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Convolutional neural network (CNN) models are of great promise to aid the segmentation
and analysis of brain structures. Here, we tested whether CNN trained to segment
normal optic chiasms from the T1w magnetic resonance imaging (MRI) image can be
also applied to abnormal chiasms, specifically with optic nerve misrouting as typical for
human albinism. We performed supervised training of the CNN on the T1w images of
control participants (n = 1049) from the Human Connectome Project (HCP) repository
and automatically generated algorithm-based optic chiasm masks. The trained CNN
was subsequently tested on data of persons with albinism (PWA; n = 9) and controls
(n = 8) from the CHIASM repository. The quality of outcome segmentation was assessed
via the comparison to manually defined optic chiasm masks using the Dice similarity
coefficient (DSC). The results revealed contrasting quality of masks obtained for control
(mean DSC ± SEM = 0.75 ± 0.03) and PWA data (0.43 ± 0.8, few-corrected
p = 0.04). The fact that the CNN recognition of the optic chiasm fails for chiasm
abnormalities in PWA underlines the fundamental differences in their spatial features.
This finding provides proof of concept for a novel deep-learning-based diagnostics
approach of chiasmal misrouting from T1w images, as well as further analyses on
chiasmal misrouting and their impact on the structure and function of the visual system.

Keywords: chiasmal malformations, albinism, convolutional neural network, CNN, nerve misrouting, misrouting
detection, optic chiasm

INTRODUCTION

The optic chiasm is a key structure in the visual system, where the fate of axons from the retina is
decided, such that axons carrying information from the right visual hemifield are guided to the left
hemisphere and vice versa. Accordingly, the axons split in the chiasm into two bundles, i.e., axons
from the nasal retina that project to the contralateral brain hemisphere (also referred to as “crossing
nerves”), and axons from the temporal retina that project to the ipsilateral hemisphere (“non-
crossing nerves”). While the normal proportion of axons in the crossing and non-crossing bundle
is well established and determined by histological studies to be equal to 53:47, respectively (Kupfer
et al., 1967), several congenital disorders are known to affect this arrangement. One example is
albinism, where the abnormal development of the visual system (Rebsam et al., 2012) leads to
enhanced crossing of the optic nerves at the chiasm resulting in an altered organization of the
signal flow in the visual system (Hoffmann et al., 2003). Interestingly, although the altered input
to the visual cortex would be expected to fundamentally disrupt signal integration, basic aspects
of visual function are preserved, while others (binocular vision, visual acuity, fixation stability) are
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reduced (Hoffmann and Dumoulin, 2015). This preservation of
basic aspects is likely related to processes of cortical plasticity
(Hoffmann et al., 2003; Hoffmann and Dumoulin, 2015; Ahmadi
et al., 2019) and as such makes human albinism a unique and
powerful model of neuroplasticity, granting insights into the
structure–function relationship of the visual system. This kind
of analysis, however, requires unambiguous and noninvasive
mapping of chiasm’s structural features, which is not yet resolved.
The first anatomical MRI-based reports (aMRI) of chiasm
morphology reported the absence of meaningful anatomical
features distinguishing normal and abnormal chiasms (Brodsky
et al., 1993). In contrast, two later studies reported differences
when comparing chiasm sizes and configurations between
controls and people with albinism [PWA; (Schmitz et al., 2003;
von dem Hagen et al., 2005)]. Specifically, both studies provided
significant evidence of reductions in the width of optic nerves
and optic chiasm in PWA, with Schmitz et al. additionally
reporting thinner optic nerves and wider angles between optic
tracts. Unfortunately, both studies reported group differences but
did not explain the aforementioned distinguishing features in
the context of diagnostics of chiasmal malformations. Effectively,
it is unknown which anatomical features of the chiasm may
be employed in an individualized detection of malformations
or whether such a detection is possible in the first place.
Recently, the application of anatomy-sensitive diffusion MRI
(dMRI), capable of estimating the proportion of crossing and
non-crossing nerves via tractography (Puzniak et al., 2021), has
demonstrated chiasmal malformations in albinism at the group
level (Ather et al., 2018) with potential for an individualized
diagnostic utility (Puzniak et al., 2019). It must be noted, however,
that dMRI as compared to aMRI is time consuming at the
level of both data acquisition and data analysis. Considering
the aforementioned challenges of accurate modeling of chiasmal
malformations, it would be of benefit to revisit this issue using
models capable of autonomous feature extraction from aMRI
data, such as convolutional neural networks [CNNs; (LeCun
et al., 1989; Krizhevsky et al., 2012)].

