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Abstract

The most widely spread measure of performance, accuracy, suffers from a paradox: predictive models with a given level of
accuracy may have greater predictive power than models with higher accuracy. Despite optimizing classification error rate,
high accuracy models may fail to capture crucial information transfer in the classification task. We present evidence of this
behavior by means of a combinatorial analysis where every possible contingency matrix of 2, 3 and 4 classes classifiers are
depicted on the entropy triangle, a more reliable information-theoretic tool for classification assessment. Motivated by
this, we develop from first principles a measure of classification performance that takes into consideration the information
learned by classifiers. We are then able to obtain the entropy-modulated accuracy (EMA), a pessimistic estimate of the
expected accuracy with the influence of the input distribution factored out, and the normalized information transfer factor
(NIT), a measure of how efficient is the transmission of information from the input to the output set of classes. The EMA is
a more natural measure of classification performance than accuracy when the heuristic to maximize is the transfer of
information through the classifier instead of classification error count. The NIT factor measures the effectiveness of the
learning process in classifiers and also makes it harder for them to ‘‘cheat’’ using techniques like specialization, while also
promoting the interpretability of results. Their use is demonstrated in a mind reading task competition that aims at
decoding the identity of a video stimulus based on magnetoencephalography recordings. We show how the EMA and the
NIT factor reject rankings based in accuracy, choosing more meaningful and interpretable classifiers.
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Introduction

Classification is an ubiquitous task in Science, Technology and

the Humanities [1]. Usage ranges from diagnosing diseases [2] or

the status of tumors using gene expression data [3] to the actual

classification of tumor classes [4]; from analyzing human

performance in perceptual tasks [5] to analyzing that of automated

remote sensors [6] or automatic speech recognition machines [7].

If follows that the assessment of the performance of classification

processes is of paramount importance for Scientific, Technological

and Societal reasons [1,8–10].

To set the theoretical backdrop for our discussion, consider a set

of k prior, instance or true classes fx1, . . . xkg and a discrete random

variable X distributed according to a prior class distribution PX .

Consider also a set of N instances or patterns, each belonging to only

one of those classes, but we do not know precisely which. A

classification is a process whereby each of those instances is assigned

to one among a set of m decision or predicted classes fy1 . . . ykg
generating a discrete random variable Y distributed according to a

posterior class distribution, PY , so that the joint events of this

classification process consist of ‘‘presenting one instance of an

input class X~xi for classification and deciding the output class to

be Y~yj ’’.

To measure the performance of the classification process we use

its confusion matrix, a special contingency table CXY counting the

occurrences of the joint events. Usually, the maximum likelihood

estimate of the joint probability PXY&CXY=N is used as summary

data. Figure 1 represents two such contingency matrices for a brain

decoding or mind reading task consisting in automatically identifying

the class of video stimulus shown to the subjects based on

magnetoencephalography (MEG) data. Five different types of

stimuli were presented: the first three ones (x1, x2 and x3)

belonging to the category of short clips (6–26 s. long) and the last

two (x4 and x5) to the category of long clips (approximately 10 min.

long).

Performance evaluation takes the form of the exploratory

analysis of this confusion matrix or joint distribution. For instance,

the de facto standard for performance visualization for binary—that

is, two-class—classification is the Receiver-Operating-Character-

istic (ROC) [11], but its generalization to higher class numbers is

not as effective. We have argued elsewhere that the De Finetti

entropy triangle (ET) [12] is a better tool to analyze classifier

performance, with a solid information-theoretical basis, and not
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plagued with the problems of the ROC—see sec:mms: sec:entropy-

triangle. In any case, neither device provides a single figure-of-merit

or performance measure to compare systems, a practice cherished

by researchers.

As a single figure-of-merit, by far the most widespread

performance criterion used is accuracy, defined as the fraction of

correctly classified instances, aPXY
~trace(PXY ). This is probably

due to its easy and intuitive nature, despite many reasons not to do

so [13]. In [14], this and many other performance measures were

examined in the context of several machine learning tasks, but

inconclusive results as to their fitness of purpose were reached.

However, the comparison made evident that accuracy was one of

the measures that possessed the least number of invariants with

respect to changes in confusion matrix entries, a detrimental

quality. An earlier paper [15] had already argued for the factoring

out of the influence of prior class distributions on similar measures.

