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Pertussis is still observed in many countries despite of high vaccine coverage. Acellular

pertussis (aP) vaccination is widely implemented in many countries as primary series in

infants and as boosters in school-entry/adolescents/adults (including pregnant women

in some). One novel strategy to improve the reactivation of aP-vaccine primed immunity

could be to include genetically- detoxified pertussis toxin and novel adjuvants in aP

vaccine boosters. Their preclinical evaluation is not straightforward, as it requires

mimicking the human situation where T and B memory cells may persist longer

than vaccine-induced circulating antibodies. Toward this objective, we developed a

novel murine model including two consecutive adoptive transfers of the memory

cells induced by priming and boosting, respectively. Using this model, we assessed

the capacity of three novel aP vaccine candidates including genetically-detoxified

pertussis toxin, pertactin, filamentous hemagglutinin, and fimbriae adsorbed to aluminum

hydroxide, supplemented—or not—with Toll-Like-Receptor 4 or 9 agonists (TLR4A,

TLR9A), to reactivate aP vaccine-induced immune memory and protection, reflected

by bacterial clearance. In the conventional murine immunization model, TLR4A- and

TLR9A-containing aP formulations induced similar aP-specific IgG antibody responses

and protection against bacterial lung colonization as current aP vaccines, despite

IL-5 down-modulation by both TLR4A and TLR9A and IL-17 up-modulation by

TLR4A. In the absence of serum antibodies at time of boosting or exposure,

TLR4A- and TLR9A-containing formulations both enhanced vaccine antibody recall

compared to current aP formulations. Unexpectedly, however, protection was only

increased by the TLR9A-containing vaccine, through both earlier bacterial control and

accelerated clearance. This suggests that TLR9A-containing aP vaccines may better

reactivate aP vaccine-primed pertussis memory and enhance protection than current or

TLR4A-adjuvanted aP vaccines.
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INTRODUCTION

B. pertussis (Bp), the causative agent of whooping cough, is a
gram-negative bacterium highly transmissible in humans across
all ages and an important cause of morbidity and mortality
in infants worldwide. Introduced in 1950s, whole-cell pertussis
(wP) vaccines dramatically reduced disease incidence in infants
and young children. However, vaccine-associated reactogenicity
and unjustified fears of vaccine-induced encephalopathy affected
public confidence and compliance. This lead in the late 1990s
to their replacement in most developed countries by less
reactogenic acellular pertussis (aP) vaccines (1). Pediatric aP
vaccines are composed of 1–5 Bp antigens adsorbed to Alum,
combined with diphtheria (DT) and tetanus (TT) toxoids (DTaP)
± polio, Haemophilus influenzae b and hepatitis B antigens.
Adolescent/adult booster vaccines (Tdap) include lower amounts
of DT and Bp antigens.

Over the last decade, a significant increase of pertussis
incidence was observed primarily in aP vaccine-using countries,
even despite high coverage in infants and young children
(2, 3). This resurgence affects all age groups, but mostly
adolescents (2). Several factors may account for the limited
durability of aP vaccine effectiveness (4). Among them, aP
vaccine immunogenicity is short lasted and protection wanes
rapidly over time (5–9). Repeated boosters are thus required
to maintain and/or reactivate pertussis immunity (10). In
mice, aP vaccines induce preferential CD4+ Th2 cell responses
(associated to mostly IgG1 antibodies) which significantly differ
from the better protective Th1/Th17 responses [associated with
IgG2a/b/c antibodies (11)] induced by natural infection or wP
immunization (12–14). This Th2 vs. Th1/Th17 pattern appears
similar in humans (15–20), in whom both aP and wP vaccines
induce IgG1 antibodies while the Th2-associated IgG4 isotype
was only observed in aP-vaccinated children (21, 22).

Should the control of Bp depend upon the presence of
Th1/Th17 effector and memory cells, novel pertussis vaccines
should thus prime for Th1/Th17 immunity in infancy and/or
induce Th1/Th17 booster responses despite the Th2-immunity
elicited by aP vaccine priming. One major difference between aP
and wP vaccines is their lack of virulence factors and pathogen-
associated molecular patterns which generate Th1/Th17-driving
pro-inflammatory innate cytokines (23–25). Several murine
studies have convincingly shown that adding to or replacing
Alum with TLR2 (25), TLR4 (14, 26), TLR7 (27), or TLR9
(13, 28, 29) agonists may generate more protective Th1
responses. Additionally, native pertussis toxin (PT) activates
the TLR4 receptor (30, 31), inducing dendritic cell maturation
and Th1-driving cytokines (32, 33). However, its chemical
detoxification, used in most aP vaccines, both suppresses these
immunostimulatory properties (32, 33) and alters 80% of PT
epitopes (34), reducing the induction of neutralizing antibodies
(35) and likely directing B cell responses toward vaccine-specific
rather than pathogen-specific epitopes (34). Thus, priming

Abbreviations: gdPT, genetically-detoxified pertussis toxin; PT, pertussis toxin;

FHA, filamentous hemagglutinin; PRN, pertactin; FIM2,3, fimbriae type 2 and

3; aP, acellular pertussis; wP, whole cell pertussis; Bp, Bordetella pertussis; TLR,

Toll-like Receptor; TLR(4–9)A, Toll-like Receptor (4–9) agonist; Th, T helper; DC,

dendritic cell.

in infancy with novel Th1/Th17-inducing vaccines including
genetically-detoxified (gd)PT should provide better protective
efficacy than current aP vaccines (36). However, to demonstrate
infant vaccine efficacy and safety and to redevelop multivalent
infant vaccines appears to most as a major endeavor.

