IF) staining was

performed using our protocol as described previously [13].

Animals were sacrificed at 3 weeks after inoculation. Before

sacrifice, animals were anesthetized with 50 ml of mouse cocktail

and perfused through the left ventricle with 15 mL of cold PBS.

Perfused brains were immediately removed, embedded in O.C.T.

resin (Sakura, Torrance, CA) and stored at 280uC. Serial

horizontal cryosections of 10 mm in thickness were placed on

saline prep slides (Sigma-Aldrich, St. Louis, MO). The slides were

air dried overnight and fixed in fresh acetone for 20 s at room

temperature (rt). Acetone-fixed sections were wrapped in alumi-

num foil and stored at 280uC or processed immediately for

immunofluorescence. Briefly, tissues were fixed in 220uC acetone

for 10 min and then hydrated in PBS. Non-specific immunoglob-

ulin binding was blocked by 30 min incubation at rt with 10%

serum from the same species from which the fluorochrome

conjugated antibodies (secondary antibodies) were derived. Sec-

tions were incubated for 40 min with primary antibodies diluted in

3% serum from the host of secondary antibody. Sections were

washed 76 for 3 min each after incubation with specified

antibodies. Secondary antibodies were incubated for 30 min at

rt when necessary. Then, sections were mounted using fluorsave

reagent (Calbiochem, La Jolla, CA) containing 0.3 mM 49,69-

diamidino-2-phenylindole dilactate-DAPI (Molecular Probes, Eu-

gene, OR). Negative controls using secondary antibodies alone

were included in each experiment and found to be negative for

staining. Fluorescence was visualized in a Leica microscope (Leica

Microsystems, Wetzlar Germany). Images were acquired and

processed using IP lab software (Scanalytics, Inc., Rockville, MD,

USA) and Adobe Photoshop CS2 (Adobe, Mountain View, CA).

The purified primary antibodies goat anti mouse CCL5 (catalog

number AF478) and CCL9 (catalog number AF463) were bought

from R&D systems and biotinylated CD31 antibody (catalog

number 553371) from Pharmingen (San Diego, CA). Rabbit anti

Goat labeled with Rhodamine Red- X and donkey anti rabbit

rhodamine red X secondary antibodies were purchased from

Jackson ImmunoResearch (West Grove, PA) [13].

M. corti supernatant and homogenate preparation
M. corti parasites were collected aseptically from 4–6 months ip

infected mice and washed rigorously with HBSS and then incubated

with half the volume of HBSS+ gentamycin at 37uC, 4% CO2 for

72 hrs in a 25 CM2 culture flask. After incubation, parasites were

removed by filtering with a nylon mesh and the supernatant (MCS)

was collected and kept at 280uC for future use.

Endothelial cell culture and immunofluorescence
bEND.3 cells were purchased from ATCC and subcultured

using DMEM+10%FBS. Cell were seeded in chamber slides and

Figure 1. In vivo labeling of blood vessels with Rh-RCA. Representative Images (40X) of dehydrated brain section showing differential labeling
of BBB by Ricinus communis agglutinin (RCA) lectin conjugated with rhodamine dye (Rh-RCA). (A) In vivo labeled pial vessels (red) in subarachnoid
space. (B) Labeled vessels (red) with background (green) to differentiate between venules (asterisks) and arterioles (arrowheads) of pial vessels of BBB
in the leptomeninges under the pia (dotted lines) and parenchymal vessels of BBB (arrows) in parenchyma.
doi:10.1371/journal.pntd.0002099.g001
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stimulated with parasite supernatant, parasite homogenate or PBS

for control. After, 72 hrs of stimulation, IF staining was

performed. Briefly, cells were washed with PBS and incubated

with 70% ETOH for 10 minutes followed by 3 PBS washes for

3 min each. Subsequently, cells were blocked with 10% serum

from the host of secondary antibody, followed by 40 min

Figure 2. Hierarchical cluster analysis of differentially expressed probe sets in pial endothelial cells. First 3 columns represent 3
biological replicates of 3 wks p.i. mice whereas last 3 columns represent 3 independent mock-infected samples (A). A bar showing the color range
used for denoting the upregulated and downregulated genes (B).
doi:10.1371/journal.pntd.0002099.g002
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incubation with primary antibodies and 30 min with secondary

antibodies as described in previous (IF section) section. Chamber

slides were mounted using fluorsave reagent (Calbiochem, La

Jolla, CA) containing DAPI. Images were acquired and processed

as described in the previous section.