Convolutional neural networks (CNN) are a class of artificial
neural networks, i.e., data-driven models inspired by biological
systems which are shown to greatly benefit fields relying on
computer vision, such as medical imaging (Lundervold and
Lundervold, 2019). They are being successfully applied in
tasks requiring recognition (segmentation) of brain structures,
including the ones involving the optic chiasm (Ibragimov and
Xing, 2017; Tong et al., 2018; Chen et al., 2019; Zhu et al.,
2019; Duanmu et al., 2020; Mlynarski et al., 2020). This is in
particular true for the attempts using MRI data, which have been
demonstrated to provide superior contrast and recognition of
optic chiasm boundaries compared to other imaging techniques,
such as computer tomography (Ibragimov and Xing, 2017;
Duanmu et al., 2020). The CNNs, however, are not a universal
tool, as their performance is largely dependent on both the
quantity and quality of the training data. Consequently, this
hinders the development of CNNs in the fields with limited
data availability (e.g., due to high data acquisition costs),
such as neuroimaging. The above-described limitation is even
further augmented in the proposed comparative analysis of

normal and abnormal chiasms, where the rarity of albinism
[estimated prevalence of albinism equal to 1: 20,000 according
to Marçon and Maia (2019)] severely impacts the availability
of data from such rare patient groups. These limitations
may be counteracted to some degree by known techniques,
e.g., transfer learning, allowing to fine-tune existing networks
to new data with smaller samples instead of training from
scratch. In the present work, we explored the potential of
CNNs for the detection of chiasmal abnormalities. For this
end, we employed a method that is independent of hardly
available, sizable datasets of abnormal chiasms at the expense
of interpretability, as discussed in Limitations. Specifically, we
investigated whether CNNs trained for the purpose of optic
chiasm segmentation on control data only, lead to erroneous
segmentations for abnormal optic chiasms, e.g., in albinism. Such
a differential performance of CNN on normal and abnormal
chiasms could be utilized in a quantitative approach for the
detection of chiasm abnormalities in albinism and potentially
beyond. Currently, albinism diagnosis is based on several
morphological and functional features (Hoffmann et al., 2007;
Hoffmann and Dumoulin, 2015), with abnormal crossing in the
chiasm being one of the major criteria (Kruijt et al., 2018). This
is being routinely assessed with functional methods (Hoffmann
et al., 2005; von dem Hagen et al., 2008), which are, however,
affected by patients’ functional limitations, such as low visual
acuity or nystagmus as typical for albinism. Although these
limitations would be absent for anatomy-based assessments, the
only up-to-date successful reported attempt of an individualized
detection of the chiasm abnormalities was achieved with dMRI
(Puzniak et al., 2019), which required complex and time-
consuming data acquisition and analysis extending beyond
the clinical standards. Consequently, the successful CNN-based
identification of abnormal chiasms via aMRI might provide proof
of concept for a novel tool which can be applied to diagnostics,
e.g., in albinism.

MATERIALS AND METHODS

Rationale
The objective of this study was to investigate the scope
of diagnosing chiasmal malformations using the CNN’s
performance as an indicator. For this purpose, we trained
a CNN for the segmentation of normal optic chiasms from
T1-weighted (T1w) MRI images. This would ideally be achieved
by using already developed networks. However, their lacking
validation on external datasets, a common issue in the field of
DL (Yao et al., 2020), required the development of a custom new
network for this purpose and subsequent testing on MRI images
of PWA with malformed chiasms. The accuracy of the CNN,
determined via the comparison of predicted chiasmal masks
with previously hand-curated ground-truth masks, is expected
to reveal whether representations of malformed chiasms can
be learned from control data only. Consequently, the results
provide a deeper understanding on whether malformed chiasms
are included in the segmentation of representations learned from
the control data. This finding is expected to be of value for the
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clinical diagnostics of malformations, as well as basic research on
mechanisms guiding malformation of the chiasms.

Workflow
This section details the description of the process, the pipeline,
and its components, specifically the type of MRI data employed
in the training and testing of the CNN, generation of optic chiasm
masks by automatic and manual delineation, data augmentation,
CNN training, evaluation of CNN on MRI data of controls
and PWA, and the metrics used. The graphical overview of the
workflow is provided in Figure 1.

MRI Data
T1w anatomical MRI images of the brain were acquired using
3T MRI. The MRI data came from two separate, publicly
available datasets and were used in the (i) training and (ii)
evaluation of CNN. Specifically, the CNN was (i) trained on the
Human Connectome Project (HCP) dataset (Van Essen et al.,
2013), containing nearly 1,200 T1w structural MRIs from control
participants, and (ii) tested on the CHIASM dataset (Puzniak
et al., in revision)1, a repository containing T1w images of
patients with rare chiasmal disorders including PWA (n = 9) and
controls (n = 8).

HCP Dataset
The CNN was trained on control T1w images (n = 1049) from the
HCP Dataset—Diffusion MRI 3T 1200 Subjects (S1200) Release
(Glasser et al., 2013; Van Essen et al., 2013) downloaded from
the brainlife.io platform (Avesani et al., 2019)2. As detailed in
the PreFreeSurfer pipeline from HCP Minimal Preprocessing
Pipelines (Glasser et al., 2013), for each subject, the T1w images
acquired with native 0.7-mm isotropic resolution were defaced
(Milchenko and Marcus, 2013), aligned to MNI152 template
space (rigid-body transformation with 6 degrees of freedom), and
corrected for readout distortions (van der Kouwe et al., 2008).
The preprocessed images were further resampled to 1.25-mm
isotropic resolution to match the resolution of the HCP DWI
data. Importantly, the downsampling was also a prerequisite for
further segmentation of T1w images with FreeSurfer software.

CHIASM Dataset
The performance of the trained CNN was tested on the T1w
MRI images of PWA (n = 9) and controls (n = 8) from the
CHIASM dataset (Puzniak et al., in revision, see footnote 1)
downloaded from the brainlife.io platform (Avesani et al., 2019)3.
As preprocessing steps, for each subject, T1w images acquired
with native resolution of 0.9 mm were defaced, aligned to
Anterior Commissure—Posterior Commissure (ACPC) space,
and downsampled to 1-mm isotropic voxel (in order to support
FreeSurfer segmentation).