It is now acknowledged that high accuracy is not necessarily an

indicator of high classifier performance and therein lies the accuracy

paradox [16–18]. For instance, in a predictive classification setting,

predictive models with a given (lower) level of accuracy may have

greater predictive power than models with higher accuracy. This

deleterious feature is explained in-depth in Section sec:crit-accur-

using. In particular, if a single class contains most of the data, a

majority classifier that assigns all input cases to this majority class

(the one concentrating the probability mass of PX ) would

produce an accurate result. Highly imbalanced or skewed training

data is very commonly encountered in samples taken from natural

phenomena. Moreover, the classes’ distributions of the samples do

not necessarily reflect the distributions in the whole population

since most of the times the samples are gathered in very controlled

conditions. This skewness in the data hinders the capability of

statistical models to predict the behavior of the phenomena

being modeled and data balancing strategies are then advisable

[19].

In this paper, we claim that performance measures based in the

statistical information transfer from X to Y may be better

measures for classification if predictive classification error is not the

paramount performance criterion. This is the case, for example, of

classifiers not used to make final decisions but, instead designed to

be components of more complex diagnostic systems (as in [19]) or

when the conditions in the experimentation stage during which the

data is collected do not hold in the deployment stage, as

mentioned before. For this purpose, in Section sec:perpl-its-prop

we establish the basis of our analysis in the propagation of

perplexity—the effective number of classes a classifier sees—a

concept that is directly related to accuracy.

In Section sec:perf-meas-based we use the remaining input perplexity

kX jY to claim that the entropy-modulated accuracy (EMA), defined in

(3), is a better measure of classifier performance than accuracy for

several reasons: it is well-grounded in information-theoretical

terms, it provides an intuitive interpretation of the statistical

learning process as the transfer of the information from the

phenomena that are being modeled over a virtual channel, it

factors out the influence of the input and output class distributions,

it is invariant to permutations in the columns of the confusion

matrix enabling the identification of cross-labeling errors common

in unsupervised learning methods, and it is a pessimistic estimate

of accuracy. For the same reasons, the normalized information transfer

factor ( NIT factor ), defined as in (5), adds to some of the previous

advantages the fact that it is capable of assessing the effectiveness

of the learning process in the classifier, it is co-variant with

expected mutual information (MI) [20], and contra-variant with

the variation of information [21].

In sec:example-use, we suggest how to apply these metrics to a

classification task, instantiating the process for a mind-reading

challenge using multi-classification on magnetoencephalography

signals, that shows one clear instance where ranking by EMA and

NIT factor provides a more interpretable classifier than accuracy-

based ranking. We provide further evidence, examples and a

comparison with other metrics in File S1. The paper is closed with

a sec:discussion where we also compare EMA and the NIT factor

with two previously proposed measures for classification assess-

ment and show the superiority of our proposal.

Figure 1. Heatmap of the best classifiers of the MEG mind reading competition [23] according to accuracy (left) and the EMA and
the NIT factor (right) criteria. Rows correspond to stimulus X~xi and columns to the decision Y~yj or response. Darker hues correlate with
higher joint probability PXY . The heat map on the left reveals that the best classifier according to accuracy does not capture the fact that stimuli x1 ,
x2 and x3 belong to a particular category whilst x4 and x5 belong to another. Ak~2,a(PXY )[f0:50,0:75,0:88,0:94,0:97,0:98,1:0g
Bk~3,a(PXY )[f0:33,0:67,0:83,0:94,1:0g Ck~4,a(PXY )[f0:25,0:63,0:81,0:94,1:0g
doi:10.1371/journal.pone.0084217.g001
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Results

A critique of accuracy using information-theoretic
principles

To assess the theoretical adequacy of accuracy, we generated

some samples of the space of joint count distributions for k input

and output classes and N instances of classification with a

prescribed accuracy (see Section sec:datasets for the details). Then,

their entropy decomposition was calculated and plotted in the ET

(see Section sec:mms, sec:entropy-triangle). Figure 2 presents the cases

k~2 with N~100, k~3 with N~18 and k~4 with N~16.

A number of observations can be gleaned from this figure:

N Matrices of a particular accuracy level are interspersed with those of many

other accuracy levels. This phenomenon is the more prevalent the

lower the accuracy level, although the behavior differs for

different k. For k~2 interspersing ends for accuracies over

0:75 while for k§3 it spreads to the whole range ½1=k,1:0�.
N For every prescribed accuracy level, the normalized mutual information

ranges in ½0,1�, that is, there are matrices with accuracy over 1=k

transmitting little or no information. This is the case even for

high-accuracy matrices, including those with accuracy 1:0.