Results

In vivo labeling of BBB and LCM
We administered Rh-RCA lectin (Rhodamine conjugated

Ricinus communis agglutinin) systemically at 3 wk post infection

(p.i.) and mock-infected mice to label the pial vessels as described

in Materials and Methods. The 3 wk p.i. time point was used

because this is consistently the peak of leukocyte infiltration. Brain

sections from in vivo labeled, perfused brain tissues were prepared

and analyzed for labeling of the blood vessels after dehydration.

We found that 5 mg/mg of body weight was sufficient to label the

blood vessels (Fig. 1). LCM was performed as described previously

[16]. RH-RCA labeled Pial vessels, distinctly located in subarach-

noid spaces along with leptomeninges were collected by LCM.

Subsequently, total RNA was isolated from LCM enabled samples,

and linear amplification was done in order to perform microarray

experiments as described in Material and Methods.

Identification of differentially expressed genes
Microarray hybridization experiments were performed to assess

differentially expressed genes during infection using operon

spotted chip arrays, and the data were processed by Genespring

11 to quantify differentially expressed probe sets (see Materials and

Methods). Quality control on samples was done by principle

component analysis which showed separation between mock and

infected samples based on their gene expression profile while

clustering the infected samples and mock samples together

respectively (data not shown). In total, 2154 probe sets passed

the screen when the probe sets were filtered for intensity with a

lower cut off 44. Out of these, 768 probe sets met a corrected p-

value (Benjamini-Hochberg cut off of 0.05. Of the 768 probe sets,

578 probe sets were found to be differentially expressed with a fold

change of $2. Differentially expressed probe sets with a fold

change of $2 were subjected to hierarchical cluster analysis using

Average Linkage with Pearson Correlation as the similarity

measurement of gene expression (Fig. 2).

Operon chips contain oligo probe sets representing transcripts

belonging to annotated genes as well as Expression Sequence Tags

(EST) which represent yet to be defined genes. All the 578

differentially expressed probes were uploaded to Ingenuity

Pathway Analysis (IPA) software to find out known genes

associated with differentially expressed probe sets. IPA is a web-

based application that uses a knowledge base created by previous

findings of molecular interactions in the context of biological

events. Once a gene is uploaded into IPA during core analysis, it

maps the gene and places them in relevant molecular networks,

biofunctions and specific pathways (https://analysis.ingenuity.

com/). Out of 578 probe sets, 380 (285 upregulated and 95 down

regulated) were found annotated or mapped by IPA (Table S1).

Assessment of biological significance of differentially
expressed genes of pial endothelium

In order to understand the biological significance of the

differentially expressed genes, biofunctions and networks of genes

involved in biofunctions were analyzed using IPA. Under

biofunction analysis genes were categorized into three different

classes of biofunctions such as disease and disorder, molecular and

cellular function, and physiological system development and

function (Table 1). The disease and disorder category included

Immunological disease, infectious disease, inflammatory response,

connective tissue disorders and inflammatory disease (p = 8.17E-

24 to 2.83E-05). The category of molecular and cellular functions

Table 1. Top biological functions associated with differentially expressed genes.