1Puzniak, R. J., et al. (in revision). CHIASM, The Human Brain Albinism and
Achiasma MRI Dataset.
2https://brainlife.io/project/5941a225f876b000210c11e5
3https://brainlife.io/pub/5dea42a96c0bd9c0508554a2

Optic Chiasm Masks
The T1w MRI images were further used to generate several binary
optic chiasm masks through varied approaches. Specifically, this
included manually defined ground-truth masks, automatically
created masks used for CNN training, and masks of the chiasm
computed by the CNN (Figure 2). Although automatically
created masks from neuroimaging data are known to be of
suboptimal quality (as opposed to ones manually defined by
experts), we decided for this approach as it enabled us to
analyze a wide range of chiasmal morphologies. This is, in
fact, a requisite for the CNNs to robustly identify the well-
generalizing features of the chiasm. An overview of the employed
masks is provided below, followed by detailed descriptions in the
subsequent sections:

• X-maskmanual—optic chiasm mask defined manually
on T1w MRI images.
• X-maskatlas−initial—optic chiasm mask created by

FreeSurfer’s atlas-based segmentation of HCP training
set (n = 1049) and CHIASM (n = 17) T1w images.
• X-maskatlas−corrected—improved optic chiasm masks

obtained by correcting X-maskatlas−initial with a custom
correction algorithm.
• X-maskCNN—optic chiasm mask computed by the CNN

from input T1w image. The X-maskNN were generated only
for the CHIASM (n = 17) dataset and a subset of HCP
datasets (n = 10; HCP test-controls), which were excluded
from CNN’s training and validation procedure (Figure 2A).

Importantly, for the purpose of quality evaluation (see
Computational methods), the assessed masks were limited only to
the axial slices, where the optic chiasm was present, as determined
by the X-maskmanual (Figure 2A). This step was performed to
ensure that the evaluation is focused on the optic chiasm only and
is not perturbed by neighboring white matter structures, such as
optic nerves and tracts.

X-maskmanual
The X-maskmanual were defined in PWA (n = 9; CHIASM
albinism) and controls (n = 8; CHIASM controls) from the
CHIASM dataset, and 10 HCP test-controls were excluded from
CNN training. Specifically, the delineation was performed by
a trained researcher in all the T1w image slices with chiasmal
presence, as according to the guidelines detailed in (Puzniak et al.,
in revision, see footnote 1). The X-maskmanual were deemed a
ground truth and consequently used as reference for the quality
assessment of other masks (Figure 2A).

X-maskatlas−initial
The X-maskatlas−initial were extracted from the existing atlas-
based segmentation of the HCP T1w images (Van Essen et al.,
2013) processed according to the HCP FreeSurfer pipeline
(Glasser et al., 2013) using FreeSurfer v5.2 (Fischl, 2012).
Although such atlas-based masks were successfully used in
previous studies aiming to accelerate brain segmentation using
CNNs (Fedorov et al., 2017a,b; McClure et al., 2019), our
comparison of X-maskatlas−initial with X-maskmanual revealed a
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FIGURE 1 | Workflow chart. Graphical illustration of the experiment design. Initially, the training T1w images from the Human Connectome Project (HCP) dataset (top
left) were used to generate accurate optic chiasm masks (“Mask generation”; marked by the orange color, left) in a two-step procedure validated on test T1w
images. The image–mask pairs were subsequently preprocessed (“Data augmentation”; marked by the green color, bottom right) and used as an input target in the
supervised training of the CNN (“CNN training”; marked by the red color, top right). In the final step, the test T1w images from both controls and PWA were used in
evaluation of the CNN’s performance (“CNN evaluation”; marked by the yellow color, middle).

significantly lower quality of the former (see Results), thereby
making them (as expected) a suboptimal choice as training data.

X-maskatlas−corrected
Although X-maskatlas−initial were found to be of insufficient
quality for training, we observed that their shortcomings can be
mitigated by incorporating information about voxel intensities
in the mask delineation process. This allowed us to formulate
the following seven-step algorithm generating a corrected mask,
X-maskatlas−corrected from the X-maskatlas−initial:

1. Calculate the distribution of intensities of T1w image’s
voxels within the initial mask, X-maskatlas−initial. Notably,
apart from optic chiasm’s white matter voxels, this will
include also false-positive voxels from adjacent tissue.

2. Calculate the 98th percentile of the obtained distribution.
This threshold was identified empirically as the one
resulting in the optimal separation of hyperintense voxels
with blood vessel contributions from the surrounding.

3. Calculate the 66th percentile of the obtained distribution.
This threshold was identified empirically as the one
resulting in a robust and conservative separation of
white matter voxels from partial-volume voxels and
surrounding tissue.

4. Binarize a copy of the entire T1w image of the brain,
setting all voxels to 0, except for those within the 66-98th
percentile range.

5. From the binarized T1w image, extract a bounding box
around the initial optic chiasm mask, extended by five

voxels in left–right and posterior–anterior directions. This
step is intended to exclude neighboring white matter
structures which may interfere with step #6 and #7.