N Conversely, matrices with different accuracy may exhibit the

same normalized mutual information, for instance, check at

2MI 0PXY
~0:6.

Figure 2. (Color online) Entropy decomposition for square matrices of (A) k~2, (B) k~3, and (C) k~4 (decimated), representing
confusion matrices for a classification task at different accuracy levels as described by the right color bar. The interspersing of the
plots representing matrices with different accuracies but similar entropies is evident at all levels for k~3 and k~4 but only for lower levels of
accuracy for k~2. This entails that accuracy is not a good criterion to judge the flow of information from the input labels to the output labels of a
classifier (see text).
doi:10.1371/journal.pone.0084217.g002

100% Classication Accuracy Considered Harmful
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N There is an accumulation of distributions with high entropy

(low DHPXY
values, left side of ET), as predicted by theory

[22].

We are driven to conclude that accuracy is not a trustworthy

criterion to judge the degree to which a particular classification

process transfers information from the input class distribution to

the output decision class distribution.

Perplexity and its propagation in multiclass classifiers
The question poses itself whether it is possible to conjoin

accuracy and mutual information transfer in a single measure. To

provide an affirmative answer to this we first state the hypothesis:

Hypothesis 1. In the absence of information about the items

distributed according to a uniform prior class distribution, a

classifier is expected to guess correctly 1=k of the times.

We will show that the EMA amounts to a ‘pessimistic’ accuracy

estimate according to this hypothesis. For the sake of generality,

suppose that the cardinality of the set of atomic events of PX is k and

that of PY is m. Classification tasks with uniform input class

distributions are often called balanced or unskewed. Let us denote this

uniform input distribution as UX and accordingly, UY will

represent a uniform distribution of the outputs. Now HUX
and

HUY
represent the entropies of UX and UY respectively. Then

k~2HUX and m~2HUY , so k is a measure of the theoretical perplexity of

a classifier in a balanced task, that is, the number of possible events.

By analogy, call kX ~2HPX and mY ~2HPY the perplexities of

variables X and Y respectively. They are in fact an estimation of

the effective—as opposed to the possible—number of atomic events

behind PX and PY . Note that 1ƒkX ƒk and 1ƒmY ƒm and that

kX ~k (mY ~m) precisely when PX ~UX (PY ~UY ). Similarly,

kX ~1 (mY ~1) when PX (resp. PY ) resembles a Kronecker delta

function—that is, the input (and output) distribution is utterly

skewed towards one class.

If we now define the quotient dX ~ k
kx

(respectively, dY ~ m
mY

) we

can see that

dX ~
k

kx

~2
HUX

{HPX ~2
DHPX

(dY ~
m

mY

~2
HUY

{HPY ~2
DHPY ) ,

where DHPX
~HUX

{HPX
( DHPY

~HUY
{HPY

.) We interpret

this quantity as the decrement (increment) in perplexity due to the

choice of input (output) marginals of PXY .

The most important concept in our discussion is the information

transfer factor mXY ~2MIPXY : if we introduce two new remaining

perplexities, kX jY ~2
HPX jY and mY jX ~2

HPY jX , from the well-known

formulae MIPXY
~HPX

{HPX jY ~HPY
{HPY jX this crucial quan-

tity can be understood as the perplexity variation of X and Y
produced by the subtraction/addition of their mutual information,

mXY ~2
HPX

{HPY jX ~
kX

kX jY

~2
HPY

{HPY jX ~
mY

mY jX
,

hence the name.

It is easy to see that we have completed two different,

sequentially related, decompositions of the perplexity of the

variables,

k~dX
:kX ~dX

:mXY
:kX jY ð1Þ

m~dY
:mY ~dY

:mXY
:mY jX :

This proves that an alternative way of conceptualizing the flow

of information from one variable to the other is in terms of

increments or decrements of their perplexity instead of the flows of

entropies, as depicted in Fig. 3. In fact, the following inequalities

can easily be checked,

k§kX §kX jY §1 1ƒmY jX ƒmY ƒm : ð2Þ

Note that analogue decompositions for marginal entropies were

introduced in [12], and are here collected as sec:mms: sec:split-entr-

triangle. We will see next how this conceptualization allows us to

devise an alternative to accuracy where the decomposition of

equation (1) underlines the preeminence of PX for assessing

performance.