Alternatively, novel vaccine formulations may prove better
at boosting aP vaccines-primed memory than current Tdap
vaccines. To circumvent the limitations of preclinical models in
which antibodies persist to much higher levels than in humans,
we previously reported the usefulness of an adoptive transfer
model in which aP-induced memory cells were transferred
to naïve recipients prior to boosting with Tdap (37). To
address the specific influence of various booster formulations, we
subsequently developed a novel model including two consecutive
adoptive transfers, memory cells induced by boosting aP-primed
cell recipient mice being transferred to naïve recipient mice
prior to bacterial challenge. Using this model, we tested three
modified (m)Tdap formulations composed of gdPT, filamentous
hemagglutinin (FHA), pertactin (PRN), and fimbriae type 2 and
3 (FIM2,3) antigens, adjuvanted with Alum and supplemented
or not with TLR4A or TLR9A (Table 1). We show here that
this model readily discriminates among TLR agonists-adjuvanted
modified Tdap vaccines and identifies TLR9A as more effective
than TLR4A against Bp challenge.

MATERIALS AND METHODS

Mice
Adult female CD1 and BALB/cByJ mice were purchased from
Charles River (L’Arbresle, France) and kept under specific
pathogen free conditions. Mice were used at 6–8 weeks of age.
All animal experiments were carried out in accordance with Swiss
and European guidelines and approved by the Geneva Veterinary
Office and by French Ministry of Higher Education, of Research
and Innovation and ethic committee.

Antigens, Adjuvants, and Immunizations
Mice were primed intra-muscularly (i.m.) with 1/5th of a human
dose (50 µl in both hind legs) of DTaP (DAPTACEL, Sanofi-
Pasteur Ltd.) containing 10 µg chemically-detoxified PT, 5 µg
FHA, 3 µg PRN and 5 µg FIM2 and FIM3 (FIM2,3), TT and DT,
or of DTwP (D.T.COQ/D.T.P, Sanofi-Pasteur Ltd.) containing
≥4 I.U. of heat-inactivated Bp, in addition to TT and DT.
Recipient mice were boosted i.m. with 1/5th of a human dose
(50 µl in both hind legs) of DTwP, Tdap (ADACEL, Sanofi-
Pasteur Ltd.) containing 2.5 µg chemically-detoxified PT, 5 µg
FHA, 3 µg PRN, and 5 µg FIM2,3, TT and DT, or modified Tdap
(mTdap) containing 10 µg gdPT, 5 µg PRN, 7.5 µg FIM2/3, 5
µg FHA, 10 Lf/ml TT, 4 Lf/ml DT and 0,66 mg/ml aluminum
hydroxide (AlOH) with 250 µg of TLR9A or 5 µg of TLR4A
(mTdap/TLR9A or mTdap/TLR4A, Table 1).

Fluorospots
Splenic IFNγ, IL-5, or IL-17 cytokine-secreting cells were
detected by FluoroSpot assay. Briefly, the membrane of 96-
well IPFL-bottomed microplates (Millipore) were coated with
rat anti-mouse IFNγ, IL-5, or IL-17 antibodies (PharMingen) at
10µg/mL, incubated overnight at +4◦C, washed and blocked
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TABLE 1 | Vaccines used and their antigen components.

Abbreviation Vaccine Pertussis antigen content (µg) TLR agonist (µg)

PT* PRN FHA FIM2,3 TLR4A TLR9A

DTwP D.T.COQ/D.T.P n.d. n.d. n.d. n.d.

DTaP DAPTACEL 10 3 5 5

Tdap ADACEL 2.5 3 5 5

mTdap N/A 10 5 5 7.5

mTdap/TLR4 N/A 10 5 5 7.5 5

mTdap/TLR9 N/A 10 5 5 7.5 250

*Chemically-detoxified PT in DTwP and DTaP; genetically-detoxified PT in mTdap, mTdap/TLR4, and mTdap/TLR9.

DTaP, diphtheria, tetanus, and acellular pertussis.

Tdap, reduced DTap.

mTdap, modified Tdap.

with RPMI containing penicillin-streptomycin, L-Glutamine and
β-mercaptoethanol (all from Gibco) and 10% FCS (Hyclone). 1
× 106 freshly isolated splenocytes/well were incubated with a
mix of PT (2.5µg/mL), PRN (5µg/mL), FIM2,3 (5µg/mL), and
FHA (5µg/mL) antigens in presence of 10 U/mL of murine IL-2
(Bohringer Mannhein). After 24 (IFNγ and IL-17) or 48 (IL-5)
h, biotinylated anti-mouse IFNγ (2µg/mL), IL-5 (1µg/mL), or
IL-17 (1µg/mL) antibodies (PharMingen) were added for 2 h at
RT. Streptavidin-PE (Southern Biotech) at 1µg/mL was added
for 1 h at RT. The plates were stored at +5◦C ± 3◦C in the
dark until reading. Each spot, corresponding to one IFNγ-, IL-
5-, or IL-17-secreting cell, was enumerated with an automatic
ELISPOT fluorescent plate reader (Microvision). Results were
expressed as number of IFNγ-, IL-5-, or IL-17-secreting cells per
1× 106 splenocytes.

Adoptive Transfer
Spleens were harvested 42 days after priming or boosting
BALB/cByJ mice. Single cell suspensions were obtained by
mechanical disruption and processed for red blood cell lysis.
50 × 106 splenocytes (experimentally defined as optimizing the
recall of immune memory, unpublished data) in 100 µl were
transferred intravenously (i.v.) by retro-orbital injection into
naïve BALB/cByJ mice.