Name p-value # Molecules

Diseases and disorders

Immunological disease 8.17E-24 - 5.07E-05 119

Infectious disease 1.17E-23 - 5.16E-05 78

Inflammatory response 4.87E-22 - 3.87E-05 142

Connective tissue disorders 7.08E-19 - 1.22E-06 82

Inflammatory disease 7.08E-19 - 2.83E-05 109

Molecular and cellular functions

Cellular function and maintenance 1.00E-33 - 2.83E-05 127

Cellular movement 9.93E-28 - 4.60E-05 119

Cell death 2.42E-23 - 5.20E-05 161

Cellular development 1.52E-21 - 4.60E-05 152

Cellular growth and proliferation 1.52E-21 - 3.92E-05 166

Physiological system development and function

Hematological system development and function 9.38E-32 - 4.85E-05 152

Tissue morphology 9.38E-32 - 4.85E-05 121

Immune cell trafficking 9.93E-28 - 3.87E-05 105

Tissue development 5.03E-18 - 4.85E-05 104

Humoral immune response 6.19E-16 - 3.87E-05 59

doi:10.1371/journal.pntd.0002099.t001
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Figure 3. Schematic representation of the significant networks containing immune response genes. (A) Shape and relation legend. (B)
Inflammatory response, cell-to-cell signaling and interaction, cellular movement. (C) Cellular movement, hematological system development and
function, immune cell trafficking. (D) Antimicrobial response, cell-to-cell signaling and interaction, embryonic development. Green color represents
down regulated genes, red color represents upregulated genes and genes without color are not affected in the data set but are relevant for the
generation of the networks.
doi:10.1371/journal.pntd.0002099.g003

Table 2. Validation for gene expression pattern by RT-PCR.

Gene Accession no Function Microarray fold change RT-PCR

avg DDCt std error P value

SELP NM_011347 Adhesion 31.48 5.61 1.2 ,0.001

CCL2 NM_011333 Chemotaxis 10.95 5.78 0.54 ,0.001

CCL5 NM_013653 Chemotaxis 7.47 4.36 0.50 ,0.001

FIZZ1 NM_020509 Tissue remodelling 8.51 10.61 0.2 ,0.001

LGALS3 NM_010705 Adhesion and chemotaxis 14.94 5.43 0.5 ,0.001

MRC1 NM_008625 Phagocytosis 5.62 5.19 0.9 ,0.05

b2M NM_009735 Antigen presentation 4.79 3.10 0.4 ,0.01

C3 NM_009778 Inflammation and migration 61.38 8.81 1.26 ,0.01

STAT1 NM_011487 Signaling molecule 2.66 2.94 0.60 ,0.01

doi:10.1371/journal.pntd.0002099.t002
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included Cellular function and maintenance, cellular movement,

cell death, cellular development and cellular growth and

proliferation (p = 1.00E-33 to 3.92E-05). Genes in the category

of physiological system development and function were associated

with Hematological system development and function, tissue

morphology, immune cell trafficking, tissue development and

humoral immune response (p = 9.38E-32 to3.87E-05) (Table 1).

Many of the genes were classified in more than one biofunction

category due to the broad and overlapping nature of the categories

as well as an individual gene influencing multiple biofunctions. We

analyzed the differentially expressed genes using IPA to assess how

genes interact with each other as part of biological pathways. The

resulting networks are generated based on the random selection of

focus genes with maximum connectivity and several interconnect-

ed focus genes put together as a network in order of high to low

scores. Scores are derived from p-values and are calculated

through Fisher’s exact test which represents the probability of

finding the focus genes of a network in a set of n genes randomly

selected from a global molecular network of genes. Based on focus

genes differentially expressed during infection, 23 networks were

identified. 22 networks that yielded a score of more than 3 are

shown in Table S2. Network analysis indicated that genes involved

in the metabolism of lipids, carbohydrates and amino acids are

affected. Further, immune response related genes were identified

in multiple networks along with genes involved in cell growth,

death and connective tissue disorder (Table S2). Pictorial

representation of three of the networks is shown in Fig. 3. Fig. 3

B, C and D show the networks ‘‘inflammatory response, cell-to-cell

signaling and interaction, cellular movement’’ ‘‘cellular move-

ment, hematological system development and function, immune

cell trafficking’’ and ‘‘antimicrobial response, cell-to-cell signaling

and interaction, embryonic development’’ respectively involving

immune response related genes.