Two performance measures based on perplexity
Consider a confusion matrix for a classifier obtained from N

instances of classification pairs. The lowest accuracy is that of a

classifier returning a uniform count matrix: the most balanced

testing dataset will distribute N=k to each class and a clueless

classifier will further redistribute these uniformly to each output

class as N=(km) instances. Since the diagonal has min (k,m) cells,

the diagonal sum is

trace(CXY )~
Xmin(k,m)

i~1

N

km
~

N

max (k,m)
,

whence the accuracy is

a(PXY )~
trace(CXY )

N
~

1

max (k,m)
~ min (

1

k
,

1

m
) :

It is bounded by min ( 1
k

, 1
m

)ƒa(PXY )ƒ1 and any value smaller

than the lower bound is an sure indication that a permutation of

the output tags will ensure higher classification accuracy, that is, a

better mapping of input to output class names.

Consider the perplexity reduction chain of Fig. 3. To the extent

that the number of input classes and their distribution is a given—

whereas PY is a construct of the classifier—we want to concentrate

on measuring how well the input class distribution was learned by

the training process, that is, in the prior class distribution

perplexity reduction of equation (1). Regarding the classifier

training algorithm, DHPX
is a given and cannot be modified,

whereas MIPXY
quantifies the amount of successfully learned

information. More importantly for our purposes, HPX jY is the

amount of information the classifier failed to learn. Therefore the

EMA appears naturally as a quality measure based in the

remaining perplexity of the X variable

100% Classication Accuracy Considered Harmful
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a0(PXY )~
1

kX jY
~

1

2
HPX jY

,
1

k
ƒa0(PXY )ƒ1 : ð3Þ

Since HPX jY is the entropy of PX ignored by the classifier, as per

our hypothesis and in the absence of any other source of

information this is the expected performance of the classifier with equivalent

(possibly fractional), equally likely kX jY classes: the higher this number,

the worse the classifier will be.

To illustrate this, notice that when the training process of the

classifier has been able to capitalize on all mutual information to

leave no remaining perplexity, kX jY ~1, whence a0(PXY )~1.

Similarly, a0(PXY )~ 1
k
, either because the classifier has utterly

failed to capture any information between X and Y , mXY ~1, or

because the entropy of the data was minimal, dX ~k.

Notice that when the entropy of PX is not maximal

HPX
=HUX

~ log (k) then dX w1 whence kwkX §kX jY and the

EMA detects an artificial lower bound for (2), a0(PXY )~1=kX . The

artifice here is that this increase does not depend on the training of

the classifier but on the prior class distribution. This suggests

including a correction into equation (3) to account for the

deviation from uniformity in the prior class distribution

DHPX
~HUX

{HPX
=0 so that

q(PXY )~
dX

kX jY
,

1

k
ƒq(PXY )ƒa0(PXY )ƒ1, ð4Þ

with q(PXY )~1 when both mX jY ~k and kX ~k, implying that

dX ~1 and kX jY ~1. Note that q(PXY )~a0(PXY ) if and only if

PX ~UX . Unlike the case of a0(PXY ), the eventuality that the data

are not uniformly distributed is corrected on q(PXY ), as dX=1
entails kX=k. Moreover, the further away from a uniform prior

class distribution to the classifier, the worse its upper range bound

will be. Eventually, for kX ~1—which implies kX jY ~1 by

equation (2) whence mXY ~1—we have, again, the worst possible

value of the measure, q(PXY )~1=k. Notice that in this accuracy-

optimal case a0(PXY )~a(PXY )~1, but in an unhelpful way.

Essentially, making the input data less random impacts the ability

of the classifier to capitalize in mutual information to bind together

input and output, and this is registered by the measure. The

normalized information transfer factor can be rewritten as,

q(PXY )~
mXY

kX

: kX

k
~

mXY

k
~

2
MIPXY

k
ð5Þ

Note also that NIT factor does not depend directly on the input or

output distribution. Conveniently, since the normalized informa-

tion transfer factor is a monotonic function of normalized mutual

information the relative height in the ET offers a visual tool to

quickly inspect such effectiveness. Finally, when evaluating a set of

systems in the same task, dX is constant throughout the evaluation,

so a0(Ci)!q(Ci), and they offer the same ranking results, easily

visualized in the ET.