B. pertussis Challenge
For the experiments of Figure 1, Bordetella pertussis 18323
(provided by the US FDA) was grown on Bordet-Gengou
agar (Difco) supplemented with 1% glycerol, 20% defibrinated
sheep blood (Sanofi Pasteur, Alba La Romaine). 5 × 106

colony-forming units (CFU) were instilled intranasally in a
volume of 30 µl into mice anesthetized by intramuscular
injection of Imalgen (ketamine 60 mg/kg; Merial SAS) and
Rompun (Xylaxine 4 mg/kg; Bayer). For experiments shown in
Figures 2–5, streptomycin-resistant Bordetella pertussis Tohama
I derivative BPSM, a kind gift from Prof. Camille Locht (Institut
Pasteur, Lille) (38), were grown on Bordet-Gengou agar (Difco)
supplemented with 1% glycerol, 10% defibrinated sheep blood
(Chemie Brunschwig AG) and 100µg/ml streptomycin. 1 ×

106 colony-forming units (CFU) were instilled intranasally in
a volume of 20 µL into mice anesthetized by intraperitoneal

injection of Ketasol (100 mg/kg; Graeub) and Rompun (10
mg/kg; Bayer). Mice were sacrificed 2–3 h after infection
for quantification of the initial numbers of viable Bp CFUs
in the lungs and at different time-points post challenge
for determination of bacterial colonization. Briefly, lungs
homogenates were plated onto Bordet-Gengou agar plates and
the number of CFUs was counted after 4 days of incubation at
37◦C. Protective efficacy (reflected by bacterial clearance) was
expressed as the area under the clearance curve (AUC) value
normalized to that of naive control mice (1AUC).

Antibodies Quantification
In the experiments shown in Figure 1, pertussis antigen-specific
IgG1 and IgG2a antibodies were titrated in a multiplex MSD U-
PLEX assay (Meso Scale Discovery). The coating proteins were
coupled to biotin to allow their subsequent coupling to the linkers
present in the bottom of Uplex plate. Uplex plates were coated
with PT (2µg/ml), PRN (10µg/ml), FHA (3µg/ml), FIM2,3
(4µg/ml), DT (4µg/ml), or TT (8µg/ml) (all antigens from
Sanofi Pasteur). Serial dilutions of serum sample, control and
reference sera (WHO/NIBSC reference Bp anti-serum (NIBSC
code: 97/642) for IgG1 and an in-house pool of hyperimmune
sera for IgG2a) were added, a wash step performed, and IgG1 or
IgG2a antibodies bound to each antigen were detected using anti-
IgG1 or anti-IgG2a (Jackson ImmunoResearch) antibodies linked
to SULFO-TAGTM (RD-Biotech) using MSD GOLD SULFOTAG
NHS-Ester Conjugation kit (Meso Scale Discovery).

In the experiments shown in Figures 2–5, Bp antigen-
specific antibody titers were determined by ELISAs. Briefly,
96-well plates (Nunc MaxiSorpTM; ThermoFischer Scientific)
were coated with PT (1µg/ml), PRN (5µg/ml), FHA (5µg/ml),
or FIM2,3 (2µg/ml). Wells were incubated with 2-fold serial
dilutions of individual or pooled mouse prior to incubation with
secondary horseradish peroxidase (HRP) conjugated anti-mouse
IgG, anti-mouse IgG2a (both from Invitrogen), and anti-IgG1
(BD PharMingen). The optical density of each well was measured
at 405 nm and the data analyzed with SoftMax Pro software. IgG,
IgG1, and IgG2a titers were expressed as Log10 in reference to
theWHO/NIBSC reference Bp anti-serum (NIBSC code: 97/642)
(IgG, IgG1) or in reference to a titrated pool of hyperimmune
sera (IgG2a).
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FIGURE 1 | Tdap adjuvantation with TLR agonists exerts little influence on immune and protective responses to pertussis. Adult CD1 mice were immunized i.m. with

DTwP or DTaP. 42 days later, DTwP-primed mice were boosted with DTwP while DTaP-primed mice were boosted with mTdap, mTdap/TLR9A, or mTdap/TLR4A.

(A) PT-, PRN-, FHA-, and FIM2,3-specific IgG1 and IgG2a serum antibody titers were assessed 42 days post boost. The graphs show the mean Log10 IgG1 and

IgG2a titers (± SEM) of individual mouse sera (n = 8). (B) Spleens were harvested 42 days post boost. Splenocytes were restimulated with a mix of

chemically-detoxified PT, PRN, and FIM2,3 antigens and assessed by fluorospots for IL-5, IFNγ, and IL-17 secretion. The mean numbers of spots (± SEM) per 106

splenocytes for n = 8 individual mice are shown. (C,D) Mice boosted with DTwP, mTdap, and mTdap/TLR9A (C) or mTdap/TLR4A (D) were challenged with Bp 42

days post boost. Lungs were harvested 2 h and at days 1, 2 (D only), 3, 7, 14, and 21 after challenge to assess bacterial colonization. The graphs indicate the Log10
number (± SEM) of CFUs per lung at the indicated time-points for n = 12 mice per group. *,#,‡ P < 0.05. #DTwP-DTwP vs. DTaP-mTdap; ‡DTwP-DTwP vs.

mTdap/TLR9A or TLR4A.

Statistical Analysis
Values are expressed as mean ± SEM. Statistical analysis were
performed using unpaired t-test or one-way ANOVA followed
by a Tukey multiple comparison test when more than two
groups of mice were tested. All analysis were done using the
Prism 7.0 (GraphPad software). Differences with p > 0.05 were
considered insignificant.