6. Extract the biggest cluster of nonzero voxels. This will
represent the optic chiasm.

7. Dilate the cluster by one voxel in each direction. The
conservatively chosen percentile thresholds, introduced
in step #2 and #3, allowed extracting only non-surface
voxels of optic chiasm, as they are affected by partial
volume. As such, this step allows the possibility to include
voxels at the surface.

The quantitative comparison (see Computational methods)
of outcome for the X-maskatlas−corrected with X-maskmanual
demonstrated a significantly improved quality of the former
(see Results) in comparison to X-maskatlas−initial. Given
this validation, the correction procedure was subsequently
performed for all of the HCP X-maskatlas−initial, and the
resulting X-maskatlas−corrected were used as targets for supervised
training of the CNN.

Convolutional Neural Network
This section describes in detail the architecture of the tested CNN,
as well as the data preprocessing steps prior to training, training
itself, and postprocessing of the output.

Network’s Architecture
The developed CNN used a 3D version (Çiçek et al., 2016) of
the U-Net architecture (Ronneberger et al., 2015). Although the
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FIGURE 2 | Overview of X-mask from the exemplary HCP dataset (ID 304727). (A) Axial slices displaying the optic chiasm region on T1w image (leftmost column).
Blue-colored masks superimposed on the T1w slices correspond to, respectively, from left to right: X-maskmanual, X-maskatlas−initial, X-maskatlas−corrected, and
X-maskCNN. The top row displays the most inferior slice, with subsequent rows showing incrementally superior slices. All images are presented in neurological
convention. (B) QR codes allowing for the inspection of 3D representations of the masks, respectively, from left to right: X-maskmanual, X-maskatlas−initial,
X-maskatlas−corrected, and X-maskCNN.

3D version involves a higher computational load which may
limit the upper resolution of processed images, the inclusion
of additional dimension was shown to be of significant benefit
to the segmentation (Chen et al., 2019; Mlynarski et al.,
2020). Another reason for using the U-Net architecture was its
reported robustness to jagged boundary-localized errors (Heller
et al., 2018), which is a helpful feature in case of training on
automatically generated masks.

Specifically, the network consists of analysis (encoding)
and synthesis (decoding) paths. The analysis path contains
four layers, each containing a standard U-net block [two
3 × 3 × 3 × convolutions followed by batch normalization
and rectified linear unit (ReLu)] and subsequent 2 × 2 × 2
max pooling (stride of 2). For each subsequent step in the
analysis path, the number of feature maps derived from input
was doubled in each layer. The synthesis path consists of
2× 2× 2 upconvolution followed by a U-net block. Importantly,
each decoding layer receives concatenated feature maps from

a previous decoding layer and corresponding encoding layer,
which allows for preservation of both low- and high-level
features. Finally, in the last layer, the two output feature maps
(background and target class, here optic chiasm) are being
normalized with a voxelwise softmax function. The total number
of parameters is 2,206,482.

Data Augmentation
Prior to being fed into the network, the training images and
target X-maskatlas−corrected were subjected to the following data
augmentation procedure [performed using the TorchIO package
(Pérez-García et al., 2021)], respectively:

• Normalization of maximal voxel intensity to 1. This
adjusts for varied ranges of intensities between MR
images originating from different sources, by rescaling
intensities to 0-1 range.
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• Random flip along any axis. This accounts for variations in
the coordinate systems used for storing MRI images, such
as in case of radiological and neurological conventions.
• Random crop to 160 × 160 × 160. This allows for

generalization on the incomplete whole-brain data and
eases the computational load.
• Random affine (rotation up to 15◦, translation up to 20

voxels, bspline interpolation). This accounts for varied
orientations and positions of the patient’s brain in
the scanner space.

Performing these steps on the training data allowed us to
enhance CNN’s generalization capabilities without resorting to
explicit regularization, which has been demonstrated to limit
the model’s capacity (Hernández-García and König, 2018). This
was particularly important considering the misalignment of HCP
training images (stored in MNI152 space) and CHIASM testing
images (aligned to ACPC space).

Training and Loss Function
The HCP grayscale T1w images (n = 1049) and corresponding
X-maskatlas−corrected were divided into training (n = 932, 87.5%;
HCP training—controls), validation (n = 107, 10%; HCP
validation—controls), and testing (n = 10, 2.5%) subgroups
augmented and subsequently fed in batches of 2 to U-Net CNN
using the Dice similarity coefficient (see Computational methods)
loss function and Adam optimizer (Kingma and Ba, 2017) for
the purpose of weight updating. The training was performed
five times, using different combinations of hyperparameters,
specifically the maximal numbers of epochs (13, 15, 30, 40, 100)
and learning rates (respectively, 0.0025, 0.0030, 0.0025, 0.0015,
and 0.0005). The resulting weights of trained networks were saved
and are provided (see Availability of data and material).

X-maskCNN
The trained CNN returned a grayscale image of the input’s size
(160 × 160 × 160), where each voxel’s intensity depicted the
probability of belonging to the optic chiasm (ranging from 0
to 1). This output was turned into a binary optic chiasm mask
by thresholding the image to an empirically selected value (here
we tested a range of 0.25, 0.50, 0.75, and 1.00 thresholds) and
selecting the biggest cluster of nonzero elements present in the
image. The quality of final X-maskCNN generated by the tested
range of training hyperparameters and threshold values were
evaluated against X-maskmanual for both HCP test-controls and
CHIASM controls datasets (see Supplementary Material), with
the best-reported performance achieved for 30 epochs, and a
learning rate equal to 0.0025 at a threshold of 1.