Validation of microarray results
A number of genes were chosen from different functional

categories to be verified for their gene expression pattern by

Taqman real time polymerase chain reaction (RT-PCR) using the

amplified cDNA derived from pial endothelial cells isolated by

LCM. Results obtained from RT-PCR experiments confirmed the

expression pattern of a number of genes. Data showed that SELP,

CD274, LGALS3, MRC1, FIZZ1, b2M, C3, CCL2, CCL5 and

Figure 4. Immunofluorescence staining of cryosections obtained from mock-infected and NCC brain samples for chemokines.
Immunofluorescence staining (IF) of cryosections obtained from mock-infected (A1 & B1) and 3 wks p.i. NCC brain (A2–A4 & B2–B4) sections.
Chemokine CCL5, CCL9 are shown in red color, CD31, an endothelial cell marker is shown in green color and DAPI representing nuclear staining is
shown in blue color. (A1–A4) CCL5 expression in endothelial cells (A1) Mock sample (IF+DIC, 40 X). (A2) Infected sample (IF+DIC, 40x). (A3) CCL5 IF
with DIC. (A4) CCL5 with CD31 IF. (B1–B4) CCL9 expression in endothelial cells. (B1) Mock (IF+DIC, 40 X). (B2) Infected sample (IF+DIC, 40x). (B3) CCL9
IF with DIC. (B4) CCL9 with CD31 IF.
doi:10.1371/journal.pntd.0002099.g004

Figure 5. Immunofluorescence staining of bEND.3 cells showing the expression of CCL5 and CCL9. bEND.3 cells (endothelial cells)
stimulated with parasite supernatant (MCS), parasite homogenate (WP) or PBS for control for 72 hrs. Representative 20X images of control, MCS and
WP stimulated bEND.3 cells showing induction of CCL5 and CCL9 are shown in red color while blue color represent DAPI staining of nuclei.
doi:10.1371/journal.pntd.0002099.g005
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STAT1 were significantly upregulated (Table 2) similar to

microarray.

To assess protein expression, brain sections from mock-infected

and infected mice (3 wk p.i.) were analyzed by IF microscopy for

chemokines including CCL5 (Fig. 4A) and CCL9 (Fig. 4B). In

sections from mock-infected mice, CCL5 was undetectable.

Infection resulted in a substantial up-regulation of CCL5 which

co-localized with CD31, an endothelial cell marker. Similarly,

CCL9 was scarcely detected in the blood vessels from mock-infected

samples. CCL9 was highly up-regulated as a result of infection and

appears to be secreted. In addition, it co-localizes with undefined

strand-like structures that appear to form a gradient starting from

the outer surface of pial vessels (abluminal) towards the direction of

infiltrating cells. The degree of CCL9 expression was higher in

inflamed vessels exhibiting leukocyte egress.

Since chemokines can be secreted and deposited on extracel-

lular matrix, it was important to confirm that endothelial cells can

produce these chemokines. To test this, bEND.3 (brain endothelial

cell line) cells were stimulated with either M. corti secretory/

released antigens (MCS) or whole parasite homogenate in HBSS

(WP) and analyzed for the production of CCL5 and CCL9. We

found that both parasite preparations induced an increased

expression of CCL5 and CCL9 by bEND.3 cells compared with

controls in the absence of antigen (Fig. 5).