RESULTS

Modified Acellular Pertussis Vaccines
Protect Efficiently Against Pertussis
Challenge Independently of TLR4A or
TLR9A Supplementation
We first tested the capacity of three novel mTdap formulations to
boost immune memory elicited by current DTaP vaccines. CD1
mice were primed i.m. with DTaP and boosted 42 days later with
mTdap with/without TLR4A or TLR9A. A control group was
primed and boosted with DTwP, known to better protect than
DTaP (6, 7) (see Table 1 for abbreviations and vaccine content).

DTaP/mTdap elicited similar titers of PRN-, FHA-, and
FIM2,3-specific IgG1 and IgG2a antibodies as DTwP/DTwP and
higher PT-specific IgG1 6 weeks after boosting (Figure 1A), in
line with the lower PT content of DTwP (39). The addition of
TLR4A or TLR9A to mTdap did not significantly affect antibody
titers (Figure 1A) nor their IgG1/IgG2a ratio (data not shown).
T cell responses were also assessed 42 days after boosting for
the secretion of Th2- (IL-5), Th1- (IFNγ), and Th17- (IL-17)
cytokines. In line with the respective Th2- and Th1-inducing
properties of aP and wP vaccines (16, 20), mTdap significantly
induced IL-5-secreting splenocytes whereas DTwP preferentially
induced IL-17- and IFNγ-producing cells, although differences
in IFNγ did not reach statistical significance in this experimental
setting (Figure 1B). Compared to mTdap, mTdap/TLR4A
and mTdap/TLR9A formulations significantly reduced IL-5
responses (to similar levels as DTwP), without increasing
IFNγ-producing cells. IL-17-producing cells were only observed
after mTdap/TLR4A boosting, reaching similar numbers as in
DTwP-primed/boosted mice (Figure 1B). DTaP/mTdap elicited
similar antibody and T cell responses as DTaP/Tdap (data
not shown).
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FIGURE 2 | Distinct immunogenicity and protective efficacy of Tdap vs. DTwP in an adoptive transfer model designed to avoid the confounding factor of circulating

antibodies. (A) BALB/c mice are primed i.m. with DTaP or DTwP and their spleens harvested 6 weeks later for the adoptive transfer of 50 × 106 splenocytes into naïve

BALB/c mice. After 6 days, recipient mice are bled to check for the absence of serum pertussis-specific antibodies prior to i.m. boosting. The reactivation kinetics of

antigen-specific B cells is evaluated by antibody titers in sera collected at weekly intervals after boosting. Six weeks later, the spleens of boosted recipient mice are

harvested and 50 × 106 splenocytes adoptively transferred into naïve BALB/c, 7 days prior to intranasal Bp challenge. Lungs and sera are collected 3 h, and 7, 10,

14, and 21 days after challenge for CFU counting and Ag-specific antibody titers determination, respectively. (B–D) BALB/c mice adoptively transferred with 50 × 106

splenocytes of DTaP- or DTwP-primed mice received either Tdap or DTwP boosters. Six weeks later, their splenocytes were adoptively transferred into naïve BALB/c

mice prior to intranasal challenge with Bp. PT-, PRN-, FHA-, and FIM2,3-specific IgG antibody responses were assessed in sera collected (B) 42 days post prime and

at indicated time-points after (C) the boost and (D) the challenge. The graphs show the mean Log10 IgG titers (± SEM) of (B,C) pooled (n = 4, 6–7 mice per pool) or

(D) individual sera (n = 3–4). The dotted lines indicate the 50% cut-off of the assay. (E,F) Lungs were harvested at the indicated time-points after challenge for

determination of bacterial colonization. The graphs indicate (E) the Log10 number of CFUs per lung (± SEM) at indicated time-points for n = 3–4 mice per group and

(F) the area under the clearance curve (AUC) normalized to the AUC from naïve mice. Data are representative of at least two independent experiments. P < 0.05 for

*DTaP-Tdap vs. DTwP-Tdap; #DTaP-Tdap vs. DTwP-DTwP; ‡DTwP-Tdap vs. DTwP-DTwP.
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FIGURE 3 | Distinct protective efficacy of a single dose of mTdap/TLR4A and mTdap/TLR9A following bacterial challenge in the absence of serum antibodies.

BALB/c mice were immunized i.m. with mTdap/TLR4A or mTdap/TLR9A formulations. Six weeks later, their splenocytes were harvested and adoptively transferred

into naïve BALB/c mice challenged with Bp. The kinetics of PT-, PRN-, FHA-, and FIM2,3-specific IgG antibody responses were assessed in sera collected at

indicated time-points after (A) the prime and (B) the challenge. The graphs show the mean Log10 IgG titers (± SEM) of (A) pooled (n = 4, 6–7 mice per pool) or

(B) individual mouse sera (n = 3–4). The dotted lines indicate the 50% cut-off of the assay. (C,D) Lungs were harvested 3 h and at days 7, 10, 14, and 21 after

challenge and processed for determination of bacterial colonization. The graphs indicate (C) the Log10 number of CFUs per lung (± SEM) at indicated time-points for

n = 3–4 mice per group and (D) the area under the clearance curve (AUC) normalized to the AUC from naïve mice. Data are representative of at least two independent

experiments. P < 0.05 for *mTdap/TLR4A vs. mTdap/TLR9A; #mTdap/TLR9A vs. naive; ‡mTdap/TLR4A vs. naive.

To evaluate the protective efficacy of mTdap-based boosters
through bacterial clearance, mice were challenged intranasally
with Bp 42 days after boosting. Bacterial loads remained high in
the lungs of naïve mice, initially increased and started to decrease
after day 3 (Figures 1C,D). In contrast, rapid bacterial decline
was observed in the lungs of all immunized mice. By day 3,
bacterial colonization was slightly but significantly lower in mice
primed and boosted with mTdap formulations (with/without
TLR4A or TLR9A) compared to DTwP, as previously reported
(40). Nevertheless, by day 7, most of the mice had cleared
the infection (Figures 1C,D). DTaP/mTdap elicited similar
protection as DTaP/Tdap (data not shown).