For the reasons above, we posit the EMA in (3) to measure the

performance of classification tasks, and the NIT factor in (4) or (5)

to measure the effectiveness of the classifier learning process.

Assessing classifiers with EMA and the NIT factor
In this Section we present an example of how to use the EMA

and the NIT factor in automatic classifier evaluation tasks. We

consider the case of the MEG mind reading challenge organized

by the PASCAL (Pattern Analysis, Statistical modeling and

ComputAtional Learning) network [23]. Since accuracy was the

‘‘official’’ evaluation criterion, for comparison purposes Fig. 4.fig:

(A) presents the results in the entropy triangle ordered by accuracy

as reflected in the coloring of the points. System C1 at

a(C1)~0:680 was deemed the winner with C2 close behind at

a(C2)~0:632. In a detail of the dense region of harder

competition in Fig. 4.(B) clusters fC4,C2g, fC1,C3g and

fC6,C5,C7g are evident. We next suggest a procedure to analyze

the classification performance of a population of classifiers:

1. Use kX to assess the effective number of classes of the
data. At kX ~4:950 down from k~5, the task is quite

balanced, guaranteeing that systems will find it harder to

specialize as majority classifiers.

2. Use EMA to rank classifiers. Table 1 presents the

perplexities, accuracies, the EMA and the NIT factor for the

confusion matrices of the classifiers that took part in the task.

Ranking (C4,C2,C1,C3,C6,C5,C7,C9,C8,C10) suggests itself,

aligned with increasing mutual information (right axis). Indeed,

after EMA, C4 should have been the winner of the

competition, followed closely by C2.

3. Use the ET to individually assess each classifier. From

the ET diagram it is evident that those classifiers with highest

mutual information and accuracy—the first seven classifiers—

are not specialized while classifier 10, and, to a lesser extent, 8
and 9 are. The worst classifier is barely above random at

q(C10)~0:206.

4. Use the NIT factor to assess whether the population
of classifiers has solved the task. Overall, for the top

ranked classifier we have q(C4)~0:407, showing that the task

has indeed not been effectively solved by the participants,

either individually or collectively.

The result of this process is an assessment of a (population of)

classifiers, whereby one may discuss the advantages of EMA and

NIT factor vis–vis other performance measures, for instance,

accuracy. Further examples of using this procedure to evaluate

classification tasks can be found in the File S1.

EMA and NIT factor vs. Accuracy. The authors of the

report on the MEG Mind Reading challenge attempted an

analysis of the ranking results and specifically compare classifier

C1 to C4 since the heat map of the latter seems to be ‘‘cleaner’’

Figure 3. (Color online) Entropy (above) and perplexity (below) decomposition chains for a joint distribution. Left, perplexity
reduction in the input (learning) chain; right, perplexity increase in the output chain, related to classifier specialization. The colors refer to those of Fig.
5.(B). The ordering of the boxes is a convention to reveal the prior and posterior natures of the perplexities of class distributions.
doi:10.1371/journal.pone.0084217.g003

100% Classication Accuracy Considered Harmful
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[23] (see Fig. 4 with the heat map of C1 (left) to C4 (right)). For

them, classifier C1 essentially came out first because it used the

‘‘learning capacity’’ of its technique to improve classification error

while C4 used the capacity to better distinguish the two categories

of classes present in the task (with stimuli x1 to x3 belonging to a

first category whilst x4 and x5, to another) but was worse at

capturing the distinctions among the classes of the first category.

Our rejection of this judgement comes from believing that the

goal of recovering class structure is as worthy as minimizing

classification errors. The interpretability of the results of C4 is

superior to those of C1 since it has better captured the nature of

the underlying phenomenon. This means that the errors

committed by C4 are likely to be inside the same category of the

correct response (given the nearly block diagonal structure of its

heat map) while in the case of C1, for example, the probability of

having stimuli of the first category erroneously predicted as y4 is

very high.

The EMA and the NIT factor prove apt at considering the

value of representing the underlying structure with their tight

relation to perplexity. In fact, according to [23], while C4, C6 and

C7 focused on solving the so-called domain adaptation problem—the

mismatch in training and testing conditions—with advanced

machine learning techniques, many of the other teams, including

C1, addressed it by placing more weight on the labeled test samples

provided along with the train samples, when validating the learned

classifier, thus explicitly boosting test set accuracy.