Discussion

The BBB acts as an interface between the periphery and the

CNS and tightly regulates the components of the immune

response to prevent unnecessary inflammation/pathology in the

healthy brain. It is known that the nature of the vasculature and

associated functions differ greatly depending upon their location in

different CNS compartments [4]. In a number of CNS infections,

pial vessels of the BBB are particularly prone to disruption with

leakage of leukocytes and serum components leading to meningitis

[19]. This increased vulnerability is possibly due to lack of

additional barrier components and potential exposure to antigens

compared with parenchymal vessels [20,21,22]. Previously, gene

expression analysis of endothelial cells has been performed either

in an in vitro setting or with whole brain endothelial cells

[23,24,25,26,27], but not with endothelial cells present in specific

anatomical compartments. Moreover, the effect of parasitic

infection on endothelial cell biology has not been studied. The

focus of this study was to characterize the infection-induced

molecular signature of LCM isolated pial endothelial cells by

evaluating global gene expression by microarray analyses.

LCM allowed us to isolate cells present in a specific location

which has an added advantage over other marker-based

techniques such as FACS. However, one pitfall is that the

potential contamination of the BBB endothelium with the

leukocyte that may be extravasating or adhering to the endothelial

cells. Our data analysis confirmed that differential gene expression

data obtained through microarray hybridization experiment is

mainly contributed by endothelial cells comprising the BBB as

common lymphoid or myeloid cell markers were not detectable in

the data set. In addition, the expression of the following BBB

specific transporter markers were induced during infection: TFRC

(related to iron metabolism), ABCG1 (cholesterol homeostasis),

SLC15A3 (proton oligopeptide co-transporters), SLC7A5 (cationic

amino acid transporters and the glycoprotein-associated amino

acid transporters), ABCC3 (multidrug resistance associated protein

3) and ABCC5 (multidrug resistance associated protein 5). Other

BBB specific markers were downregulated including SLC9A3R2

(sodium/hydrogen exchanger), SLC6A9 (neurotransmitter trans-

porter, glycine, sodium and chloride dependent neurotransmitter)

[23,24,25,26,27].

Network analysis shows that apart from transporters several

other sets of immune related genes including MRC1, comple-

ments (C3, C6, and C1R and complement factor properdin),

TNF super family members and interferon inducible genes

including STAT1 are induced in NCC infection which can

potentially lead to endothelial cell activation [23,24,28]. Inter-

feron inducible genes have been shown to be induced in an in vitro

study with endothelial cells in HIV and Cryptococcus neoformans

infection model [25,29]. STAT1 has been shown to promote

inflammatory mediators and leukocyte transmigration at the BBB

Table 3. Parasite infection induced chemokines in pial endothelial cells and their known role in leukocyte trafficking.

Chemokines Receptors Chemotaxis for Functional Implication Based on Literature

CXCL2
CXCL3

CXCR2 Granulocytes/neutrophils Impaired neutrophil extravasation in CXCR22/2 mice in experimental brain
abscesses model [39]. Impaired neutrophil recruitment in CXCR22/2 mice during
river blindness [40]. Attenuation of neutrophil infiltration in CXCR22/2 mice during
head injury [41]. CXCL2 induced P-selectin-dependent neutrophil rolling and
extravascular migration in vivo [42]

CXCL13 CXCR5 [43] B Cells [43], T cells [44],
CD3+CD42CD82 double
negative (DN) T cells [45],
Treg [46]

Lymphoneogenesis [44].CD4+ (follicular) T cells [44,47]. CXCL13 expression
correlated with increased frequency of B cells and CXCR5+T (<20%) cells in the CSF
of MS patients [44]. Antibody neutralization led to reduced B cell chemotaxis during
neuroboreliosis [44]. CXCL13 antibody neutralization abrogated DN T regs [45]

CCL2 CCR2 Inflammatory monocytes
[48,49,50,51]

CCL22/2 mice had defect in recruitment of monocytes in CNS in EAE [48]. CCR22/2

failed to recruit monocytes during EAE [49,50]

CCL5 CCR1, CCR3,
CCR5 [52]

cd T cells [53], ab T cells
(Th1) [52], macrophage [54]

CCL5 neutralization led to reduced leukocyte in CNS in EAE. CCR52/2 mice had
reduced number of CD4, CD8 and macrophage in west Nile Virus infection [54].
Antibody neutralization of CCL5 or CCR5 inhibited transmigration of Th1 cells [52]