Thus, the conventional murine model only discriminated
Tdap, mTdap or TLR4A/TLR9A-containingmTdap formulations
by the down-regulation of IL5/Th2 responses (mTdap/TLR4A or
TRL9A) and the induction of Th17 responses (mTdap/TLR4A).

An Adoptive Transfer Model of Pertussis
Immunity to Better Recapitulate the
Human Situation
The rapid protection conferred in mice by DTaP/DTwP
priming and mTdap/DTwP boosting may reflect the
contribution of both pertussis-specific antibodies and T cell

effectors present at time of challenge (Figure 1). In humans,
however, vaccine-induced antibodies rapidly wane and are
frequently low or absent at time of exposure by boosting
or infection. To mimic this condition and assess in mice
the protective efficacy of novel vaccine formulations in the
absence of circulating antibodies, we developed adoptive
transfer models. Following upon our single adoptive transfer
model, which enables the characterization of the influence of
priming (37), we developed here a double transfer model to
assess the influence of boosting—both in absence of serum
antibodies (Figure 2A).

Despite the use of distinct mouse strains, bacterial strains, and
experimental procedures (anesthesia, etc.) in Lyon/France and
Geneva/Switzerland, similar antibody responses and bacterial
clearance patterns were observed both in naïve and immunized
mice [Figures 1C,D, 2E and (37)]. This allowed using and
further developing in BALB/c mice the adoptive transfer model
developed in Geneva.

To establish the benchmarks with current vaccines, we
primed mice with DTaP or DTwP and transferred 50 × 106

splenocytes into naïve recipient BALB/c mice—subsequently
boosted with Tdap or DTwP. After priming, anti-PT, FHA,
PRN, and FIM2,3 IgG antibodies were similar as observed
in CD1 mice (Figure 2B; Supplementary Figure 1 ). Six days
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after the first adoptive transfer (d-1), PT-, PRN-, FHA-,
and FIM2,3-specific serum antibodies were undetectable in
recipient mice, as wished (Figure 2C). Tdap and DTwP
boosting rapidly reactivated antibody responses in recipient
mice, with detectable PT-, PRN-, FHA-, and FIM2,3-specific
IgG antibodies from 7 days onwards and reaching a plateau
by day 14 (Figure 2C). We previously reported that the
Tdap boosting of non-transferred naïve mice induces much
lower and slower kinetics of anti-PT antibody responses,
which only appear by day 14 (37). While all prime/boost
strategies similarly recalled FHA- and FIM2,3-specific responses,
mice transferred with DTaP-primed cells developed faster
and higher anti-PT IgG responses than recipients of DTwP-
primed cells (Figure 2C), consistently with their primary
responses to PT (Figure 2B). In contrast, mice transferred
with DTwP-primed cells developed significantly more robust
anti-PRN responses, independently of the boosting strategy
(Figure 2C). This confirmed that the adoptive transfer of spleen
memory cells preserve the relative ratio of antigen-specific
primed cells.

To evaluate the protective efficacy of booster formulations
in the absence of circulating antibodies at time of challenge,
we performed a second adoptive transfer into naïve BALB/c
mice, 7 days prior to bacterial challenge. The kinetics of
Ag-specific antibody responses was very slow in naïve mice:
PRN- and FHA-specific IgG appeared by day 14, PT by
day 21, and FIM2,3 IgG antibodies remained undetectable
at all time-points (Figure 2D). As expected, recipients of
memory cells raised faster antigen-specific responses: Bp
infection mostly reactivated strong anti-PRN responses, and
robust but slower anti-PT and FHA responses. FIM2,3-specific
antibodies were detectable early but at low titers only in
recipients of DTwP/DTwP immune cells (Figure 2D). Of note,
the Tohama I Bp strain used here and in the following
experiments expresses only the serotype 2 of FIM (41), explaining
the very low or undetectable Ab titers for FIM2,3 after
the challenge.

Lungs were collected at various time-points and analyzed for
their bacterial content. In contrast to the early (day 3) reduction
of bacterial counts observed when circulating antibodies are
present at time of challenge (Figures 1C,D and data not shown
in BALB/c mice), bacterial loads increased between day 0 and
day 7 in Tdap-boosted recipient mice and Tdap boosting had
no impact on Bp clearance, independently of DTaP or DTwP
priming. In contrast, a plateau of bacterial CFUs was observed on
day 7 inDTwP/DTwP recipients, followed by a significantly faster
clearance (Figures 2E,F): only all recipients of DTwP-boosted
splenocytes had cleared bacteria by day 21 (data not shown).

In summary, this novel double-transfer adoptive model
allows discriminating the ability of different boosting strategies
to reactivate Bp immunity and to confer protection/enhanced
bacterial clearance against challenge in the absence of
confounding high titers of serum antibodies. In this model,
DTwP/DTwP enhanced bacterial clearance but not TdaP
boosting, thus validating the double-transfer model and
benchmarking the optimal protective efficacy for novel
booster candidates.