Discussion

Measure definition
Perplexity has already been used as a performance measure-

ment for language modeling where it refers to the expected

average of alternatives a model has at every word history [24]. It is

also often used as an off-line method for speech recognition task

evaluation following the intuition that a classifier using a lower-

perplexity model will outperform a higher-perplexity one, all other

things equal.

It cannot be stressed enough that since the EMA and the NIT

factor concentrate in the prior class distribution and mutual

information, it is harder for classifiers to boost their performance

by manipulating the posterior class distribution through special-

ization: only the increase in information transfer through MIPXY

will improve the evaluation figure.

Considering robustness, the EMA, being a harsher, worst-case

criterion, might be more deserving of trust than easygoing and

unreliable accuracy to, for instance, guide decision making. It

certainly has a more interpretable and less easily bendable

criterion—specially if reporting the classification error is not the

Figure 4. (Color online) Entropy triangle for the MEG mind Reading data ordered after accuracy (A) and a detail of the participants
of higher accuracy (B). The ranking following accuracy is at odds with the EMA and the NIT factor ranking based in mutual information (height,
right scale of triangle). The detail in (B) shows that participant C4, closely followed by C2 should have been ranked first after this criterion.
doi:10.1371/journal.pone.0084217.g004

Table 1. Perplexities, accuracy (a(PXY )), EMA (a0(PXY )) and
NIT factor (q(PXY )) for MEG Mind Reading confusion matrices
ranked by accuracy.

Exp. kX jY mXY a(PXY ) a0(PXY ) q(PXY )

C1 2.562 1.932 0.680 0.390 0.386

C2 2.447 2.023 0.632 0.409 0.405

C3 2.589 1.912 0.628 0.386 0.382

C4 2.430 2.037 0.622 0.412 0.407

C5 2.723 1.818 0.565 0.367 0.364

C6 2.682 1.846 0.542 0.373 0.369

C7 2.730 1.813 0.539 0.366 0.363

C8 3.629 1.364 0.472 0.276 0.273

C9 2.995 1.653 0.443 0.334 0.331

C10 4.801 1.031 0.242 0.208 0.206

Class C4 should have been ranked above the rest by EMA or NIT factor (in all
cases k~5 and kX ~4:950).
doi:10.1371/journal.pone.0084217.t001

100% Classication Accuracy Considered Harmful
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ultimate goal. Furthermore, in cases where k=m—for instance,

when using a ‘‘reject’’ class—the EMA and the NIT factor are still

defined, whereas accuracy is problematic, and not very much

used.

Classification task assessment
As seen in the MEG mind reading example, the EMA and the

NIT factor are capable of determining whether a task has been

effectively solved or not. But it cannot distinguish whether this is

caused by technical limitations in the classifier selection process or

because the task is inherently ‘‘hard’’. Only the kind of iterated

classification effort of community research that attempts many

different classifier-building techniques on the same task can be

effective for this purpose.

Nevertheless, the effective input perplexity kX can ensure that,

methodologically at least, the task is ‘‘as hard as it should be’’ at

kX&k. Furthermore, our developments show clearly that a failure

to maintain prior class distribution uniformity in the design or

capture of the task data entails that the expected mutual

information—therefore the NIT factor —captured by any possible

classifier that solves the task can never reach maximal levels. This

is a strong guideline for prospective collectors of datasets, although

data balancing strategies after data collection can also be used to

achieve this goal [19].

Measure comparison
Several other measures have sprouted to deal with the

inadequacies of accuracy such as the Area-Under-the-(ROC)-

Curve [8,25], the Variation of Information [21], the Relative

Classifier Information [26], the Confusion Entropy [10,27] or

Cohen’s Kappa [13], but their use is not widespread, specially for

the non-binary case, due to complexity of calculation, disparate

purposes or each measures’ own shortcomings. For instance, the

AUC first needs to find a (multiclass) ROC representation of the

task by obtaining multiple classifiers, possibly with the help of a

parameter in the classifier learning process. The trading for good-

vs-wrong decisions in terms of the parameter can then be judged

from the Area-Under-the-ROC curve, which is then a measure on

the learning method or model. In contrast, EMA would provide a

different point in the ET for each classifier whence the best of

these classifiers could be chosen. Complementarily, on the

population of classifiers, a statistical description of the NIT factor

could be used to assess the learning capabilities of the method.