Computational Methods
The employed computational methods incorporate the
quantitative comparison of overlap of two masks by means
of the Dice similarity coefficient (specified below), testing of
mean equality using t-tests, and a range of classification metrics
describing the discrepancy in results.

Dice Similarity Coefficient
In order to measure the quality of optic chiasm masks, we
employed the Dice similarity coefficient [DSC; (Dice, 1945;
Sørensen, 1948)] statistic, which describes the amount of overlap
between two masks, in our case. The DSC ranges from 0
(lack of overlap) to 1 (perfect overlap of identical shapes).
Specifically, we calculated the value of DSC between the ground-
truth X-maskmanual and the candidate X-mask‘candidate′ , where
the latter has been previously limited only to axial slices where
X-maskmanual was present (the excessive voxels were cropped).
For brevity, the value of DSC calculated between X-maskmanual
and candidate X-mask‘candidate′ is further being denoted to
as DSCmanual_vs_‘candidate′ , and in case of group-level results,
statistics is presented as mean± standard error of mean (SEM).

Statistical Comparisons
The obtained DSC values, grouped with respect to compared
candidate mask group (X-maskinitial, X-maskatlas−corrected, and
X-maskCNN) and participant group (HCP test-controls, CHIASM
controls, and CHIASM albinism), were subjected to statistical
testing. All samples were tested for normal distribution using the
test by D’Agostino and Pearson (D’Agostino and Pearson, 1973),
and for all but one (X-maskatlas−initial : HCP test-controls) the
null hypothesis of coming from normal distribution could not
be rejected. Accordingly, in case of comparison of two normally
distributed samples, we used two-tailed, two-sampled t-test at
an alpha level of 5%; otherwise, we used the Wilcoxon rank-
sum test, which tests the null hypothesis that two samples are
drawn from the same distribution. Finally, we controlled for the
familywise error (FWE) rate by applying Bonferroni’s correction
to all calculated p-values.

Classification Metrics
In order to evaluate any potential discrepancy in the X-mask
quality obtained for PWA and controls, we classified the obtained
DSCmanual_vs_CNN using C-support vector classification (C-SVC)
model with polynomial kernel (Platt, 1999; Chang and Lin,
2011). The measure of interclass discrepancy was subsequently
quantified using well-established machine learning classification
metrics, specifically

• Accuracy = TP+TN
TP+TN+FP+FN ′

• Precision = TP
TP+FP ′

• Recall
(
sensitivity

)
=

TP
TP+FN ′

• Specificity = TN
TN+FP ′

where TP, TN, FP, and FN are, respectively, true positives,
true negatives, false positives, and false negatives. Importantly,
it should be noted that the classifier has been trained and
evaluated on the same data, which is a clearly forbidden practice
in case of evaluating a classifiers’ performance. Our goal was,
however, to quantitatively express the intergroup differences in
DSCmanual_vs_CNN and the overlap in data points, which is why
we decided on such an approach. In line with that purpose, we
used the support vector classification model which attempts to
maximize the margin around the decision boundary.

Frontiers in Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 755785

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-755785 October 22, 2021 Time: 14:32 # 7

Puzniak et al. Deep Learning Detects Chiasmal Malformations

TABLE 1 | Mean and standard error of mean of DSC of X-mask and significance of cross-group differences.

Group HCP test-controls CHIASM controls CHIASM albinism

X-mask Atlas-initial Atlas-
corrected

CNN Atlas-
initial

Atlas-
corrected

CNN Atlas-
initial

Atlas-
corrected

CNN

HCP test-
controls

Atlas-initial 57 ± 3 %

Atlas-corrected p = 0.0251,a 75 ± 3 %

CNN n.s.b 79 ± 2 %

CHIASM
controls

Atlas-initial n.s.1,a 50 ± 4 %

Atlas-corrected p < 0.001a p = 0.02a 28 ± 4 %

CNN n.s.c p < 0.001b 75 ± 3 %

CHIASM
albinism

Atlas-initial 53 ± 5%

Atlas-corrected 33 ± 4 %

CNN p = 0.004c p = 0.04c n.s.b 44 ± 8%

The diagonal displays the values of DSC of a specific X-mask (atlas-initial, atlas-corrected, CNN) compared to the corresponding X-maskmanual (0%: no overlap; 100%:
identical masks, i.e., complete overlap) for each of the test groups (10 HCP test-controls, 8 CHIASM controls, and 9 CHIASM PWA). A total of 10 specific statistical
tests were performed (corrected for familywise error using Bonferroni’s correction): four tests for cross-comparison of quality of X-maskatlas−initial and X-maskatlas−corrected
for two control groups (marked by symbol a), three tests for comparison of X-maskatlas−corrected with X-maskCNN for all groups (marked by symbol b), and three tests
for cross-comparisons of X-maskCNN for all groups (marked by symbol c). The p-values of the tests (either Wilcoxon rank-sum tests marked by symbol 1, or t-tests)
comparing group DSC scores are displayed on the intersection of respective rows and columns (non-significant: n.s.; absence of test: blank cell). Blue color – HCP
test-controls, yellow color – CHIASM controls, red color – CHIASM albinism.
1Wilcoxon rank-sum tests.
aTests for cross-comparison of quality of X-maskatlas−initial and X-maskatlas−corrected for two control groups.
bTests for comparison of X-maskatlas−corrected with X-maskCNN for all groups.
cTests for cross-comparisons of X-maskCNN for all groups.