A Single Dose of TLR4A- or
TLR9A-Containing mTdap Enhances
Pertussis Protection
mTdap, mTdap/TLR4A, and mTdap/TLR9A were similarly
protective when used as boosters following DTaP priming
in the conventional model (Figure 1). To investigate the
immunogenicity and protective capacity of a single dose of
mTdap/TLR4A and mTdap/TRL9A in the absence of serum
antibodies, we immunized BALB/c mice with mTdap/TLR4A
or mTdap/TLR9A 42 days before transferring their splenocytes
into naïve mice. Both formulations rapidly induced PT-,
PRN-, FHA-, and FIM2,3-specific IgG responses, starting on
day 7 or 14 post immunization (Figure 3A). mTdap/TLR9A
significantly enhanced IgG responses to PT and FHA compared
to mTdap/TLR4A, despite slower kinetics (Figure 3A).
mTdap/TLR4A induced predominantly IgG1 responses
(Supplementary Figures 2A,B), resulting in significantly
higher IgG1/IgG2a ratios compared to mTdap/TLR9A
(Supplementary Figure 2C), consistently with the potential of
TLR9 agonists to skew responses toward a Th1 profile (13, 28, 29).

Bp challenge recalled rapid and strong anti-PT, PRN and
FHA IgG responses in recipients of immune cells (Figure 3B).
Bacterial challenge better reactivated PT memory responses
elicited by mTdap/TLR9A than mTdap/TRL4A, as shown
by significantly faster and stronger IgG titers. Only minor
differences were observed for PRN- and FHA-specific responses
while anti-FIM2,3 IgG remained barely detectable (Figure 3B).
Both adjuvanted formulations significantly enhanced bacterial
clearance compared to naïve mice (Figure 3C). mTdap/TLR9A
provided earlier bacterial control than mTdap/TLR4A, as
shown by significantly lower bacterial load after day 10.
However, the two formulations conferred similar protection
at day 14 and all mice had cleared the infection by day
21 (Figure 3C), resulting in similarly smaller 1AUC
(mTdap/TLR9A: 64.7%; mTdap/TLR4A: 72.1%) compared to
naïve mice (Figure 3D).

Thus, a single dose of either mTdap/TLR4A or mTdap/TLR9A
induces potent memory responses that confer protection against
Bp when reactivated in the absence of serum antibodies.

Boosting DTaP With mTdap/TLR9A but not
mTdap/TLR4A Favors a Th1-Associated
IgG2a Antibody Profile Despite DTaP
Priming
We next investigated whether these formulations remain
sufficiently Th1-driving and thus protective in the Th2-skewed
setting elicited by DTaP priming. To this end, we used
the double adoptive transfer model described in Figure 2.
Recipients of DTaP-primed splenocytes were boosted with
Tdap (control), mTdap/TLR9A or mTdap/TLR4A. As the large
number of mice required for these double adoptive transfer
experiments did not allow the direct assessment of T cell
responses, IgG1 and IgG2a titers were used as surrogates for
Th2 and Th1-associated responses, respectively. Both adjuvanted
mTdap formulations reactivated robust IgG responses reaching
significantly higher titers than Tdap boosting (Figure 4A).
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FIGURE 4 | Boosting DTaP-primed mice with mTdap vaccines rapidly and strongly recalls antibody responses to pertussis antigens. BALB/c mice adoptively

transferred with 50 × 106 splenocytes of DTaP-primed mice were boosted with Tdap or adjuvanted mTdap formulations. (A) The kinetics of PT-, PRN-, FHA-, and

FIM2,3-specific IgG antibody responses were assessed in sera collected at the indicated time-points after boosting. The graphs show the mean Log10 IgG titers (±

SEM) of pooled sera (n = 4, 6–7 mice per pool). (B,C) IgG1 and IgG2a titers were assessed in sera collected 42 days post boost. The graphs show the (B) mean

Log10 IgG1 and IgG2a titers (± SEM) and (C) the IgG1:IgG2a ratio of pooled sera (n = 4, 6–7 mice per pool). The dotted lines indicate the 50% cut-off of the assay.

Data are representative of at least two independent experiments. P < 0.05 for: *DTaP-Tdap vs. DTaP-mTdap/TLR9A; #DTaP-Tdap vs. DTaP-mTdap/TLR4A;

‡DTaP-mTdap/TLR9A vs. DTaP-mTdap/TLR4A.

Overall, antigen-specific IgG1 and IgG2a titers mirrored those
of total IgG, and significantly higher IgG1 and IgG2a titers
were observed followingmTdap than Tdap boosting (Figure 4B).
Interestingly, mTdap/TLR9A further increased IgG2a responses
to PT, PRN, and FHA as compared tomTdap/TLR4A, resulting in
a significantly smaller IgG1/IgG2a ratio for these three antigens
(Figure 4C). Given the higher antigen content of mTdap vs. Tdap
(Table 1), we first compared booster responses in our double
adoptive transfer model. mTdap boosting elicited slightly but
significantly higher PT and PRN titers than Tdap, likely reflecting
the higher antigen content, but similar FHA and FIM2,3
antibody responses (Supplementary Figure 3A). Thus, when
used in the absence of serum antibodies, mTdap-adjuvanted
formulations designed to boost DTaP priming increase humoral
responses, but only mTdap/TLR9A enhances Th1-associated
IgG2a antibody responses in the context of DTaP-induced Th2
primary responses.

Boosting DTaP With mTdap/TLR9A but not
mTdap/TLR4A Enhances Protection
Against Bp
As previously observed in Figure 2, Bp-induced responses
remain extremely low/slow in naïve mice. In contrast, a