CCL6 CCR1 Macrophage [55,56]

CCL9 CCR1, CXCR3 Immature myeloid cells
(iMC) [57], CD11b+ dendritic
cells (DCs) [58]

CCL9 down modulation by shRNA in cancer cells correlated with reduction in iMC
[57]. Antibody blocking of CCL9 resulted in reduction of CD11b+DC [58]

CCL17, CCL22 CCR4 ab T cells (Th2) [59] Monoclonal antibody against CCR4 reduced chemotaxis in response to MDC
(CCL22)/TARC (CCL17) [59]

doi:10.1371/journal.pntd.0002099.t003
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[30]. Interferon signaling mediated through the Jak Stat pathway

is critical to induce several of these genes in endothelial cells

including chemokines and MHC class I antigen presentation

related genes [23,24,28].

Among immune related genes chemokines play a critical role in

leukocyte trafficking, differentiation and angiogenesis or angios-

tasis [31,32]. Leukocyte trafficking is a multistep process in which

chemokines induce the migration of leukocytes toward a

chemokine gradient. Interaction between chemokines expressed

by endothelial cells with their receptors on leukocytes triggers a

signaling process that increases the avidity of integrin to their

receptors on endothelial cells causing firm adhesion of leukocytes

and facilitated transmigration towards chemokine gradient [33].

Chemokines are divided into C, CC, CXC, and CX3C subgroups

based on conserved cysteine residues [31]. The present study

advances the understanding about chemokine expression profile in

endothelial cells comprising the BBB which are the first CNS cells

to encounter peripheral leukocytes in vivo. Many of the chemokines

upregulated (Table S1) in response to infection are summarized in

Table 3 along with their putative receptor and influence on

specific leukocyte subsets.

Our in vivo and in vitro data shows that CCL9 is expressed

abundantly by endothelial cells and appears to coat the strands in

a gradient fashion. Such strands have been observed in the areas of

inflammation in other disease conditions such as EAE and

toxoplasmic encephalitis [34]. The origin and composition of

these strands are still not clear. They have been described to

extend from blood vessels to parenchyma and are thought to

provide structural support for leukocytes migration [34]. In the

case of NCC, these strands coated with CCL9 might also provide a

physical scaffold structure with a chemotactic signal for migration

of leukocytes into the CNS. The functional correlation for CCL9

in terms of leukocyte subset recruitment remains to be defined in

the CNS. However, in the periphery CCL9 has been implicated in

recruitment of myeloid cells to peyers’ patches and osteoclasts

through the CCR1 receptor. Furthermore, it is also critical to

recruit immature myeloid cells through CCR1receptor during

liver metastasis [35]. In addition, CCL17 and CCL22 are also

noteworthy as they have been implicated in trafficking of CCR4

positive regulatory and Th2 T cells subsets [33]. Chemokine can

selectively influence the trafficking of leukocyte subsets. Therefore,

the expression profile of chemokines in the BBB provides insight

into the trafficking of different leukocyte subsets such as M1 and

M2 macrophages, granulocytes, cd T cells, ab T cells and B cells

known to infiltrate during NCC [13,14,36,37,38].

In summary, our data delineate infection-induced changes in

the expression of genes associated with both immunity and disease,

and collectively provide insight into the dysfunction of the BBB

and mechanisms associated with leukocyte infiltration during

murine NCC.

Supporting Information

Table S1 Differentially expressed genes in pial endo-
thelial cells of BBB. Column one shows the fold change from

most upregulated to most downregulated genes, column 2 shows

the genebank id, column 3 shows gene symbol and column 4

shows entrez gene name.

(PDF)

Table S2 List of significant networks of genes. Networks

associated with differentially expressed genes in pial endothelial

cells containing down regulated genes shown by green color,

upregulated genes shown by red color and genes which are not

affected in endothelial cells during infection but relevant for the

generation of the networks are shown in black color.

(PDF)
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