RESULTS

This section provides a detailed qualitative and quantitative
insight into the two key aspects of our investigation: (i) quality
assessment of X-maskatlas−initial and X-maskatlas−corrected and (ii)
evaluation of the CNN’s performance on the CHIASM dataset.
An overview of the quantitative results is given in Table 1.

Quality of Optic Chiasm Masks
As detailed in Methods, the quality of a candidate mask is
determined based on its conformance with the ground-truth
masks, i.e., DSCmanual_vs_‘candidate′ . The DSCmanual_vs_atlas−initial
calculated for the 10 HCP test-controls was equal to 57 ± 3%
(mean ± SEM). Upon correction of the X-maskatlas−initial with
the custom-designed algorithm, the quality of the corrected
masks (X-maskatlas−corrected) improved significantly (mean
DSCmanual_vs_atlas−initial and DSCmanual_vs_atlas−corrected: 57 ± 3%
and 75 ± 3%, respectively, FWE corrected p-value = 0.025;
see also Figures 2, 3 for a quantitative and qualitative account,
respectively). These results for the HCP test-controls provide
support for the custom mask correction procedure, and as
such X-maskatlas−corrected. For this reason of better quality,
X-maskatlas−corrected were later used for the CNN training.

Although the CNN training was based only on HCP
data, the mask correction algorithm was tested also on
the CHIASM dataset. The quality of X-maskatlas−initial
(DSCmanual_vs_atlas−initial) of the CHIASM controls compares
similarly to the HCP test-controls [HCP vs. CHIASM:
57 ± 3% vs. 50 ± 4 (mean ± SEM); p-value = 1.00].

In contrast, applying the mask correction procedure on
the CHIASM data resulted in significantly lower DSC-
measures for X-maskatlas−corrected than X-maskatlas−initial
(DSCmanual_vs_atlas−initial vs. DSCmanual_vs_atlas−corrected: 50 ± 4%
vs. 28 ± 4%; p-value = 0.02; see Figure 3). Despite a comparable
quality of initial masks, the quality of X-maskatlas−corrected
from the CHIASM dataset was reduced compared to the
HCP X-maskatlas−corrected [DSCmanual_vs_atlas_corrected (HCP vs.
CHIASM): 75 ± 3% vs. 28 ± 4%; p-value < 0.001]. The findings
reveal the limited generalization of the custom mask correction
procedure. It should be noted that this is not of relevance for
the hypothesis tested in this study: during training, the CNN
is interacting with data and target masks corresponding to the
HCP dataset only. Accordingly, while it is critical to ensure
the high quality of training X-maskatlas−corrected, the CNN
itself is agnostic to their derivation process and its limitations
on other datasets. This will be proven further in the Results
section (see Transferability of CNNs) where it will be shown that
X-maskatlas−corrected and X-maskCNN of CHIASM controls are
fundamentally different.

Evaluation of Convolutional Neural
Network’s Performance on the Testing
Data
We calculated the DSCmanual_vs_CNN of control (n = 8) and PWA
(n = 9) from the CHIASM dataset and HCP test-controls. This
allowed us to gain insight into the (i) transferability of CNNs (i.e.,
how well the CNN performs on data from entirely new sources;
for this purpose, we compared the quality of X-maskatlas−corrected
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FIGURE 3 | Evaluation of the mask correction procedure. Scatter plot of DSCmanual_vs_atlas−corrected (x-axis) and DSCmanual_vs_atlas−initial (y-axis) values for a subset of
10 HCP test-controls and 8 controls from the CHIASM dataset. The values are additionally presented in the form of marginal histograms of the two
distributions—DSCmanual_vs_atlas−corrected (top horizontal) and DSCmanual_vs_atlas−initial (right vertical). The black contour marks the data point of the representative
participant detailed in Figure 1.

to X-maskCNN) and (ii) differences between optic chiasm masks
computed by the CNN for controls and PWA.

(i) Transferability of CNNs. The comparison of
DSCmanual_vs_atlas−corrected with DSCmanual_vs_CNN
performed for the 10 HCP test-controls failed to reveal a
statistically significant difference [75 ± 3% and 79 ± 2%,
respectively, p-value = 1.00]. This considerably deviated
from results obtained for the CHIASM controls, where
DSCmanual_vs_CNN (75 ± 3%) was significantly higher than
DSCmanual_vs_atlas−corrected (28 ± 4%, p-value < 0.001).
Interestingly, the values of DSCmanual_vs_CNN for both
HCP test-controls and CHIASM controls were similar
(79 ± 2% and 75 ± 3%, respectively; p-value = 1.00). The
robust performance of the CNN on the CHIASM dataset
reinforces the argument that CNN is agnostic to and does
not copy the correction algorithm that generated training
X-maskatlas−corrected data (which was shown to fail on the
data of CHIASM controls), but rather uses more general
and robust processing that is well transferable to datasets
different from the training one.

(ii) CNN-computed masks for controls vs. albinism.
Comparing the DSCmanual_vs_CNN between CHIASM
controls (75 ± 3%) and albinism participants (44 ± 8%)
revealed a significantly lower quality of the latter (p-
value = 0.04). These results also applied when substituting
the CHIASM controls with the HCP test-controls
(79 ± 2%, p-value = 0.004). An overview of the results is
displayed in Figures 4, 5.