faster and stronger reactivation of PT (day 10) and FHA
(day 7) IgG responses were observed in recipients of DTaP-
primed/mTdap/TLR9A-boosted cells as compared to recipient of
DTaP/Tdap-boosted cells (day 14) (Figure 5A). Recipients
of DTaP-primed/Tdap/TLR4A-boosted cells showed an
intermediate phenotype with slower/lower PT and FHA
responses (Figure 5A). Anti-PRN IgG responses were similar
in all groups and anti-FIM2,3 IgG antibodies were again
barely detectable (Figure 5A). In line with booster responses
(Figure 4B), we observed a significant increase in PT- and
PRN-specific IgG2a antibody titers in mice that received DTaP-
primed/mTdap/TLR9A-boosted cells, despite overall low levels
of IgG2a antibodies (Figure 5B). Again as previously observed
(Figure 2E), the kinetics of bacterial clearance were similar
between naïve mice and recipients of DTaP-primed/Tdap-
boosted cells (Figure 5C). Despite slightly higher and faster PT
and PRN antibody recalls, boosting with mTdap did not improve
protection compared to Tdap (Supplementary Figures 3B–D),
confirming that the currently used Tdap vaccine could be used
as control. DTaP-priming/mTdap/TLR4A boosting conferred a
slightly earlier bacterial control, reflected by significant lower
bacterial counts on day 10, but with no overall impact compared
to DTaP-priming/Tdap boosting (Figures 5C,D). In contrast,
mTdap/TLR9A boosting after DTaP-priming significantly
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FIGURE 5 | Boosting DTaP memory responses with mTdap/TLR9A but not mTdap/TLR4A accelerates bacterial clearance. Naïve BALB/c mice were adoptively

transferred with 50 × 106 splenocytes of DTaP-primed mice prior to boosting with Tdap, mTdap/TLR4A or mTdap/TRL9A. Their splenocytes were transferred to

naive recipients prior to intranasal challenge with Bp. (A) The kinetics of PT-, PRN-, FHA-, and FIM2,3-specific IgG antibody responses were assessed in sera

collected at indicated time-points after challenge. The graphs show the mean Log10 IgG titers (± SEM) of individual sera (n = 3–4 mice per group). (B) Serum IgG1

and IgG2a titers were assessed 21 days after challenge. The graphs show the mean Log10 IgG1 and IgG2a titers (± SEM) of individual sera (n = 3–4 mice per group).

The dotted lines indicate the 50% cut-off of the assay. (C,D) Lungs were harvested 3 h and at days 7, 10, 14, and 21 after challenge for determination of bacterial

colonization. The graphs show (C) the Log10 number of CFUs per lung (± SEM) at the indicated time-points for n = 3–4 mice per group and (D) the area under the

clearance curve (AUC) normalized the AUC from naïve mice. Data are representative of at least two independent experiments. P-value < 0.05 for: *DTaP-Tdap vs.

DTaP-mTdap/TLR9A; #DTaP-Tdap vs. DTaP-mTdap/TLR4A; ‡aP-mTdap/TLR9A vs. aP-mTdap/TLR4A.

accelerated bacterial clearance (Figures 5C,D) to a similar extent
than observed after a DTwP prime/boost schedule, as reflected
by smaller 1AUC (DTwP-DTwP: 83.5%; DTaP-mTdap/TLR9A:
75.25%) (Figures 2E, 5D).

In conclusion, TLR4A and TLR9A added to mTdap vaccines
behave differently in the absence of circulating antibodies, a
condition in which mTdap/TLR9A induces memory responses
better recalled upon bacterial challenge and markedly enhancing
bacterial clearance.

DISCUSSION

The shortcomings of current aP vaccines raise the need of
third-generation pertussis vaccines. Given the importance of
priming, efforts are currently dedicated to define how to best
prime young infants against pertussis, inducing potent and long-
lasting B and Th1/Th17 cell effectors and memory. However,
licensing a novel infant vaccine will be most challenging given
the resources required to demonstrate its safety, its efficacy,
its non-interference on responses to other infant vaccines,

and its sustained boostability. The development of new aP
formulations proving better at boosting and/or redirecting aP-
primed memory responses in adolescents and adults is thus an
interesting approach. Using amodel of adoptive transfer, we show
here that despite DTaP priming, an alum-based Tdap booster
vaccine including genetically instead of chemically-detoxified
PT (in addition to FHA, PRN, and FIM2,3 antigens) and a
TLR9 agonist enhances Th1-associated IgG2a responses, induces
memory responses that are better recalled by Bp and enhances
protection against Bp.

The correlates of Bp protection for pertussis vaccines are
not well-defined. A critical role in mediating protection has
been attributed to antibodies (42), also supported by the
transfer of pertussis-specific maternal antibodies to newborns
(43). However, several murine studies have demonstrated
an important role for CD4+ Th1/Th17 cells in long-lasting
protection (44, 45), and these are often considered as critical
effectors for novel pertussis vaccines. Here we demonstrate the
critical role of antibodies, which rapidly clear all bacteria if
present at sufficient titers at time of challenge, in contrast with the
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much slower bacterial clearance (only initiated when antibodies
appear) when serum antibodies are absent at time of challenge.
Our adoptive transfer model thus strongly suggests that the sole
reactivation of memory Th1/Th17 cells is not sufficient to protect
mice against Bp, which also requires the reactivation of B cell
memory into potent antibody-secreting cells.

Human studies have demonstrated the importance of
the priming in imprinting lifelong vaccine-specific T cell
responses, as illustrated by the persistence of wP-induced
Th1/Th17 polarization despite repeated aP boosters (46, 47).
However, Bp challenge can boost and shift aP-induced immune
responses toward Th1 response (15). Considering the important
cohort of aP-vaccinated subjects worldwide, the identification
of formulations able to redirect aP-driven Th2 responses
toward Th1/Th17 represents an important milestone for the
development of novel booster vaccines. In this study, we
assessed alum-based formulations complemented with TLR4A
or TLR9A as (1) studies in TLR4-deficient mice have identified
the contribution of TLR4 signaling to the immunogenicity of
wP vaccines (48) and protective immunity against Bp infection
(49) induced by aP or wP immunization (23, 40), and (2) TLR9
signaling is known to promote Th1 responses (50). Importantly,
TLR agonists have already been included in human vaccines
currently licensed [MPL/TRL4 (51) and CpG/TLR9 (52)].