In classification proper, to illustrate the disparity of the

conclusions that can be reached with alternative performance

measures, we have included in File S1 a comparison of the classical

Matthew Correlation Coefficient (MCC) [28] and the Confusion

Entropy (CEN) [27]—whose similarities are also explored in [10]–

on three different classifications tasks: the MEG Mind Reading

task already explored, the TASS sentiment analysis task [29]–both

machine learning tasks—and the well-known Miller & Nicely

human perceptual capability exploration task [5].

For each task we provide the heat maps of the confusion

matrices (Figs. S1, S2 and S4 in File S1) as customary. We also

provide the tables detailing perplexities, EMA, NIT factor,

1{CEN and MCC’ related values (Tables S1, S2 and S3 in File

S1 ). The entries in the tables are ordered by accuracy. For the

TASS and M&N data we also supply the ET’s with the color bar

according to EMA, 1{CEN and MCC’ (Figs. S3 and S5). Their

comparison, detailed in the File S1 Section, reveals that MCC’ is

highly correlated with accuracy in ranking results and shows

similar shortcomings. Even though CEN performs a little better, it

is highly biased towards majority classifiers providing over

optimistic assessment for them. Notably, once the ET, EMA and

the NIT factor have shed light on the problem, reassessment of

prior evidences for either CEN or MCC prove them not to be so

advantageous in evaluating classifiers.

Materials and Methods

The entropy triangle
Consider two discrete random variables X and Y and their joint

probability distribution PXY . An entropy diagram somewhat more

complete than what is normally used for the relations between

their entropies was presented in [12] and is here depicted in

Fig. 5(A). We distinguish in it the familiar decomposition of the

joint entropy HPXY
as the two entropies HPX

and HPY
whose

intersection is MIPXY
. But notice that the increment between HPXY

and HPX
:PY

is yet again MIPXY
, hence the expected mutual

information appears twice in the diagram. Further, the interior of

the outer rectangle represents HUX
:UY

—with UX and UY the

uniform distribution on inputs and outputs—,the interior of the

inner rectangle HPX
:PY

, and DHPX
:PY

is their difference. Finally,

the variation of information VIPXY
~HPX jY zHPY jX was found to be an

important quantity in [21]. Putting together this information

results in the balance equation for information related to a joint distribution,

HUX
:UY

~DHPX
:PY

z2MIPXY
zVIPXY

which can be further normalized in HUX
:UY

,

1~DH 0PX
:PY

z2MI 0PXY
zVI 0PXY

ð6Þ

and represented in a De Finetti or ternary diagram as the equation

of the 2-simplex in normalized DH 0PX
:PY

|2MI 0PXY
|VI 0PXY

space, hence the name entropy triangle, ET.

The position of the coordinates of a classifier on the Entropy

Triangle characterizes its performance, and we use this charac-

terization to visually assess it indicated in Fig. 6. Classifiers at the

apex or close to it obtain the highest accuracy possible on balanced

datasets and transmit a lot of mutual information, hence they are

the best classifiers possible. Those at the left vertex or close to it are

dealing with balanced data but doing a bad job of utilizing it: they

are the worst classifiers. Those at the right vertex or close to it are

dealing with very easy, unbalanced data and claiming very high

accuracy, yet they are not learning anything from it: they are

specialized (majority) classifiers and our intuition is that they are the

kind of classifiers that generate the accuracy paradox [16].

The split entropy triangle
Notice that in equation (6), since both UX and UY and PX and

PY are independent as marginals of UX
:UY and PX

:PY ,

respectively, we may write:

DHPX PY
~(HUX

{HPX
)z(HUY

{HPY
)

~DHPX
zDHPY

,

what suggests writing separate balance equations for each variable,

HUX
~DHPX

zMIPXY
zHPX jY
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HUY
~DHPY

zMIPXY
zHPY jX :

The formulae above and the occurrence of twice the expected

mutual information in equation (6) suggests a different information

diagram, depicted in Fig. 5(b): both variables X and Y now

appear somehow decoupled—in the sense that the areas repre-

senting them are disjoint—yet there is a strong coupling in that the

expected mutual information appears in both HPX
and HPY

. It is

important to note that both decompositions can be represented in

the same (split) entropy triangle as equation (6) dictates. The

technique is explained in [12].