The observed differentiation between the controls and
albinism was further investigated by measuring the performance
of a C-SVC model (see Methods) applied to CHIASM
albinism—CHIASM controls and CHIASM albinism—HCP
test-controls data pairs (with PWA as positives and controls
as negatives). The results of classification were subsequently
evaluated with the metrics specified in Methods and detailed in
Table 2.

The observed discrepancy in values of DSCmanual_vs_CNN
for controls and albinism indicates that malformed chiasms
are ill-represented by models “learned” from normal chiasms.
This leads to the conclusion that both types of chiasms
are described by diverse spatial features. This important
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FIGURE 4 | Comparison of quality of X-maskatlas−initial and X-maskCNN. Scatter plot of DSCmanual_vs_atlas−initial (x-axis) and DSCmanual_vs_CNN (y-axis) values for
CHIASM albinism (n = 9), CHIASM controls (n = 8), and HCP test-controls (n = 10). The values are additionally presented in the form of marginal histograms of the
two distributions—DSCmanual_vs_atlas−initial (top horizontal) and DSCmanual_vs_CNN (right vertical). The black contours mark the data point of the representative
participants, depicted in Figure 5. The outlier data point indicating DSCmanual_vs_CNN = 0 corresponds to a single case, where the chiasm could not be correctly
identified. Specifically, X-maskCNN was defined as a largest cluster of voxels with positive predictions (as output by CNN). In this unique case, however, the largest
cluster was located outside the chiasm, in the cerebellum.

observation provides a proof of concept for CNN-based
direct classification of chiasms with regard to misrouting.
At the same time, it should be noted that due to the
limited sample of testing data, it is beyond the scope of
the present study to provide an optimal DSC threshold for
distinguishing controls from PWA. Given the clinical relevance
of a threshold, we emphasize the need for future research to
estimate this value through extensive evaluation of multiple
datasets from several sources. While such a study is expected
to provide the value for the optimal decision boundary (e.g.,
via a receiver operating characteristic curve analysis), the final
proposed value should also factorize the consequences of type I
and type II errors.

DISCUSSION

We aimed to investigate whether normal optic chiasms and
those with misrouting as in albinism are represented by CNNs
differently and, if yes, whether such differences could be used
in the diagnostics of abnormal chiasms. In order to investigate

this, we built and trained a CNN to segment optic chiasms
based on control T1w images and algorithm-generated training
masks. Our findings of a differential performance of the CNN
in predicting normal and abnormal chiasms indeed highlight a
potential utility of CNNs in identifying patients with chiasmal
abnormalities. In the context of our findings, we intend to discuss
two key aspects of our study: (i) use of automated masks in the
training of CNN and (ii) application of control chiasms learned
by CNN to abnormal cases.

Use of Automated Masks in the Training
of CNN
Automatically generated algorithm-based masks are bound to be
a suboptimal solution for the purpose of image segmentation
as compared to manual segmentations, specifically in medical
images. Remarkably, we observed that in the case of a dataset
with a specific structure, tailored adjustments can significantly
increase the fidelity of automated masks to the ground truth.
This strategy is useful in mitigating the disadvantages of
a trade-off between mask quality and big sample size, as
encountered when using automatically generated training data
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FIGURE 5 | Overview of X-maskCNN from a representative HCP test-control,
CHIASM control, and CHIASM albinism participant. Axial slices display the
optic chiasm region on the T1w image; blue-, yellow-, and magenta-colored
masks show the X-maskCNN defined for the HCP test-control, CHIASM
control, and CHIASM albinism participants, respectively (marked by a black
edge on Figure 4).

(McClure et al., 2019). This is further reinforced by the robust
performance of the trained CNN here, demonstrating that the
approximate masks despite individual flaws allow for a successful
capture of the structure’s properties by the neural networks
(Heller et al., 2018).

Application of Control Chiasms Learned
by Convolutional Neural Network to
Abnormal Cases
Finally, the reported results demonstrated that the features of
chiasms “learned” by training on control data does not apply to
chiasms with enhanced misrouting, as present in albinism. This
finding allows for a number of conclusions:

a. The chiasmal misrouting significantly alters the spatial
organization of the optic chiasm [supporting the findings
of Schmitz et al. (2003) and von dem Hagen et al.
(2005)], which thus cannot be represented by data-driven
models trained on control data only. Consequently, deep
learning frameworks which exclude data of malformed
chiasms from the training datasets will not be able to
accurately represent them.

b. At the same time, the fundamental differences between
CNN representations of normal and abnormal chiasms,
as demonstrated by the quantified inaccuracy of masks,
indicate the possibility of the identification of chiasmal
misrouting from the T1w MRI images. Establishing such a
method would provide direct and robust methods for the
identification of misrouting in the clinical environment,
which in turn is expected to reinforce the diagnostics

TABLE 2 | Accuracy of cross-group classification based on DSCmanual_vs_CNN.