Consistently with previous data (13, 14, 26), both TLR ligands
reduced the number of IL-5-producing T cells. This did not
correlate with increased number of IFNγ-producing cells, and
only TLR4A-based formulations elicited IL-17-secreting cells.
The induction of Th17, but not Th1 cells, by TLR4A and not
TLR9A is consistent with previous studies using a meningococcal
LPS as TLR4 ligand in combination with alum (14), or CpG as
TLR9 ligand in substitution of Alum (13) in aP formulations.
The role of TLR4 signaling in Th17 cell responses has been
demonstrated in TLR4-deficient mice, which showed impaired
IL-17 secretion upon wP but not aP immunization (23). Thus, Bp
LPS, present in wP formulations, is a key factor in its induction
of Th17 responses.

The failure of TLR9A to enhance Th1 immune responses,
which contrasts with two previous reports (13, 29), may
have several explanations. First, none of these two studies
demonstrated the effective induction of Th1 responses by
TLR9A-based formulations in an aP-primed Th2-biased
setting—i.e., following aP priming. Second, Ross et al. used
CpG without Alum, thus avoiding the Th2-promoting intrinsic
properties of Alum (13). Last, the C57BL/6 mouse strain used
in the latter study is a prototypical Th1-prone mouse strain, in
contrary to the more Th2-oriented mouse strains used here.

Based on decreased Th2 and increased Th17 responses
(Figure 1), TLR4 signaling seemed more promising than
TLR9 signaling at improving protection against Bp. However,
mTdap/TLR9A slightly enhanced protection compared to
mTdap/TLR4A when Bp challenge was performed after a
single adoptive transfer. We observed significantly decreased
IgG1/IgG2a ratios after a single dose of mTdap/TLR9A as
compared to mTdap/TLR4A, indirectly suggesting that TLR9
signaling elicits stronger Th1-polarized responses than TLR4.
The recall of PT and FHA antibody responses by Bp challenge

was much faster in recipients of mTdap/TLR9A-primed cells. As
protection relies mostly on the reactivation of memory B cells
rather than T cells in the absence of circulating antibodies, this
more rapid antibody response likely contributes to the better
protective efficacy of mTdap/TLR9A.

mTdap/TLR9A showed potent efficacy after a single dose,
or when given as a booster after the transfer of aP-primed
splenocytes: this was reflected by higher and faster B cell memory
recall and improved bacterial clearance. Lower IgG1/IgG2a ratios
after boosting indirectly suggests that adding TLR9A to alum
is able to redirect aP-induced Th2-associated IgG1 primary
responses toward a more Th1-associated IgG2a profile. However,
the observed changes are modest and direct analysis of T cell
responses would be needed to confirm the extent of the ability
of TLR9 ligands to redirect alum-induced pertussis-specific Th2
toward Th1 responses. This has been previously demonstrated
upon neonatal/adult immunization against hepatitis B (53, 54),
but not yet in the context of pertussis immunization.

The chemical treatment used in most current aP vaccines
to detoxify PT is known to destroy many of its important
protective epitopes (34), reducing the induction of neutralizing
antibodies (35). By comparing the immunogenicity of various
aP vaccines including chemically- or genetically-detoxified PT in
infants, Edwards et al., clearly showed enhanced immunogenicity
of the genetically-detoxified PT (55). Consistently, mouse
studies showed that the gdPT used here generally exhibits
higher immunogenicity than PT, especially when assessing
neutralizing Ab titers (56). However, replacing PT by gdPT
did not increase the protective efficacy of Tdap here. This
may have two explanations. First in standard prime/boost
murine model, the rapid clearance mediated by high antibody
titers to all vaccine antigens likely masks any difference in
the neutralizing ability of anti-PT antibodies. Second, in our
adoptive transfer model, increased anti-PT antibodies were
observed after boosting, confirming the higher immunogenicity
of gdPT; however, booster-induced antibody responses do
not contribute to protection, as the challenge is performed
following a second adoptive transfer—in absence of circulating
antibodies. This likely explains why the higher immunogenicity
of gdPT is not reflected by improved protection in these
murine models.

Although mice share multiple feature of pertussis disease with
humans, they do not cough, they fail to transmit the disease
to other mice, and they raise different lung pathophysiological
responses (57). Using a murine model of intranasal infection,
we show enhanced protective efficacy of the mTdap/TLR9A
formulation, reflected by faster bacterial clearance. However,
murine models may not be used to assess colonization and
transmission, in contrast to non-human primates (NHP) (58)
which develop similar symptoms of pertussis disease to humans
(59). However, the NHP model does not permit to assess
the respective contribution of memory T and B cell-mediated
protection, as bacterial challenge is performed in presence of high
levels of vaccine antibodies. Consequently, the conclusions raised
fromNHP studies may better apply to priming than to previously
primed adolescent/adult vaccines who lost circulating antibodies.
Our double adoptive transfer murine model overcomes this
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drawback, highlighting the importance of using diverse animal
models to evaluate the various aspects of the protective efficacy
of novel vaccines (60). Nevertheless, caution should be exerted
when extrapolating from one species to humans, especially
for adjuvanted formulations given differences in expression of
TLR4/TLR9 (61, 62).

In conclusion, a double adoptive transfer murine model
allows us to dissect the ability of different boosting strategies
to recall Bp immunity and enhance bacterial clearance in
the absence of circulating antibodies—a setting that resembles
the human situation. It shows that the presence and/or rapid
recall of pertussis antibodies are crucial to protection and that
TLR9 (better than TLR4 agonists) may improve current aP
vaccines and thus possibly better protect adolescents and adults
against pertussis.
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