Data
The space of k|k square confusion matrices, CXY of sizes

k[f2,3,4g and a given number of input samples, N , depicted in

Fig. 2 was obtained by first generating every possible partition of

N with k parts as input distributions PX , allocating

ni,i[f1,2, . . . ,kg input samples in each of the input classes. In

this way, the set of all possible input class distributions, from

uniform UX to the most skewed PX , is obtained. Then, for each of

the previous distributions, every possible weak composition of ni

with k parts is produced, yielding k sets of all the possible

distributions for each of the rows of CXY . Finally, the Cartesian

product of those sets produces every possible combination of rows

corresponding to the selection of one element in every one of the

sets. Except from row permutations —that would only amount to

a reordering of the input classes— this procedure guarantees the

presence of every possible CXY .

The MEG mind reading task aims at decoding the identity of a

video stimulus based on magnetoencephalography (MEG) record-

ings done during naturalistic stimulation [23]. In particular,

subjects were exposed to video stimuli of different classes: a first

category of short clips (6–26 s. long) with x1 being artificial stimuli

(screen savers showing animated shapes or text), x2 being natural

stimuli (sceneries like mountains or oceans) and x3 being football

stimuli (from —European— football matches) and a second

Figure 5. (Color online) Extended information diagrams of entropies related to a bivariate distribution: (A) conventional diagram,
and (B) split diagram. The bounding rectangle is the joint entropy of two uniform (thence independent) distributions UX and UY of the same
cardinality as PX and PY . The expected mutual information MIPXY

appears twice in (A) and this makes the diagram split for each variable
symmetrically in (B).
doi:10.1371/journal.pone.0084217.g005

Figure 6. Schematic Entropy Triangle showing interpretable zones and extreme cases of classifiers. The annotations on the center of
each side are meant to hold for that whole side.
doi:10.1371/journal.pone.0084217.g006
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category of long clips (approximately 10 min. long) with x4 being

television series (from ‘‘Mr. Bean’’ in particular) and x5 being films

(from Chaplin’s ‘‘Modern times’’). The goal was to classify

unlabeled test examples into these classes based on the MEG

signal alone. The competition took place in March, 2011 and 10

participants submitted their classifiers whose confusion matrices

are analyzed in this paper. The data was provided upon request

from the organizers of the competition.

The MATLAB(A registered trademark of The MathWorks,

Inc.) code to draw the entropy triangles in Figures 2 and 4 has

been made available at: http://www.mathworks.com/

matlabcentral/fileexchange/30914

Supporting Information

Figure S1 Heat maps of the classifiers of the MEG mind
reading competition [23]. Rows correspond to stimulus X~xi

and columns to the decision Y~yj or response. Darker hues

correlate with higher joint probability PXY . The classifier

denominations obey to their position in the ranking produced by

accuracy.

(TIFF)

Figure S2 Heat maps of the classifiers of the TASS
competition [29]. Rows correspond to stimulus X~xi and

columns to the decision Y~yj or response. Darker hues correlate

with higher joint probability PXY . The classifier denominations

obey to their position in the ranking produced by accuracy A
Color bar represents EMA B Color bar represents 1{CEN C
Color bar represents MCC0.
(TIFF)

Figure S3 (Color online) Entropy decomposition for the
classifiers of the TASS competition (A) with the color bar
representing EMA, (B) 1{CEN, and (C)
MCC0~(MCCz1)=2.

(TIFF)

Figure S4 Heatmaps of the classifiers of the TASS
competition [29]. Rows correspond to stimulus X~xi and

columns to the decision Y~yj or response. Darker hues correlate

with higher joint probability PXY . The classifier denominations

obey to their position in the ranking produced by accuracy A
Color bar represents EMA B Color bar represents 1{CEN]

withFigures C Color bar represents MCC0.
(TIFF)

Figure S5 (Color online) Entropy decomposition for MN
phonetic confusion matrices (A) with the color bar
representing EMA, (B) 1{CEN, and (C)
MCC0~(MCCz1)=2.

(TIFF)

File S1 Supporting Information. A comparison of the

classical Matthew Correlation Coefficient (MCC) [28] and the

Confusion Entropy (CEN) [27]—whose similarities are also

explored in [10]–on three different classifications tasks: the

MEG Mind Reading task already explored, the TASS sentiment

analysis task [29]–both machine learning tasks—and the well-

known Miller & Nicely human perceptual capability exploration

task [5].

(PDF)
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