Metrics CHIASM albinism vs.
CHIASM controls

CHIASM albinism vs.
HCP test-controls

Accuracy 0.89 0.84

Precision 0.80 0.82

Recall (sensitivity) 1.00 0.9

Specificity 0.78 0.78

of albinism. Further studies are needed to explore how
our specific findings related to albinism translate to the
detection of chiasma abnormalities in general.

c. The distinguished CNN representations of normal
and abnormal chiasms are also a promising starting
point for further studies addressing the association
between chiasm malformations (with its further
impact on white matter of visual system) and related
reorganization at the level of the visual cortex (Hoffmann
and Dumoulin, 2015). Additionally, the complexity of
this phenomenon may greatly benefit from more complex
methods, such as CNNs.

d. Finally, it should be noted that our current study
underlines the general need for public datasets of
rare, not infrequently overlooked, patient groups
(Puzniak et al., in revision, see footnote 1). This is
particularly important in the context of the current
influx of deep learning-based tools in the healthcare
system, such as CNNs trained to segment organs at risk
(including chiasm as well) for therapy planning, which
may not be available to rare patient groups not represented
in training data. Considering this, the current study
highlights the opportunities of improved diagnostics
for the example of albinism and is intended to inspire
the publication of further datasets to be utilized for the
development of robust and transferable neural networks
capable of accurate classification of chiasmal abnormalities
from T1w MRI images.

Limitations
The study limitations come from several distinct sources. Firstly,
we note the limitations stemming from (i) lack of evidence
on specific anatomical biomarkers of chiasmal malformations.
Secondly, we acknowledge the limitations caused by data scarcity
affecting the (ii) interpretability of the model, (iii) quantity
and heterogeneity of the data, and (iv) quality of the data
and labels. Finally, we note that the study might be partially
affected by unavoidable (v) limitations in the design and
training of the CNN.

Identification of Anatomical Biomarkers of Chiasmal
Malformations
An important step in the validation of a diagnostic tool is the
demonstration of its sensitivity to meaningful individualized
biomarkers of the disease. Unfortunately, the evidence for such
specific anatomical biomarkers of chiasmal malformations
is missing. Although previous studies (Schmitz et al., 2003;
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von dem Hagen et al., 2005) provided a list of candidate
features distinguishing normal from abnormal chiasms (width
of chiasm, optic nerves and optic tracts, angle between
optic tracts), none of these features were investigated in the
context of individualized diagnostics. This lack of literature
on the anatomy-based detection of chiasmal malformations
was also the primary reason for the choice of our method
here, which aimed at the investigation of the generalized
applicability of CNNs for the purpose of detection of
chiasmal malformations.

Interpretability of the Convolutional Neural Network
While the missing knowledge on specific relevant anatomical
biomarkers of chiasmal misrouting can be retrieved by the
identification of features driving the correct diagnostics, this
process requires the CNN to be interpretable, i.e., to grant
insight into identifying the input features driving the outcome
decision. This property is, however, not generally available
for all the CNNs but is rather dependent on their task.
Specifically, in the case of described segmentation CNN (as
chosen in this study to avoid dependence on the scarce data
on chiasmal malformations), there are strong limits of the
possibilities for visualization of the inference process. This
limitation does not apply to the classification CNNs, where
several interpretation techniques (Montavon et al., 2018) such
as Grad-CAM (Selvaraju et al., 2017) can be implemented.
These, however, require extensive datasets. Additionally, as
this type of network uses both normal and abnormal data
for training, it allows for extensive validation of features that
drive the CNN’s decision that will lead to understand their
placing in the normal–abnormal spectrum. In summary, we
note that while the employed approach provides the evidence
that certain anatomical biomarkers of chiasmal malformations
exist, the next step should involve their identification with a
classifying CNN trained on larger datasets comprising both
normal and abnormal data.

Quantity and Heterogeneity of the Data
Although our study’s design enabled us to take advantage
of the massive HCP dataset and train the CNN on much
bigger samples than typically used, the rarity of albinism (and
other cases of congenital malformations of the chiasm) severely
limited the size of the training sample. For the same reasons,
we were limited to testing data from only one site, which
prevented us from investigation of impact of scanner and data
acquisition protocol on the method’s outcome. Moreover, this
limited our estimates of the accuracy and robustness of the
presented method.

Quality of Data and Labels
Although the HCP dataset is well-known for setting standards
in MRI data quality assessment, it does not contain
any clinical information pertaining to the participants’
visual system evaluations. Furthermore, the training
dataset might include participants with retinal and/or
optic nerve disorders in proportions corresponding to
their representation in the real world. This prevalence

is, however, not expected to influence the outcome
of CNN training, but even if so, this would cause
underestimation of our method’s performance, rather
than overestimation.

Similarly, although the CHIASM datasets provides findings of
ophthalmologic examination of included participants, it does not
provide information about the types of albinism represented in
the dataset (e.g., oculo-cutaneous, ocular albinism).

Finally, the quality of automatically generated training labels
is inferior to the ones created manually. Although we provide
evidence that this does not impact the general outcome of the
study, we acknowledge the use of manually defined labels to be
the optimal approach.

Convolutional Neural Network Design and Training
Due to the models’ complexity and high dependence on
the underlying data, the Deep Learning modeling approach
is mainly driven by empirical, rather than theoretical,
evidence. Consequently, despite the choice of employing
an established 3D U-Net architecture, which was reported
to perform well in similar task, we cannot rule out that
other architectures would not provide better results.
Similarly during CNN training, although we tried several
combinations of hyperparameters and reported the ones
yielding the best results, it is nearly impossible that we
found the globally optimal configuration of the CNN
network’s parameters.
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